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Abstract
This paper presents a method for selecting salient 2D views to describe 3D objects for the purpose
of retrieval. The views are obtained by first identifying salient points via a learning approach that
uses shape characteristics of the 3D points (Atmosukarto and Shapiro in International workshop
on structural, syntactic, and statistical pattern recognition, 2008; Atmosukarto and Shapiro in
ACM multimedia information retrieval, 2008). The salient views are selected by choosing views
with multiple salient points on the silhouette of the object. Silhouette-based similarity measures
from Chen et al. (Comput Graph Forum 22(3):223–232, 2003) are then used to calculate the
similarity between two 3D objects. Retrieval experiments were performed on three datasets: the
Heads dataset, the SHREC2008 dataset, and the Princeton dataset. Experimental results show that
the retrieval results using the salient views are comparable to the existing light field descriptor
method (Chen et al. in Comput Graph Forum 22(3):223–232, 2003), and our method achieves a
15-fold speedup in the feature extraction computation time.
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1 Introduction
Advancement in technology for digital acquisition and graphics hardware has led to an
increase in the number of 3D objects available. Three-dimensional objects are now
commonly used in a number of areas such as games, mechanical design for CAD models,
architectural and cultural heritage, and medical diagnostic. The widespread integration of 3D
models in all these fields motivates the need to be able to store, index, and retrieve 3D
objects automatically. However, classification and retrieval techniques for text, images, and
videos cannot be directly translated and applied to 3D objects, as 3D objects have different
data characteristics from other data modalities.

Shape-based retrieval of 3D objects is an important area of research. The accuracy of a 3D
shape-based retrieval system requires the 3D object to be represented in a way that captures
the local and global shape characteristics of the objects. This is achieved by creating 3D
object descriptors that encapsulate the important shape properties of the objects. This
process is not a trivial task.

This paper presents our method of selecting salient 2D views to describe a 3D object. First,
salient points are identified by a learning approach that uses the shape characteristics of each
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point. Then 2D salient views are selected as those that have multiple salient points on or
close to their silhouettes. The salient views are used to describe the shape of a 3D object.
The similarity between two 3D objects uses view-based similarity measure developed by
Chen et al. [10] for which two 3D objects are similar if they have similar 2D views.

The remainder of this paper is organized as follows: First, existing shape descriptors and
their limitations are discussed. Next, we describe the datasets acquired to develop and test
our methodology. The method for finding the salient points of a 3D object is described next.
Then, selection of the salient views based on the learned salient points is defined. In the
experimental results section, the evaluation measures are first described, and a set of
retrieval experiments is described and analyzed. Finally, a summary and suggestions for
future work are provided.

2 Related literature
Three-dimensional object retrieval has received increased attention in the past few years due
to the increase in the number of 3D objects available. A number of survey papers have been
written on the topic [7-9,12,14,17,24,30,34,35,38]. An annual 3D shape retrieval contest was
also introduced in 2006 to try to introduce an evaluation benchmark to the research area
[32]. There are three broad categories of ways to represent 3D objects and create a
descriptor: feature-based methods, graph-based methods, and view-based methods.

The feature-based method is the most commonly used method and is further categorized into
global features, global feature distributions, spatial maps, and local features. Early work on
3D object representation and its application to retrieval and classification focused more on
the global features and global feature distribution approaches. Global features computed to
represent 3D objects include area, volume, and moments [13]. Some global shape
distribution features computed include the angle between three random points (A3), the
distance between a point and a random point (D1), the distance between two random points
(D2), the area of the triangle between three random points (D3), and the volume between
four random points on the surface (D4) [26,28]. Spatial map representations describe the 3D
object by capturing and preserving physical locations on them [19-21,31]. Recent research is
beginning to focus more on the local approach to representing 3D objects, as this approach
has a stronger discriminative power when differentiating objects that are similar in overall
shape [29].

While feature-based methods use only the geometric properties of the 3D model to define
the shape of the object, graph-based methods use the topological information of the 3D
object to describe its shape. The graph that is constructed shows how the different shape
components are linked together. The graph representations include model graphs, Reeb
graphs, and skeleton graphs [16,33]. These methods are known to be computationally
expensive and sensitive to small topological changes.

