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ABSTRACT

Motivation: A large and rapidly growing number of bacterial organ-

isms have been sequenced by the newest sequencing technologies.

Cheaper and faster sequencing technologies make it easy to generate

very high coverage of bacterial genomes, but these advances mean

that DNA preparation costs can exceed the cost of sequencing for

small genomes. The need to contain costs often results in the creation

of only a single sequencing library, which in turn introduces new chal-

lenges for genome assembly methods.

Results: We evaluated the ability of multiple genome assembly pro-

grams to assemble bacterial genomes from a single, deep-coverage

library. For our comparison, we chose bacterial species spanning a

wide range of GC content and measured the contiguity and accuracy

of the resulting assemblies. We compared the assemblies produced

by this very high-coverage, one-library strategy to the best assemblies

created by two-library sequencing, and we found that remarkably

good bacterial assemblies are possible with just one library. We also

measured the effect of read length and depth of coverage on assem-

bly quality and determined the values that provide the best results with

current algorithms.
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1 INTRODUCTION

A high-quality assembly of a bacterial genome provides the basis

for research into a wide range of questions about prokaryotic

biology. Increasingly in recent years, investigators have turned to

rapid whole-genome sequencing of bacteria as part of efforts to

trace the source of infectious disease outbreaks, to understand

the source of pathogenesis and to understand multidrug resist-

ance, among other questions. The Human Microbiome Project,

which has identified thousands of new microbial strains and

species as it explores the bacteria that live on our bodies, has

dramatically increased the number of new bacterial genomes that

are being sequenced on a daily basis. For most bacterial genome

projects, the first step in analysis is the assembly of the raw ‘read’

data into larger, contiguous sequences that represent the original

bacterial chromosomes.
Second- and third-generation sequencing technologies

allow for remarkably fast high-throughput sequencing. The

latest technologies capture longer read lengths than just a few

years ago, which is expected to improve the quality of assemblies.

The Illumina HiSeq machine routinely generates reads of 100 bp

and can generate 600 Gb in a single run. A single lane of a HiSeq

generates435Gb, which far exceeds what is necessary for a bac-

terial genome. Through multiplexing, it is feasible to generate

deep sequencing data for 20–30 different bacteria in a single

lane. Because the cost of preparing the DNA (including library

construction) can be greater than the cost of sequencing, many

researchers have begun to adopt a strategy of sequencing just a

single library for each of many bacterial strains.

However, it has long been assumed that whole-genome assem-

bly projects will include data from two or more libraries with

different fragment lengths, beginning with the first bacterial

genome project (Fleischmann et al., 1995). A typical strategy

will use one ‘short’ library, with paired reads from both ends

of relatively short fragments, e.g. 200–600bp with today’s

technology. As a general rule, repeats longer than the library

fragment size cannot be reliably assembled and will create gaps

in the assembly. Thus, a second ‘jumping’ library will use long

fragments, in the range of 2000–20 000bp, to jump across these

repeats. Next-generation assembly algorithms use these libraries

to great advantage, and they are particularly important for large

genomes (Schatz et al., 2010).
Jumping libraries are more difficult to create, and ‘small’ frag-

ment libraries (up to 500 bp on the HiSeq and 600bp on the

MiSeq instrument) are the fastest, most efficient way to generate

deep coverage of a genome today. This motivated us to design

the current study to evaluate the effectiveness of different

genome assembly software on a single, short-fragment library

across a range of bacterial species.
In recent years, various assembly tools have been used to

assemble genomes of different sizes. Some assemblers, such as

Velvet (Zerbino and Birney, 2008), were originally designed for

assembling small, prokaryotic-sized genomes, whereas others,

such as SOAPdenovo (Li et al., 2010) and Allpaths (Gnerre

et al., 2011), were built to assemble large, mammalian-sized gen-

omes. Although some assemblers might not be able to handle

large genomes, almost all of them have been used in assembling*To whom correspondence should be addressed.
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bacteria. Several recent studies have compared the ability of as-

semblers with assemble large genomes (Barthelson et al., 2011;

Earl et al., 2011; Gurevich et al., 2013; Salzberg et al., 2012;

