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Abstract

Cultivation of an obligate marine Streptomyces strain has provided the cytotoxic natural product
chlorizidine. X-Ray crystallographic analysis revealed that the metabolite is composed of a
chlorinated 2,3-dihydropyrrolizine ring attached to a chlorinated 5H-pyrrolo[2,1-a]isoindol-5-one.
The carbon stereocenter in the dihydropyrrolizine is S-configured. Remarkably, the 5H-
pyrrolo[2,1-a]isoindol-5-one moiety has no precedence in the field of natural products. The
presence of this ring system, which was demonstrated to undergo facile nucleophilic substitution
reactions at the activated carbonyl group, is essential to the molecule’s cytotoxicity against
HCT-116 human colon cancer cells.

There are a substantial number of chemotherapeutic drugs on the market that are based on
the scaffolds of actinomycete-derived natural products.1 For instance, chemical studies of
terrestrial Streptomyces bacteria led to the discovery of actinomycin D,2a doxorubicin,2b

bleomycin,2c carzinophilin,2d chromomycin A3,2e mithramycin,2f mitomycin C,2g

sarkomycin,2h and streptozocin,2i and neocarzinostatin.2f No truly novel actinomycete-
derived natural product structure has led to the development of a drug in recent years,1

which at least suggests that terrestrial actinomycetes are no longer a viable source for new
lead compounds. Studies of marine actinomycete bacteria, however, continue to yield
unique chemical structures with anticancer activity.3 For example, salinosporamide A from
Salinispora tropica is poised to enter phase II clinical trials.4

In an effort to identify new chemotypes for therapeutic development, Streptomyces sp. strain
CNH-287 was cultivated in a seawater-based medium (20 × 1 L).5 Notably, the strain
required seawater for growth. Amberlite resin (XAD-18) was added after the first day of
cultivation. The resin was filtered and extracted with acetone after seven days, and the crude
material was then fractionated on silica gel. One fraction displayed significant cytotoxicity
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against HCT-116 human colon cancer. A cytotoxic metabolite with a prominent UV/vis
profile was isolated from this fraction using C18 reversed-phase HPLC.

It proved difficult to obtain pure compound sufficient for full spectroscopic analysis. During
concentration from either organic or aqueous solutions, extensive degradation occurred.
Much less decomposition was observed when solutions were kept cool and dried under a
stream of nitrogen. In addition, the metabolite could be stored in dilute solutions away from
light and air.

A nonzero optical rotation, [α]D −35 (c 0.50, CH3CN), indicated that the natural product
was optically active, and a strong IR stretch at 1721 cm−1 revealed the presence of a
carbonyl group. Mass spectrometry data for the natural product [HRESI-FT-MS m/z (M
+H)+ = 442.9511, 444.9481, 446.9452, 448.9422] showed a molecular ion cluster consistent
with molecular formulae that include Cl2Br or Cl4. With 13 degrees of unsaturation,
however, only C18H10Cl4N2O3 agreed with proton and carbon NMR data.

We initially attempted to solve the structure of the natural product using 1D and 2D NMR
(COSY, HSQC, HMBC) experiments (Table 1). The numbering of the molecule is shown in
Figure 1. Low-field signals at δH 6.55 (δC 101.9) and 6.42 (δC 108.2) were conspicuous, in
addition to two overlapping signals at δH 5.80 (δC 99.3 and δC 53.0). A spin system
including a proton at δH 5.80 and the remaining upfield methylene protons at δH 3.08, 2.90,
2.84, and 2.54 was apparent in the 1H-1H COSY spectrum. Interestingly, the upfield proton
signals from δ 2.54-3.08 exhibited complex splitting patterns due to the flexibility in the
molecule (vide infra). The paucity of hydrogen atoms and the plethora of quaternary carbon
atoms made complete structural elucidation by NMR problematic.

The structure of chlorizidine A (1) was finally determined using X-ray crystallographic
techniques (Figure 2). Slow evaporation of a concentrated solution of 1 in benzene provided
X-ray quality crystals. A molecule of benzene was incorporated into the crystal lattice.6

Additionally, the lone tertiary carbon stereocenter was assigned an S-configuration [Flack
parameter −0.02(2)].

Chlorizidine A (1) displays an unprecedented structure involving a nitrogen-containing
carbon skeleton. The discovery of a naturally-occurring 5H-pyrrolo[2,1-a]isoindol-5-one
ring system has not been previously described in the literature. Various synthetic accounts of
the heterocycle, however, are well documented.7 The pyrroloisoindolone is connected to a
dichlorinated 2,3-dihydro-1H-pyrrolizine at C-7.8 In the solid state, the congested region
about the sp2-sp3 bond between the two ring systems forces the molecule to adopt a twisted
conformation. In solution, though, 1 does not appear to exhibit atropisomerism.9

The phenolic substituents at C-6 and C-8 of chlorizidine A (1) could be readily
functionalized. Treatment of 1 with acetic anhydride/triethylamine gave 2, and methylation
with dimethyl sulfate provided 3 (Scheme 1). Acetate 2 was a stable chemical entity much
less prone to degradation than 1. Interestingly, like the natural product, its proton NMR
spectrum showed evidence of slow C-7/C-10 bond rotation relative to the NMR time scale.
The well-resolved proton signals at C-1, C-9, C-10, and C-13 in 1 were now “doubled” in 2.
The diacetate structure was confirmed using X-ray crystallography. The crystal was
composed of two low-energy “twisted” conformers (see Supporting Information).

The semisynthesis of bulkier phenolic esters—isobutyrate 4, pivalate 5, and benzoate 6—
was undertaken in an attempt to produce an atropiosmeric mixture, but this approach was
not successful (see Scheme 1).6 Analysis of these derivatives was much more complex, as
the ester functionalities revealed their own conformational preferences. The proton NMR
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spectra showed the simultaneous presence of several confomers with distinct chemical shifts
(see Supporting Information).