The view-based method defines the shape of a 3D object using a set of 2D views taken from
various angles around the object. The most effective view-based descriptor is the light field
descriptor (LFD) developed by Chen et al. [10]. A light field around a 3D object is a 4D
function that represents the radiance at a given 3D point in a given direction. Each 4D light
field of a 3D object is represented as a collection of 2D images rendered from a 2D array of
cameras distributed uniformly on a sphere. Their method extracts features from 100 2D
silhouette image views and measures the similarity between two 3D objects by finding the
best correspondence between the set of 2D views for the two objects.

The LFD was evaluated to be one of the best performing descriptors on the Princeton and
SHREC benchmark databases. Ohbuchi et al. [27] used a similar view-based approach;
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however, their method extracted local features from each of the rendered image and used a
bag-of-features approach to construct the descriptors for the 3D objects. Wang et al. [36]
used a related view-based approach by projecting a number of uniformly sampled points
along six directions to create six images to describe a 3D object. Liu et al. [23] also
generated six view planes around the bounding cube of a 3D object. However, their method
further decomposed each view planes into several resolution and applied wavelet transforms
to the extracted features from the view planes. Both these methods require pose-
normalization of the object; however, pose-normalization methods are known not to be
accurate and objects in the same class are not always pose-normalized into the same
orientation. Yamauchi et al. [37] applied a similarity measure between views to cluster
similar views and used the centroid of clusters as the representative views. The views are
then ranked based on a mesh saliency measure [22] to form the object’s representative
views. Ansary et al. [1,2] proposed a method to optimally select 2D views from a 3D model
using an adaptive clustering algorithm. Their method used a variant of K -means clustering
and assumed the maximum number of characteristic views was 40. Cyr and Kimia [11]
presented an aspect graph approach to 3D object recognition using 2D shape similarity
metric to group similar views into aspects and to compare two objects.

We propose a method to select salient 2D silhouette views of an object and construct a
descriptor for the object using only the salient views extracted. The salient views are
selected based on the salient points learned for each object. Our method does not require any
pose normalization or clustering of the views.

3 Datasets
We obtained three datasets to develop and test our methodology. Each dataset has different
characteristics that help explore the different properties of the methodology. The Heads
dataset contains head shapes of different classes of animals, including humans. The SHREC
2008 classification benchmark dataset was obtained to further test the performance of the
methodology on general 3D object classification, where objects in the dataset are not very
similar. Last, the Princeton dataset is a benchmark dataset that is commonly used to evaluate
shape-based retrieval and analysis algorithms.

3.1 Heads dataset
The Heads database contains head shapes of different classes of animals, including humans.
The digitized 3D objects were obtained by scanning hand-made clay toys using a laser
scanner. Raw data from the scanner consisted of 3D point clouds that were further processed
to obtain smooth and uniformly sampled triangular meshes. To increase the number of
objects for training and testing our methodology, we created new objects by deforming the
original scanned 3D models in a controlled fashion using 3D Studio Max software [5].
Global deformations of the models were generated using morphing operators such as
tapering, twisting, bending, stretching, and squeezing. The parameters for each of the
operators were randomly chosen from ranges that were determined empirically. Each
deformed model was obtained by applying at least five different morphing operators in a
random sequence.

Fifteen objects representing seven different classes were scanned. The seven classes are cat
head, dog head, human head, rabbit head, horse head, tiger head, and bear head. A total of
250 morphed models per original object were generated. Points on the morphed model are in
full correspondence with the original models from which they were constructed. Figure 1
shows examples of objects from each of the seven classes.
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3.2 SHREC dataset
The SHREC 2008 classification benchmark database was obtained to further test the
performance of our methodology. The SHREC dataset was selected from the SHREC 2008
Competition “classification of watertight models” track [15]. The models in the dataset have
a high level of shape variability. The models were manually classified using three different
levels of categorization. At the coarse level of classification, the objects were classified
according to both their shapes and semantic criteria. At the intermediate level, the classes
were subdivided according to functionality and shape. At the fine level, the classes were
further partitioned based on the object shape. For example, at the coarse level some objects
were classified into the furniture class. At the intermediate level, these same objects were
further divided into tables, seats and beds, where the classification takes into account both
functionality and shape. At the fine level, the objects were classified into chairs, armchairs,
stools, sofa and benches. The intermediate level of classification was chosen for the
experiments as the fine level had too few objects per class, while the coarse level had too
many objects that were dissimilar in shape grouped into the same class. In this
categorization, the dataset consists of 425 pre-classified objects that are pre-classified into
39 classes. Figure 2 shows examples of objects in the SHREC benchmark dataset.