Zhang et al., 2011). To date, no comprehensive evaluation has

appeared that has considered which of these assemblers performs

best, although hundreds (and probably thousands) of bacteria

have been assembled from next-generation sequence data.
Following the standards set by the original GAGE assembly

comparison (Salzberg et al., 2012), GAGE-B (Genome Assembly

Gold-standard Evaluation for Bacteria) evaluates how genome

assemblers compare on a spectrum of bacterial genomes

sequenced by the newest sequencing technologies. As with

GAGE, we followed a strict standard of reproducibility, which

required us to use only freely available assembly software, and

our results include the full ‘recipe’ used for each assembler for

each of the genomes. Our experiments were designed to answer

the following questions:

� Which assembler generates the best assemblies of bacterial

organisms from a single shotgun library?

� What depth of coverage and which software parameters

should be used to produce the optimal assemblies?

� How does high coverage by a single library compare with

the use of multiple libraries?

� How do assemblies from the longer, 250 bp MiSeq reads

compare with assemblies of 100 bp HiSeq reads?

2 RESULTS

2.1 The data

We chose whole-genome shotgun data from eight bacteria,

ranging in size from 2.9 to 5.4Mb and in GC content from 33

to 69%, and for which recent Illumina sequence data are publicly

available. We included several genomes for which both HiSeq

and MiSeq data were available, to compare those technologies,

giving us 12 datasets (Table 1). If sufficient data existed, we

down-sampled reads to collect 250-fold (250�) coverage with
HiSeq data and 100� coverage with MiSeq data; for a few
datasets, we had to use lower coverage.

The bulk of the data was downloaded from the Sequence Read
Archive (SRA) at NIH’s National Center for Biotechnology
Information (NCBI). The following accession numbers were

used in this study: Aeromonas hydrophila HiSeq: SRR488186;
Bacillus cereus HiSeq: SRR497464 and SRR497465;

Bacteroides fragilis HiSeq: SRR488170; Rhodobacter sphaeroides
HiSeq: SRR522244; R.sphaeroides MiSeq: SRR522246;
Staphylococcus aureus-HiSeq: SRR569301; and Xanthomonas

axonopodis HiSeq: SRR522415. The B.cereus MiSeq data were
downloaded from the Illumina website.Mycobacterium abscessus
and Vibrio cholerae were sequenced at the Institute for Genome

Sciences at the University of Maryland and are available via
SRA accessions SRA043447 and SRA037376, respectively, and

on the GAGE-B website (ccb.jhu.edu/gage_b), as are all the
reads used in this study.
Some of the bacterial genomes consist of just one chromosome

(A.hydrophila, B.fragilis and X.axonopodis), whereas others have
multiple chromosomes and/or plasmids. V.cholerae has two
chromosomes, B.cereus and M.abscessus have one chromosome

and one plasmid, S.aureus has one chromosome and two plas-
mids and R.sphaeroides has two chromosomes and five plasmids.
We preferentially chose species for inclusion in GAGE-B for

which a finished genome was available, to allow us to compute
the correctness of assemblies. The following strains were

used as reference genomes: A.hydrophila ATCC 7966
(GenBank accession number NC_008570), B.cereus ATCC
10987 (NC_003909, NC_005707), B.fragilis 638R (NC_016776),

M.abscessus ATCC 19977 (NC_010394, NC_010397),
R.sphaeroides 2.4.1 (NC_007488, NC_007489m NC_007490,
NC_007493, NC_007494, NC_009007, NC_009008), S.aureus

USA300_TCH1516 (NC_010063, NC_010079, NC_012417),
V.cholerae 01 biovar eltor str. N16961 (NC_002505,

NC_002506) and X.axonopodis pv. citrumelo (NC_016010).
For some of our sequence datasets, the finished reference

sequence represents the same strain (e.g. B.cereus ATCC 10987

Table 1. Bacterial genomes and sequence read lengths used in the GAGE-B evaluation

Species Genome size

(Mb)

GC content

(%)

Sequencing

technology

Read length

(bp)

Fragment length

(bp)