A second metabolite that was prone to degradation, chlorizidine B (7), was isolated from
culture extracts of CNH-287 (Scheme 2). A stable diacetate adduct 8 was constructed using
acetic anhydride. An additional aromatic NMR signal corresponding to C-7 was noticeable.
Presumably, pyrrole 7 arises from hydrolysis and decarboxylation of chlorizidine A (1). The
notion that 7 is an artifact of the culturing process was substantiated by treating 1 with a pH
10 buffer composed of K2B4O7, K2CO3, and KOH.10 Under these conditions, the C-7
carboxylic acid was observed [LRESI-MS m/z (M–H)− = 459, 461, 463].11 Notably, many
other compounds are formed from the degradation of chlorizidine (1) under basic conditions
(see Supporting Information).

The central electrophilic carbonyl group of the 5H-pyrrolo[2,1-a]isoindol-5-one moiety
engages sulfur-, oxygen-, and amine-containing nucleophiles in a substitution reaction,
whereby the electron-poor dichloropyrrole functions as leaving group (see Scheme 2).5g

When subjected to N-acetylcysteamine and potassium carbonate, thioester 9 was produced.
Likewise, treatment of 1 with benzylamine gave amide 10 and treatment with potassium
carbonate in methanol afforded ester 11. Unlike 9 and 10, ester 11 was not suitably stable
for complete purification and analysis. Peracetylation of 9-11 furnished stable derivatives
12-14. A more efficient method for the synthesis of 14 was accomplished by treating
diacetate 2 with aqueous NaOH in CH3OH followed by acetylation. Certainly, the isolation
of pure chlorizidine A (1) is hindered, in part, by the lability of the pyrroloisoindolone
moeity toward nucleophiles.

Chlorizidine A (1) and acylated derivatives 2, 4, and 5 exhibit noteworthy activity in a colon
cancer cytotoxicity bioassay (Table 2).12 Against the HCT-116 adenocarcinoma cell line,13

1 showed an IC50 of 3.2-4.9 μM. Compounds 2, 4, and 5 showed similar activity.
Irreversible methylation of the phenolic functionality in 1, yielding 3, rendered the
compound completely inactive. Any of the series of derivatives lacking the key
pyrroloisoindolone ring system (7-14) had no measurable activity, strongly suggesting that
this moiety is a crucial part of the metabolite’s pharmacophore.

Chlorizidine A diacetate (2) was tested against the NCI’s panel of 60 tumor cell lines.14 It
was modestly selective in terms of its cytotoxicity (See Supporting Information). However,
against SK-MEL-5 and SK-MEL-2 melanoma cancer cells, 2 showed a pronounced LC50 of
3.6 μM and 11 μM, respectively. Against MDA-MB-231/ATCC breast cancer cells, an
LC50 of 11 μM was also determined.

Chlorizidine A (1) has obvious structural similarity to marinopyrrole A (15), a secondary
metabolite from marine-derived Streptomyces sp. CNQ-418 (Scheme 3).15 Biosynthetic
precursor 16 is derived from a mixed NRPS-PKS pathway, whereby proline is loaded onto a
peptidyl carrier protein, oxidized, chlorinated by an FADH2-dependent halogenase, and
subsequently extended by the PKS machinery.16 Cyclization/aromatization provides
monodeoxypyoluteorin (17).17 1,3’-Bipyrrole 15 is then formed via a novel atroposelective
N,C-pyrrole coupling reaction.18 An alternative route using 16 that includes N-acylation and
reduction could yield chlorizidine A (1). That 16, despite its simplicity, may be utilized to
make two diverse, complex structure types is remarkable.

Derived from what appears to represent a new, obligate marine Streptomyces sp.,
chlorizidine is the first example of a natural product containing a 5H-pyrrolo[2,1-
a]isoindol-5-one ring. Studies are now in progress to examine the biosynthesis and
mechanism of action of these novel metabolites.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(−)-(S)-Chlorizidine A (1).
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Figure 2.
ORTEP plot of 1 with benzene (co-crystallized).
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Scheme 1.
Acylation and methylation of the phenolic groups in chlorizidine A (1)
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Scheme 2.
Reactivity of the 5H-pyrrolo[2,1-a]isoindol-5-one in chlorizidine A (1)
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Scheme 3.
Proposed biosynthetic relationship of 1 to marinopyrrole A (15)
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Table 1

1H, 13C, and HMBC NMR spectral data for chlorizidine A (1) (CD3CN)

C no. δC
a δH, mult. (J, Hz)b HMBCb

2,3,5a,14,15c

1 101.9 6.55, br s

5 163.0

6 163.9

7 113.3d

8 157.5

9 108.2 6.42, s 5,7,9a,9b

9a 135.5e

9b 132.7e

10 53.0 5.80, ddf 6-8,11

11 32.5 2.84, m 7,12,12a

2.54, m 6-8,10,12,12a

12 25.4 3.08, m 10,11,12a,13

2.90, m 10,11,12a,13

12a 136.8

13 99.3 5.80, sf 12a,14

a
75 MHz.

b
500 MHz.

c
δC = 116.9, 113.0d, 109.7, 106.0, 105.9.

d, e
Signals may be switched.

f
Overlapping signals.
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Table 2

Cytotoxicity of 1-14 (μM)

HCT116 (IC50)a

1 3.2-4.9

2 0.6-3.0

3 NSA

4 1.0-1.2

5 2.1-3.7

6-14 NSA

a
HCT-116 is a human colon cancer cell line. Positive control: etoposide (IC50 = 0.49-4.9 μM).

NSA = no significant activity.
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