3.3 Princeton dataset
The Princeton dataset is a benchmark database that contains 3D polygonal models collected
from the Internet. The dataset is split into a training database and a test database. The
training database contains 907 models and the test database contains 907 models. The base
training classification contains 90 classes and the base classification contains 92 classes.
Example of classes includes car, dog, chair, table, flower, trees, etc. Figure 3 shows
examples of objects in the dataset. The benchmark also includes tools for evaluation and
visualization of the 3D model matching scores. The dataset is usually evaluated using the
commonly used retrieval statistics such as nearest neighbor, first and second tier, and
discounted cumulative gain (DCG). For this paper, we only used the 907 models in the
training database.

4 Finding salient points
Our application was developed for single 3D object retrieval and does not handle objects in
cluttered 3D scenes nor occlusion. A surface mesh, which represents a 3D object, consists of
points { pi} on the object’s surface and information regarding the connectivity of the points.
The base framework of the methodology starts by rescaling the objects to fit in a fixed-size
bounding box. The framework then executes two phases: low-level feature extraction and
mid-level feature aggregation. The low-level feature extraction starts by applying a low-
level operator to every point on the surface mesh. After the first phase, every point pi on the
surface mesh will have either a single low-level feature value or a small set of low-level
feature values, depending on the operator used. The second phase performs mid-level
feature aggregation and computes a vector of values for a given neighborhood of every point
pi on the surface mesh. The feature aggregation results of the base framework are then used
to learn the salient points on the 3D object [3,4].

4.1 Low-level feature extraction
The base framework of our methodology starts by applying a low-level operator to every
point on the surface mesh [3,4]. The low-level operators extract local properties of the
surface mesh points by computing a low-level feature value vi for every surface mesh point
pi. In this work, we use absolute values of Gaussian curvature, Besl–Jain surface curvature
characterization [6] and azimuth-elevation angles of surface normal vectors as the low-level
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surface properties. The low-level feature values are convolved with a Gaussian filter to
reduce noise.

The absolute Gaussian curvature low-level operator computes the Gaussian curvature
estimation K for every point p on the surface mesh:

where F is the list of all the neighboring facets of point p, and the interior angle is the angle
of the facets meeting at point p. This calculation is similar to calculating the angle
deficiency at point p. The contribution of each facet is weighted by the area of the facet
divided by the number of points that form the facet. The operator then takes the absolute
value of the Gaussian curvature as the final low-level feature value for each point.

Besl and Jain [6] suggested a surface characterization of a point p using only the sign of the
mean curvature H and Gaussian curvature K. These surface characterizations result in a
scalar surface feature for each point that is invariant to rotation, translation, and changes in
parametrization. The eight different categories are (1) peak surface, (2) ridge surface, (3)
saddle ridge surface, (4) plane surface, (5) minimal surface, (6) saddle valley, (7) valley
surface, and (8) cupped surface. Table 1 lists the different surface categories with their
respective curvature signs.

Given the surface normal vector n(nx, ny, nz) of a 3D point, the azimuth angle θ of n is
defined as the angle between the positive xz plane and the projection of n to the x plane. The
elevation angle ϕ of n is defined as the angle between the x plane and vector n.

where θ = [−π, π] and . The azimuth-elevation low-level operator computes the
azimuth and elevation value for each point on the 3D surface.

4.2 Mid-level feature aggregation
After the first phase, every surface mesh point pi will have a low-level feature value vi
depending on the operator used. The second phase of the base framework performs mid-
level feature aggregation to compute a number of values for a given neighborhood of every
surface mesh point pi. Local histograms are used to aggregate the low-level feature values of
each mesh point. The histograms are computed by taking a neighborhood around each mesh
point and accumulating the low-level feature values in that neighborhood. The size of the
neighborhood is the product of a constant c, 0 < c < 1, and the diagonal of the object’s
bounding box; this ensures that the neighborhood size is scaled according to the object’s
size. The feature aggregation results of the base framework are used to determine salient
points of an object using a learning approach.