Coverage

A.hydrophila SSU 4.7 65 HiSeq 101 180 250�

B.cereus VD118 5.4 35 HiSeq 101 180 100–300�

B.cereus ATCC 10987 5.4 35 MiSeq 250 600 100�

B.fragilis HMW 615 5.3 43 HiSeq 101 180 250�

M.abscessus 6G-0125-R 5.1 64 HiSeq 100 335 115�

M.abscessus 6G-0125-R 5.1 64 MiSeq 250 335a 100�

R.sphaeroides 2.4.1 4.6 69 HiSeq 101 220 210�

R.sphaeroides 2.4.1 4.6 69 MiSeq 251 540 100�

S.aureus M0927 2.9 33 HiSeq 101 180 250�

V.cholerae CO1032(5) 4.0 48 HiSeq 100 335 110�

V.cholerae CO1032(5) 4.0 48 MiSeq 250 335a 100�

X.axonopodis pv. Manihotis UA323 2.9 33 HiSeq 101 400 250�

Note: All datasets used paired-end reads from both ends of every fragment.
aThe fragment lengths for two of the MiSeq libraries were relatively short, only 335bp, because the same library was used for both HiSeq and MiSeq sequencing of those

species.
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and R.sphaeroides 2.4.1); therefore, we were able to precisely
determine the accuracy of each assembly. For other species,

the reference genome is a similar but distinct strain. In those
cases, some differences between the assemblies and the reference

genome might be true differences rather than errors, as we dis-
cuss later in the text.
For other datasets, even though the reference genome belongs

to the same species, it was too divergent to use it for determining

fine-grained assembly accuracy. To determine how close a refer-
ence genome was to the sequenced genome, we mapped all reads

to the reference using Bowtie2 (Langmead and Salzberg, 2012)
(for details, see Supplementary Material). If490% of the refer-

ence was covered at a depth of �5�, we considered the two
strains to be sufficiently similar. By this criterion, the reference

genomes for A.hydrophila, B.cereus (HiSeq data only), B.fragilis
and X.axonopodis were not similar enough to the sequenced

strain, and for these assemblies, we report more limited statistics
on assembly quality. Note that even if 490% of a reference

genome is covered by reads, there may yet exist many true dif-
ferences between the sequenced genome and the reference.

2.2 Data cleaning

Raw sequencing data often contain contaminants, adapter se-
quences or very low-quality sequences that need to be discarded.

Many of the leading assemblers implement their own data clean-
ing steps, including adapter removal and error correction, which

makes them more robust at using low-quality data. However,
because some assemblers do not have a data cleaning step, and

because we did not want the data quality to dominate the results,
we ran a common set of data cleaning steps for all datasets. In

particular, we removed adapter sequences and performed q10
quality trimming using the ea-utils package (Aronesty, 2011).

All datasets for each genome, both raw and trimmed, are
freely available from http://ccb.jhu.edu/gage_b.

2.3 The assemblers

We chose eight of the leading open source genome assemblers:

� Abyss v1.3.4 (Simpson et al., 2009)

� Cabog v7.0 (Miller et al., 2008)

� Mira v3.4.0 (Chevreux et al., 2004)

� MaSuRCA v1.8.3 (A.Zimin, manuscript under review)

� SGA v0.9.34 (Simpson and Durbin, 2012)

� SoapDenovo2 v2.04 (including GapCloser) (Luo et al., 2012)

� SPAdes v2.3.0 (Bankevich et al., 2012)

� Velvet v1.2.08 (Zerbino and Birney, 2008)

The one notable omission from this list is Allpaths-LG (Gnerre

et al., 2011), which was the best-performing assembler on large

genomes in the GAGE evaluation (Salzberg et al., 2012).

However, Allpaths-LG explicitly requires a minimum of two

libraries (a short library and a jumping library), which means

it could not be run on the data used in this study.

For each genome, we ran all assemblers using different com-

binations of parameters on both raw and cleaned data. To select

the best genome assembly for each genome and for each software

tool, we chose the one that produced the largest N50 contig size,

which is a common heuristic for selecting the best assembly when

the true genome sequence is unknown.