4.3 Learning salient points
Preliminary saliency detection using existing methods such as 3D SIFT and entropy-based
measures [18,22] were not satisfactory. In some cases they were not consistent and
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repeatable for objects within the same class. As a result, to find salient points on a 3D
object, a learning approach was selected. A salient point classifier is trained on a set of
marked training points on the 3D objects provided by experts for a particular application.
Histograms of low-level features of the training points obtained using the framework
previously described are then used to train the classifier. For a particular application, the
classifier will learn the characteristics of the salient points on the surfaces of the 3D objects
from that domain. Our methodology identifies interesting or salient points on the 3D objects.
Initially motivated by our work on medical craniofacial applications, we developed a salient
point classifier that detects points that have a combination of high curvature and low entropy
values.

As shown in Fig. 4, the salient point histograms have low bin counts in the bins
corresponding to low curvature values and a high bin count in the last (highest) curvature
bin. The non-salient point histograms have medium to high bin counts in the low curvature
bins and in some cases a high bin count in the last bin. The entropy of the salient point
histograms also tend to be lower than the entropy of the non-salient point histograms. To
avoid the use of brittle thresholds, we used a learning approach to detect the salient points on
each 3D object [4]. This approach was originally developed for craniofacial image analysis,
so the training points were anatomical landmarks of the face, whose curvature and entropy
properties are useful for objects in general.

The learning approach teaches a classifier the characteristics of points that are regarded as
salient. Histograms of low-level feature values obtained in the base framework are used to
train a support vector machine (SVM) classifier to learn the salient points on the 3D surface
mesh. The training data points for the classifier’s supervised learning are obtained by
manually marking a small number of salient and non-salient points on the surface of each
training object. For our experiments, we trained the salient point classifier on 3D head
models of the Heads database. The salient points marked included the tip of the nose,
corners of the eyes, and both corners and midpoints of the lips. The classifier learns the
characteristics of the salient points in terms of the histograms of their low-level feature
values. After training, the classifier is able to label each of the points of any 3D object as
either salient or non-salient and provides a confidence score for its decision. A threshold is
applied to keep only salient points with high confidence scores (≥0.95). While the classifier
was only trained on cat heads, dog heads, and human heads (Fig. 5), it does a good job of
finding salient points on other classes (Fig. 6). The salient points are colored according to
the assigned classifier confidence score. Non-salient points are colored in red, while salient
points are colored in different shades of blue with dark blue having the highest prediction
score.

4.4 Clustering salient points
The salient points identified by the learning approach are quite dense and form regions. A
clustering algorithm was applied to reduce the number of salient points and to produce more
sparse placement of the salient points. The algorithm selects high confidence salient points
that are also sufficiently distant from each other. The algorithm follows a greedy approach.
Salient points are sorted in decreasing order of classifier confidence scores. Starting with the
salient point with the highest classifier confidence score, the clustering algorithm calculates
the distance from this salient point to all existing clusters and accepts it if the distance is
greater than a neighborhood radius threshold. For our experiments, the radius threshold was
set at 5. Figure 7 shows the selected salient points on the cat, dog, and human head objects
from Fig. 5. It can be seen that objects from the same class (heads class in the figure) are
marked with salient points in similar locations, thus illustrating the repeatability of the
salient point learning and clustering method.
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5 Selecting salient views
Our methodology is intended to improve the LFD [10] and uses their concept of similarity.
Chen et al. [10] argue that if two 3D models are similar, the models will also look similar
from most viewing angles. Their method extracts light fields rendered from cameras on a
sphere. A light field of a 3D model is represented by a collection of 2D images. The cameras
of the light fields are distributed uniformly and positioned on vertices of a regular
dodecahedron. The similarity between two 3D models is then measured by summing up the
similarity from all corresponding images generated from a set of light fields.

To improve efficiency, the light field cameras are positioned at 20 uniformly distributed
vertices of a regular dodecahedron. Silhouette images at the different views are produced by
turning off the lights in the rendered views. Ten different light fields are extracted for a 3D
model. Since the silhouettes projected from two opposite vertices on the dodecahedron are
identical, each light field generates ten different 2D silhouette images. The similarity
between two 3D models is calculated by summing up the similarity from all corresponding
silhouettes. To find the best correspondence between two silhouette images, the camera
position is rotated resulting in 60 different rotations for each camera system. In total, the
similarity between two 3D models is calculated by comparing 10 × 10 × 60 different
silhouette image rotations between the two models. Each silhouette image is efficiently
represented by extracting the Zernike moment and the Fourier coefficients from each image.
The Zernike moments describe the region shape, while the Fourier coefficients describe the
contour shape of the object in the image. There are 35 coefficients for the Zernike moment
descriptor and 10 coefficients for the Fourier descriptor.

Like the LFD, our proposed method uses rendered silhouette 2D images as views to build
the descriptor to describe the 3D object. However, unlike LFD, which extracts features from
100 2D views, our method selects only salient views. We conjecture that the salient views
are the views that are discernible and most useful in describing the 3D object. Since the 2D
views used to describe the 3D objects are silhouette images, some of the salient points
present on the 3D object must appear on the contour of the 3D object (Fig. 8).

A salient point p(px, py, pz) is defined as a contour salient point if its surface normal vector
v(vx, vy, vz) is perpendicular to the camera view point c(cx, cy, cz). The perpendicularity is
determined by calculating the dot product of the surface normal vector v and the camera
view point c. A salient point p is labeled as a contour salient point if |v · c| ≤ T where T is the
perpendicularity threshold. For our experiments, we used value T = 0.10. This value ensures
that the angle between the surface normal vector and the camera view point is between 84°
and 90°.

For each possible camera view point (total 100 view points), the algorithm accumulates the
number of contour salient points that are visible for that view point. The 100 view points are
then sorted based on the number of contour salient points visible in the view. The algorithm
selects the final top K salient views used to construct the descriptor for a 3D model. In our
experiments, we empirically tested different values of K to investigate the respective
retrieval accuracy.

A more restrictive variant of the algorithm selects the top K distinct salient views. In this
variant, after sorting the 100 views based on the number of contour salient points visible in
the view, the algorithm uses a greedy approach to select only the distinct views. The
algorithm starts by selecting the first salient view, which has the largest number of visible
contour salient points. It then iteratively checks whether the next top salient view is too
similar to the already selected views. The similarity is measured by calculating the dot
product between the two views and discarding views whose dot product to existing distinct
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views is greater than a threshold P. In our experiments, we used value P = 0.98. Figure 9
(top row) shows the top five salient views, while Fig. 9 (bottom row) shows the top five
distinct salient views for a human object. It can be seen in the figure that the top five distinct
salient views more completely capture the shape characteristics of the object. Figure 10
shows the top five distinct salient views for different classes in the SHREC database.

6 Experimental results
We measured the retrieval performance of our methodology by calculating the average
normalized rank of relevant results [25]. The evaluation score for a query object was
calculated as follows:

where N is the number of objects in the database, Nrel the number of database objects that
are relevant to the query object q (all objects in the database that have the same class label as
the query object), and Ri is the rank assigned to the ith relevant object. The evaluation score
ranges from 0 to 1, where 0 is the best score as it indicates that all database objects that are
relevant are retrieved before all other objects in the database. A score that is ≥0 indicates
that some non-relevant objects are retrieved before all relevant objects.

The retrieval performance was measured over all the objects in the dataset using each in turn
as a query object. The average retrieval score for each class was calculated by averaging the
retrieval score for all objects in the same class. A final retrieval score was calculated by
averaging the retrieval score across all classes.

A number of experiments were performed to evaluate the performance of our proposed
descriptor and its variants. The first experiment explores the retrieval accuracy of our
proposed descriptor. The experiment shows the effect of varying the number of top salient
views used to construct the descriptors for the 3D objects in the dataset. As shown in Fig.
11, the retrieval performance improves (retrieval score decreases) as the number of salient
views used to construct the descriptor increases. Using the top 100 salient views is
equivalent to the existing LFD method. For the absolute Gaussian curvature feature (blue
line graph), LFD with 100 views has the best retrieval score at 0.097; however, reducing the
number of views by half to the top 50 salient views only increases the retrieval score to
0.114. For the Besl–Jain curvature feature (pink line), the trend is similar with a smaller
decrease in performance as the number of views is reduced.