Depth of coverage adjustments. Before assembling the genomes,

we ran preliminary experiments on one dataset to optimize the

depth of coverage. We used 100bp reads from the B.cereus data,

which yielded �300� coverage, to experiment with different

depths. We randomly down-sampled these reads to produce

coverages of 250, 200, 150 and 100�. We then assembled the

genome at each coverage depth, by each assembler, using mul-

tiple combinations of parameters. In Figure 1, we show the N50

contig sizes for the best assembly from each assembler at each

coverage depth. As the figure shows, contig size steadily increases

from 100 to 250�. Above 250�, contig size increased more

slowly for some assemblers and decreased or held steady for

others; therefore, we used 250� coverage with 100bp reads for

all genomes where sufficient data were available.

2.4 The assemblies

In Tables 2 and 3, Supplementary Tables S1–S12 and

Supplementary Figures S1–S2, we present various statistics on

the performance of each assembler on all 12 datasets. We used

the following metrics for both contigs and scaffolds:

� The number of contigs (or scaffolds) at least 200bp long

(500bp for scaffolds).

Fig. 1. Comparison of N50 contig size (in kilobases) on the y-axis, versus depth of coverage on the x-axis, for the eight assemblers used in this study. All

datasets were 100bp HiSeq reads from B.cereus
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� N50 size, which is the size of the smallest contig such

that 50% of the genome is contained in contigs of size

N50 or larger. For example, for a 5.0Mb genome, the

contig N50 size would be computed by adding up the

contig sizes from largest to smallest until the cumulative

size was 42.5Mb. The size of the smallest contig in this

set is the N50 size.

� Nx statistics (Supplementary Figs S1 and S2) are defined

similarly to N50, where the Nx size is the length of the

smallest contig such that x% of the genome is contained

in the contigs of size Nx or larger.

� Errors, determined by comparison with the reference gen-

ome. We defined this as the sum of the number of reloca-

tions, translocations and inversions affecting at least

1000 bp. A relocation is defined as a misjoin in a contig/

scaffold such that if the contig/scaffold is split into two

pieces at the misjoin, then the left and right pieces map to

distinct locations on the reference genome that are separated

by at least 1000 bp, or that overlap by at least 1000bp.

A translocation is defined as a misjoin where the left and

the right pieces map to different chromosomes or plasmids.

An inversion is defined as a misjoin such that the left and

the right pieces map to opposite strands on the same

chromosome.

� Local errors, defined as misjoins where the left and right

pieces map onto the reference genome to distinct locations

that are51000bp apart, or that overlap by51000bp.

� Corrected N50 size, defined as the N50 size obtained after

splitting contigs/scaffolds at each error. Note that local

errors were not used for the purpose of calculating corrected

N50 values.

� The fraction of the reference genome covered by contigs/

scaffolds.

� The number of unaligned contigs, computed as the number

of contigs that MUMmer (Delcher et al., 1999, 2002; Kurtz

et al., 2004) was not able to align, even partially, to the

reference genome.

� Duplication ratio, an approximation of the amount of over-

laps among contigs/scaffolds that should have been merged.

Failure to merge overlaps leads to overestimation of the

genome size and creates two copies of sequences that exist

in just one copy.

� The number of proteins fully contained in contigs. This

was computed by aligning all annotated proteins from the

reference genome using tblastn (Altschul et al., 1997), which

translates the reference genome in all six frames. These align-

ments can be detected even when the DNA sequence is too

divergent to align easily. This metric provides an alternative

measure of assembly completeness and accuracy when the

closest finished genome is too divergent. Supplementary

Figure S3 shows that the percent identity of proteins

across strains can range well below 80%.

Table 2. Comparison of corrected N50 contig sizes, shown in kilobases, for assemblies where the finished reference genome was identical or

near-identical

Assembler Species assembled

HiSeq (100bp) reads MiSeq (250bp) reads

R.sphaeroides M.abscessus V.cholerae B.cereus R.sphaeroides M.abscessus V.cholerae

ABySS 13.0 115.7 93.0 130.6 21.4 68.5 60.3

CABOG 11.2 78.2 48.8 150.5 30.5 8.3 32.5

MIRA 17.7 129.2 87.1 100.0 15.4 75.0 108.7

MaSuRCA 176.8 194.0 236.4 246.7 130.7 36.2 71.6

SGA 12.1 27.9 23.4 25.5 9.1 12.8 27.3

SOAPdenovo 10.5 147.2 106.5 246.3 33.5 113.3 65.5

SPAdes 83.5 147.9 77.1 103.7 118.1 215.4 246.6

Velvet 13.1 60.3 39.5 24.5 24.2 41.5 67.1

Note: The best values (or two best, in case of near-ties) for each genome are shown in bold. Corrected N50 is defined in Section 2.4.