In the second experiment, the algorithm selects the top salient views which are distinct.
Table 2 shows the average retrieval scores across all classes in the dataset as the number of
views and number of distinct views are varied. Comparing the results, it can be seen that the
retrieval scores for the top K distinct views is always lower (better) than that for the top K
views. For example, using the top five distinct salient views achieves an average retrieval
score of 0.138 compared with using the top five salient views with retrieval score of 0.157.
In fact, using the top 5 distinct salient views achieves similar retrieval score to using the top
20 salient views, and using the top 10 distinct salient views produces a similar retrieval
score as to using the top 50 salient views. Each object in the dataset has its own number of
distinct salient views. The average number of distinct salient views for all the objects in the
dataset is 12.38 views. Executing the retrieval with the maximum number of distinct salient
views for each object query achieves a similar average retrieval score to the retrieval
performed using the top 70 salient views.
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The third experiment compares the retrieval score when using the maximum number of
distinct salient views to the retrieval score of the existing LFD method. Table 3 shows the
average retrieval score for each class using the maximum number of distinct salient views
and the LFD method. Over the entire database, the average retrieval score for the maximum
number of distinct salient views was 0.121 while the average score for LFD was 0.098. To
better understand the retrieval scores, a few retrieval scenarios are analyzed. Suppose that
the number of relevant objects to a given query is Nrel and that the total number of objects in
the database is N = 30, then the retrieval score is dependent on the rank of the Nrel relevant
objects in the retrieved list. The same retrieval score can be achieved in two different
scenarios. When Nrel = 10 a retrieval score of 0.2 is attained when three of the relevant
objects are at the end of the retrieved list, while the same score value is obtained in the case
of Nrel = 5 when only one of the relevant objects is at the end of the list. This shows that
incorrect retrievals for classes with small Nrel value are more heavily penalized, since there
are fewer relevant objects to retrieve. In Table 3 it can be seen that for classes with small
Nrel values (Nrel < 10, the average class retrieval scores using the maximum number of
distinct views are small and similar to retrieval using LFD (scores < 0.2), indicating that the
relevant objects are retrieved at the beginning of the list. For classes with bigger Nrel values,
the retrieval scores for most classes are <0.3 indicating that in most cases the relevant
objects are retrieved before the middle of the list. The worst performing class for both
methods is the spiral class with a score of 0.338 using maximum distinct salient views and
0.372 using LFD; this most probably is due to the high shape variability in the class. The
retrieval score using our method is quite similar to the retrieval score of LFD with only
small differences in the score values suggesting that the retrievals slightly differ in the ranks
of the retrieved relevant objects, with most relevant objects retrieved before the middle of
the list. Our method greatly reduces the computation time for descriptor computation.

The fourth experiment result shows the retrieval performance on the Princeton dataset
measured using the dedicated benchmark’s statistics: (1) nearest neighbor, (2) first-tier, (3)
second-tier, (4) E-measure, and (5) DCG. The first three statistics indicate the percentage of
top K nearest neighbors that belong to the same class as the query. The nearest-neighbor
statistics provides an indication of how well a nearest-neighbor classifier performs where K
= 1. The first-tier and second-tier statistics indicate the percentage of top K matches that
belong to the same class as a given object where K = C − 1 and K = 2 × (C − 1),
respectively, and C is the query’s class size. For all three statistics, the higher the score the
better the retrieval performance. E-measure is a composite measure of precision and recall
for a fixed number of retrieved results. The DCG provides a sense of how well the overall
retrieval would be viewed by a human by giving higher weights to correct objects that are
retrieved near the front of the list. Table 4 shows the average retrieval results on the
Princeton training dataset based on the benchmark statistics using the maximum number of
distinct salient views and the LFD method. The average number of distinct salient views for
all the objects in the Princeton dataset is 11 views. Table 5 shows the per-class nearest-
neighbor retrieval average for both methods. Our method performs better in classes such as
animal, dolphin, brain, and ship. The result shows comparable performance to the LFD even
though we are only using 11 distinct salient views compared with 100 views in the LFD
method.

The last experiment investigates the run-time performance of our methodology and
compares the run-time speed of our method with the existing LFD method. These
experiments were performed on a PC running Windows Server 2008 with Intel Xeon dual
processor at 2 GHz each and 16 GB RAM. The run-time performance of our method can be
divided into three parts: (1) salient views selection, (2) feature extraction, and (3) feature
matching. The salient view selection phase selects the views in which contour salient points
are present. This phase on average takes about 0.2 s per object. The feature matching phase
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compares and calculates the distance between two 3D objects. This phase on average takes
about 0.1 s per object. The feature extraction phase is the bottleneck of the complete
process. The phase begins with a setup step that reads and normalizes the 3D objects. Then,
the 2D silhouette views are rendered and the descriptor is constructed using the rendered
views. Table 6 shows the difference in the feature extraction run time for one 3D object
between our method and the existing LFD method. The results show that feature extraction
using the selected salient views provides a 15-fold speedup compared with using all 100
views for the LFD method.

7 Conclusion
We have developed a new methodology for view-based 3D object retrieval that uses the
concept of salient 2D views to speed up the computation time of the LFD algorithm. Our
experimental results show that the use of salient views instead of 100 equally spaced views
can provide similar performance, while rendering many fewer views. Furthermore, using the
top K distinct salient views performs much better than just the top K salient views. Retrieval
scores using the maximum number of distinct views for each object are compared with LFD
and differences in retrieval scores are explained. Finally, a timing analysis shows that our
method can achieve a 15-fold speedup in feature extraction time over the LFD.

Future work includes investigating other methods to obtain the salient views. One way is to
generate salient views using a plane fitting method with the objective of fitting as many
salient points on the surface of the 3D object. This approach may be more computationally
expensive as it may require exhaustive search in finding the best fitting plane; however,
some optimization method may be used to reduce the search space.
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Fig. 1.
Example of objects in the Heads dataset
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Fig. 2.
Example of objects in the SHREC 2008 Classification dataset
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Fig. 3.
Example of objects in the Princeton dataset
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Fig. 4.
Example histograms of salient and non-salient points. The salient point histograms have a
high value in the last bin illustrating a high curvature in the region, while low values in the
remaining bins in the histogram. The non-salient point histograms have more varied values
in the curvature histogram. In addition, the entropy E of the salient point histogram is lower
than the non-salient point histogram (listed under each histogram)
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Fig. 5.
Salient point prediction for a cat head class, b dog head class, and c human head class. Non-
salient points are colored in red, while salient points are colored in different shades ranging
from green to blue, depending on the classifier confidence score assigned to the point. A
threshold (T = 0.95) was applied to include only salient points with high confidence scores
(color figure online)
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Fig. 6.
(Top row) Salient point prediction for rabbit head, horse head, and leopard head class from
the Heads database. (Bottom row) Salient point prediction for human, bird, and human head
class from the SHREC database. These classes were not included in the salient point training
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Fig. 7.
Salient points resulting from clustering
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Fig. 8.
a Salient points must appear on the contour of the 3D objects for a 2D view be considered a
‘salient’ view. The contour salient points are colored in green, while the non-contour salient
points are in red. b Silhouette image of the salient view in a (color figure online)
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Fig. 9.
Top five salient views for a human query object (top row). Top five distinct salient views for
the same human query object (bottom row). The distinct salient views capture more
information regarding the object’s shape
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Fig. 10.
Top five distinct salient views of animal class (top row), bird class (middle row), and chair
class (bottom row) from the SHREC database
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Fig. 11.
Average retrieval scores across all SHREC classes in the database as the number of top
salient views used to construct the descriptor is varied. Learning of the salient points used
two different low-level features: absolute Gaussian curvature and Besl–Jain curvature
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Table 1

Besl–Jain surface characterization

Label Category H K

1 Peak surface H < 0 K > 0

2 Ridge surface H < 0 K = 0

3 Saddle ridge surface H < 0 K < 0

4 Plane surface H = 0 K = 0

5 Minimal surface H = 0 K < 0

6 Saddle valley H > 0 K < 0

7 Valley surface H > 0 K = 0

8 Cupped surface H > 0 K > 0
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Table 2

Average retrieval scores across all SHREC classes as the number of top salient views and top distinct salient
views are varied

K Score for top K views Score for top K distinct views

1 0.207 0.207

2 0.186 0.174

3 0.172 0.163

4 0.162 0.151

5 0.157 0.138

6 0.155 0.134

7 0.152 0.131

8 0.152 0.129

9 0.146 0.127

10 0.143 0.128

11 0.137 0.127

12 0.134 0.121

20 0.126 –

30 0.121 –

40 0.119 –

50 0.114 –

60 0.121 –

70 0.124 –

80 0.110 –

90 0.105 –

100 0.098 –

Absolute Gaussian curvature was used as the low-level feature in the base framework. The averagemaximumnumber of distinct salient views is
12.38; hence there is no score available for K > 13 when using the top K distinct views
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Table 5