Table 3. Comparison of N50 sizes (in kilobases) for assemblies where the

sequenced strain was too divergent to compute a corrected N50 value

Assembler Species assembled

A.hydrophila B.cereus B.fragilis S.aureus X.axonopodis

ABySS 237.5 48.3 146.2 73.9 89.9

CABOG 278.4 61.6 94.2 102.8 105.8

MIRA 246.2 47.4 134.3 132.4 105.6

MaSuRCA 828.6 103.6 158.7 221.8 117.9

SGA 68.8 23.4 41.2 38.1 47.8

SOAPdenovo 243.9 57.9 116.1 146.3 74.2

SPAdes 379.7 97.2 157.7 187.1 117.5

Velvet 184.4 38.9 125.2 122.5 83.0

Note: Boldface indicates the best result in each column, with the top two results

highlighted when the difference was minimal. All genomes shown here were

assembled from 100bp HiSeq reads. See the Supplementary data for additional

statistics.
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With the exception of the number of proteins contained in

contigs, we calculated all metrics using the QUality ASsesment

Tool for genome assembly (Gurevich et al., 2013).

2.5 Comparison of assemblies

For seven of our genome datasets, the raw sequence data derived

from a strain were either identical or nearly identical to the fin-

ished genome. This allowed us to compute a precise value for the

corrected N50 sizes. Whenever an assembler incorrectly merges

two contigs, the resulting assembly will seem to have a bigger

N50 size, thus creating an inferior assembly with an apparently

‘better’ N50 size. By breaking contigs at misjoins, the corrected

N50 provides a better measure of assembly quality.
Three of the sequence datasets precisely matched the reference

genome: R.sphaeroides (two datasets, MiSeq and HiSeq) and

B.cereus (MiSeq data only). Two other genomes, M.abscessus

and V.cholerae, came from near-identical strains, and these

include both MiSeq and HiSeq data. We summarize the cor-

rected N50 contig sizes for all seven of these datasets in

Table 2. For the near-identical strains, some disagreements be-

tween sequenced genomes and the references might actually be

true differences between strains. In such cases, we expect that all

assemblies will disagree with the reference genome, and thus the

comparisons between assemblies will still be valid, although the

number of reported errors might be slightly inflated.
Although all genomes were chosen for GAGE-B based on the

existence of a reference genome, our analyses showed that for

five datasets, the sequenced genome represented a strain that,

although belonging to the same species, had an unexpected

amount of divergence from the reference strain. This made it

difficult to distinguish assembly errors from true differences,

which made it impossible to report a trustworthy corrected

N50 size. We report the uncorrected N50 contig size for all

assemblies of these five genomes in Table 3.
Much more detail on each genome is contained in

Supplementary Tables S1–S12. Here, we highlight some of the

key results from these tables.

In the MiSeq assembly of B.cereus (Supplementary Table S1),

MaSuRCA and SOAPdenovo generated contigs with the highest

N50 and corrected N50 values. These two assemblies produced

N50 values that are more than twice the size of any other assem-

bly, and more than five times bigger than the worst assemblies.

SOAPdenovo and ABySS made the fewest errors; however, they

also produced the highest number of local errors. SOAPdenovo

generated the largest scaffolds, but again had more local errors

than most other assemblies. All assemblies covered499% of the

genome by both contigs and scaffolds. SPAdes generated a large

number of small, unaligned contigs (36 941), of which nearly

100% had coverage of �3�, indicating that they should be

discarded.
For the HiSeq assemblies of R.sphaeroides (Supplementary

Table S2), MaSuRCA had the highest contig N50 values at

176.8kb, followed by SPAdes at 83.5 kb. All of the other assem-

blies were far more fragmented, with N50 sizes ranging from 10.1

to 17.7kb. Thus, for this genome, the choice of assembler seems

to have a large impact on the quality of the resulting assembly.