Per-class nearest neighbor retrieval performance on Princeton dataset

Class LFD Our method

Aircraft_airplane_F117 1 0

Aircraft_airplane_biplane 0.929 0.571

Aircraft_airplane_commercial 0.9 0.6

Aircraft_airplane_fighter_jet 0.92 0.84

Aircraft_airplane_multi_fuselage 0.857 0.143

Aircraft_balloonvehicle_dirigible 0.714 0.429

Aircraft_helicopter 0.412 0.176

Aircraft_spaceship_enterprise_like 1 0.818

Aircraft_spaceship_space_shuttle 1 0.833

Aircraft_spaceship_x_wing 1 0.8

Animal_arthropod_insect_bee 0.25 0.25

Animal_arthropod_spider 1 0.818

Animal_biped_human 0.86 0.66

Animal_biped_human_human_arms_out 0.952 0.381

Animal_biped_trex 0.667 0.833

Animal_flying_creature_bird_duck 0.4 0.2

Animal_quadruped_apatosaurus 0.75 0.25

Animal_quadruped_feline 1 0.5

Animal_quadruped_pig 0 0

Animal_underwater_creature_dolphin 0.8 1

Animal_underwater_creature_shark 0.714 0.571

Blade_butcher_knife 1 0.5

Blade_sword 0.8 0.467

Body_part_brain 0.714 0.857

Body_part_face 0.588 0.412

Body_part_head 0.812 0.75

Body_part_skeleton 0.8 0.4

Body_part_torso 0.75 0.75

Bridge 0.4 0.2

Building_castle 0.143 0

Building_dome_church 0.308 0

Building_lighthouse 0 0

Building_roman_building 0.333 0

Building_tent_multiple_peak_tent 0.2 0.2

Building_two_story_home 0.364 0.273

Chess_piece 0.941 0.471

Chest 0.714 0

City 0.6 0.3

Computer_laptop 0.5 0
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Class LFD Our method

Display_device_tv 0.167 0

Door_double_doors 0.8 0.3

Fantasy_animal_dragon 0.333 0.167

Furniture_bed 0.5 0.25

Furniture_desk_desk_with_hutch 0.857 0.429

Furniture_seat_chair_dining_chair 0.909 0.455

Furniture_seat_couch 0.733 0.267

Furniture_seat_chair_stool 0.571 0

Furniture_shelves 0.846 0.538

Furniture_table_rectangular 0.692 0.423

Furniture_table_round 0.75 0.333

Furniture_table_and_chairs 1 0.4

Gun_handgun 0.9 0.3

Gun_rifle 0.842 0.526

Hat_helmet 0.6 0.1

Ice_cream 0.667 0.417

Lamp_desk_lamp 0.857 0.429

Liquid_container_bottle 0.667 0.5

Liquid_container_mug 0.857 0

Liquid_container_tank 0 0

Liquid_container_vase 0.182 0.091

Microchip 0.857 0.571

Musical_instrument_guitar_acoustic_guitar 1 0.75

Musical_instrument_piano 0.833 0.5

Phone_handle 0.75 0.5

Plant_flower_with_stem 0.2 0.067

Plant_potted_plant 0.8 0.52

Plant_tree 0.765 0.647

Plant_tree_barren 0.455 0.182

Plant_tree_palm 0.6 0.4

Sea_vessel_sailboat 0.8 0.2

Sea_vessel_sailboat_sailboat_with_oars 0.75 0.25

Sea_vessel_ship 0.5 0.8

Shoe 0.75 0.625

Sign_street_sign 0.583 0.5

Skateboard 1 0.2

Snowman 0.5 0

Swingset 1 0.25

Tool_screwdriver 0.8 0.4

Tool_wrench 0.75 0.75

Vehicle_car_antique_car 0.4 0.2

Vehicle_car_sedan 0.6 0.4
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Class LFD Our method

Vehicle_car_sports_car 0.684 0.526

Vehicle_cycle_bicycle 1 0.857

Vehicle_military_tank 0.75 0.312

Vehicle_pickup_truck 0.5 0.25

Vehicle_suv 0 0

Vehicle_train 0.714 0.571

Watch 0.6 0

Wheel_tire 0.75 0.5
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Table 6

Average feature extraction run time per object

Method Setup (s) View rendering (s) Descriptor construction (s) Total time (s)

Max distinct views 0.467 0.05 0.077 0.601

LFD 100 views 0.396 4.278 4.567 9.247
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