Looking at the MiSeq data for the same genome (Supplementary

Table S3), the results are similar: MaSuRCA and SPAdes

produced large contigs, and most other assemblers had N50

values four to five times smaller. The results for scaffolds

showed the same relative performance. Looking at the number

of proteins fully contained within contigs, SPAdes emerged as a

clear winner with 3562 compared with the next closest competi-

tor at 3369.
For theM.abscessus assemblies (Supplementary Tables S4 and

S5), MaSuRCA had the largest contig N50 size at 246.9kb. The

other assemblers—MIRA, SOAPdenovo and SPAdes—had N50

sizes of �150kb for the HiSeq data. Noteworthy here is that

although most assemblers performed worse with the MiSeq

data, SPAdes performed considerably better, with an N50

contig size of 215.4kb. The MIRA assembly, despite its large

N50 contig size, had many more errors than any other assembler

on this species, although a high-error rate was not observed on

other genomes. Despite these errors, its corrected contig N50 was

large, suggesting that the errors occur in smaller contigs.
The largest contigs for V.cholerae (Supplementary Tables S6

and S7) were produced by SPAdes from 250bp reads. MaSuRCA

produced contigs that were nearly as large from the 100 bp data.

Both assemblers produced contig N50 sizes 4225kb, whereas

most other assemblers were5100kb. SOAPdenovo and MIRA

produced contig N50 sizes close to 100 kb, but with a larger

number of errors than most other methods.
The A.hydrophila assembly (Supplementary Table S8) is par-

ticularly worth noting because of the remarkably large N50 size

that MaSuRCA produced, 828.6 kb. The assembly contained

only 32 contigs for this 4.75Mb genome, the smallest number

for any of our experiments. Most of the other assemblers also

produced large contigs for this genome, indicating that it was the

‘easiest’ to assemble of all the GAGE-B datasets. For genomes

such as this one, sequencing with just a single library is clearly a

good strategy.
At the other end of the spectrum, the B.cereus VD118 strain,

which was only available in 100bp reads, presented the greatest

difficulties for all of the assemblers. The best contig N50 sizes

were just above and below 10kb, and no assembly had fewer

than 164 contigs. The other B.cereus strain yielded better assem-

blies, but because this was based on 250bp reads, it is hard to

ascertain the precise reason for the differences.

2.6 Combination of assemblies

We also investigated whether combining two different genome

assemblies can improve the overall assembly quality. We com-

bined the output of different algorithms, as well as the same al-

gorithm run with varying k-mer sizes. Intuitively, the latter aims

at capturing the benefits of a large value of k, namely, fewer false

overlaps, and a small value of k, namely, fewer missed overlaps.

Note that SPAdes already incorporates this strategy into its algo-

rithm by using a multi-kmer de Bruijn graph.
We evaluated the performance of post-assembly merging by

two different tools, minimus2 (Sommer et al., 2007) from the

AMOS package and the Graph Accordance Assembly (GAA)

system (Yao et al., 2012). The minimus2 pipeline uses nucmer

(Kurtz et al., 2004) to compute overlaps between contigs and

returns co-assembled contigs and unmerged singletons separ-

ately. Following the scheme introduced in Howe et al. (2012),

we used CD-HIT (Fu et al., 2012) to remove contigs that were

1722

T.Magoc et al.



99% similar before merging them. GAA treats one assembly as
the query, which it aligns to the other, called the target. It rep-
resents overlap information from these alignments in a graph,

and then finds maximal paths in the graph to produced merged
contigs. The MAIA algorithm (Nijkamp et al., 2010) follows a
similar strategy for merging multiple input assemblies, but

MAIA requires a reference genome and thus was not considered
in our comparison.
We ran these experiments on the B.cereus MiSeq dataset be-

cause we had a finished reference from a near-identical strain.
We focused on combining contigs rather than scaffolds because
no jumping library was available. Over a large number of com-

putational experiments, most combinations of assemblers, k-mer
values and merging algorithms did not produce improvements,
and they often produced inferior assemblies to the best individual

assembly (see Supplementary Material and Supplementary
Tables S15–S20).
However, one merging strategy did yield some improvements.

When using GAA for contig merging with the SOAPdenovo
assembly as the target, the assembly was improved substantially

when using ABySS, CABOG or MaSuRCA as the query assem-
bly (Supplementary Table S21). In all three cases, the corrected
contig N50 size improved to 458 kb, an increase of480% com-

pared with the best individual assembly (�246kb, by both
MaSuRCA and SOAPdenovo). The total number of contigs
was unchanged, at �90. Another noteworthy improvement

using this strategy was for the CABOG assembly, using the
ABySS assembly as the query, for which the corrected N50
size improved from 151kb to 288bp (a 90% increase).

Based on these results, it seems that an alignment-based ap-
proach to merge assemblies from different algorithms can indeed
yield an improvement compared with single high-quality

assemblies. However, finding a pair of algorithms that comple-
ment each other in an advantageous manner may require exten-
sive trial and error experiments.

3 DISCUSSION

The statistics presented in Tables 2 and 3 and Supplementary
Tables S1–S12 support a number of conclusions about the
capabilities of the various assembly methods and provide

answers to the four questions posed in Section 1.
First, we consider which assembler generates the best assem-

blies of bacterial species from a single whole-genome shotgun

library. Although no assembler won on all the various metrics,
the MaSuRCA assembler had the largest contig sizes, measured

by either N50 or corrected N50 values, for 10 of the 12 experi-
ments. The SPAdes assembler, a relatively recent entry into the
next-generation assembly field, came in first or essentially tied for

first for 4 of the 12 genomes. These results were consistent across
both 100 (HiSeq) and 250bp (MiSeq) reads, although SPAdes
had a larger boost in improvement for the longer reads.

When considering the number of errors, including local errors,
ABySS and SGA consistently produced assemblieswith the fewest
errors. These assemblers also tended to produce smaller contigs

than most of the others, suggesting that they use a conservative
assembly strategy that trades off contig size for accuracy. This
result is consistent with the results of the original GAGE evalu-

ation (Salzberg et al., 2012) on larger genomes.

In most cases, the number of errors did not greatly reduce the
N50 sizes, because of, at least in part, the distinction made here

between ‘local’ errors, which involve insertions, deletions and

rearrangements51kb and larger errors. We only split contigs

and scaffolds on larger errors for this study, in contrast to our

earlier GAGE study where we split on all errors45bp. We noted

that for some assemblers, the number of local errors tended to be

larger, e.g. SOAPdenovo had 50 local errors in its assembly of

V.cholerae from 100bp reads, whereas the other methods had

only 0–18 local errors. These errors would further reduce N50

values if they were used to split assemblies.
A new quality metric that we computed across all 12 datasets

(Supplementary Tables S1–S12) was the number of proteins con-

tained fully within contigs. This metric is tolerant of divergence
between the sequenced strain and the reference because protein

sequences diverge much more slowly than nucleotide sequences.

In addition, this metric captures a feature of biological interest:

whether a typical protein is fully contained within a contig. For

this computation, we used all annotated protein coding genes

from the reference genome. On this metric, the SPAdes assem-

blies performed the best, with the largest value for 10 of the

12 genomes. For most genomes, multiple assemblers performed

similarly, and there was no clear winner.
Overall, MaSuRCA and SPAdes produced the best assemblies

across these 12 bacterial organisms. However, even these assem-

blers have some weaknesses that should be pointed out. SPAdes

sometimes generated many small contigs that did not align to the

reference genome. On inspection, we found that most of these
had low coverage, and because SPAdes provides detailed cover-

age information, one can easily filter out the low-coverage

contigs. MaSuRCA has a different problem: it sometimes creates

good contigs that it labels ‘degenerate’ based on internal cover-

age statistics, which can cause it to omit some parts of the

genome from the assembly. This problem can be solved simply

by including degenerate contigs above some minimum length

threshold as part of the assembly.
One of our primary motivations in GAGE-B was to answer

the question of whether deep sequencing from a single,

Table 4. Assemblies of R.sphaeroides using one versus two libraries

Assembler (dataset) MaSuRCA
(one
HiSeq
library)

MaSuRCA
(GAGE
setting: two
libraries)

SPAdes
(one
MiSeq
library)

Allpaths-LG
(GAGE
setting: two
libraries)

Contigs
Number 130 258 185 204
Errors 5 11 9 15
Local errors 5 7 5 12
Corrected N50 (kb) 177 30 118 43

Scaffolds
Number 101 25 73 33
Errors 4 9 12 15
Local errors 8 71 9 81
Corrected N50 (kb) 197 2528 152 2925

Note: Shown are results from MaSuRCA and SPAdes, the two assemblers with the

best performance in this study on a single library, and from Allpaths-LG, which was

the best performer on the two-library dataset in the original GAGE study. We also

include an additional comparison usingMaSuRCA on two libraries. The best values

in each row are shown in boldface type.
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short-fragment library can produce an assembly that is compar-
able with what we get from two libraries, especially when one is a
jumping library. One answer to this question can be found by

comparing the best assemblies of R.sphaeroides (by MaSuRCA
and SPAdes) with the best assembly (by Allpaths-LG) from the
original GAGE study, which used two libraries. For comparison,

we also ran MaSuRCA on the two-library dataset, although we
did not run SPAdes because it is not yet designed to handle two
libraries.

As shown in Table 4, the contigs created by both MaSuRCA
and SPAdes from a single deep-coverage library were consider-
ably larger than those from the two-library data, which was at

lower coverage (100�). The number of errors was also slightly
lower, although this could be due to improvements in assembly
algorithms. However, the lack of long ‘jumping’ pairs makes

significant difference in the size of scaffolds. A single library of
paired reads from relatively short fragments simply cannot span
many of the repetitive sequences in a genome. Thus, although the

biggest scaffold with the two-library strategy was over 2.5 Mb in
length and spanned more than half of the main chromosome, the
best scaffolds for the one-library assembly were less than one-

tenth as long. We conclude that for gene-level questions, a single-
sequencing library today, made from either 100 or 250 bp reads,
will produce a good de novo assembly in which over half the

genome is contained in contigs4100kb, and in which a large
majority of genes are contained within scaffolds. If a closely
related genome is available, it can be used to aid scaffolding,

but otherwise a jumping library is still necessary to produce
truly large scaffolds.
We also considered the question of whether 250 bp reads are

superior to 100 bp reads at a comparable cost. Because these
reads are more expensive to produce, we used 2.5-fold lower
coverage (100 versus 250�) for the long reads. We obtained

both read lengths for three species: M.abscessus, R.sphaeroides
and V.cholerae, for all of which we had a near-identical finished
genome. Tables 2 and 3 and Supplementary Tables S2–S8 show

the details of these assemblies.
For M.abscessus and V.cholerae, the best assemblies for the

100 and 250bp reads had similar N50 sizes, although for

R.sphaeroides, the best N50 was 30% larger with 100bp reads.
The number of proteins contained in contigs was higher in all
100bp assemblies except for those built by SPAdes. It may be

tempting to conclude that 100� coverage in MiSeq reads is infer-
ior to 250� coverage in HiSeq reads, but in looking at the details,
we observed that among all the assemblies of R.sphaeroides, five

had higher contig N50 values when based onMiSeq versus HiSeq
data. For V.cholerae, four assemblers performed better with
MiSeq data and the other four performed better with HiSeq

data. We also observed that MaSuRCA always generated better
results using HiSeq datasets, whereas SPAdes always generated
better results using MiSeq data. Other assemblers did not show

such an obvious preference. Our hypothesis is that many algo-
rithms have not yet had time to adapt to the longer 250 bp reads,
and once they do, lower coverage with longer reads may be

superior, as it already is in some cases.
Overall, our results support a conclusion that with deep se-

quence coverage, the latest genome assemblers can produce good

de novo assemblies from just a single, short-fragment DNA li-
brary. Today this strategy represents the lowest-cost method for

capturing the entire genome of a bacterium or other species with

small genomes. The vast majority of protein-coding genes will be

contained wholly within contigs using this strategy, although an

important caveat is that large-scale changes in genome structure,

particularly large rearrangements, will likely not be captured.

Our findings suggest that multiplexing many genomes in the

same sequencing run will provide a highly effective means for

studying hundreds if not thousands of bacterial strains in the

near future.
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