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Abstract

The promise of microarray technology in providing prediction classifiers for cancer outcome estimation has been confirmed
by a number of demonstrable successes. However, the reliability of prediction results relies heavily on the accuracy of
statistical parameters involved in classifiers. It cannot be reliably estimated with only a small number of training samples.
Therefore, it is of vital importance to determine the minimum number of training samples and to ensure the clinical value of
microarrays in cancer outcome prediction. We evaluated the impact of training sample size on model performance
extensively based on 3 large-scale cancer microarray datasets provided by the second phase of MicroArray Quality Control
project (MAQC-II). An SSNR-based (scale of signal-to-noise ratio) protocol was proposed in this study for minimum training
sample size determination. External validation results based on another 3 cancer datasets confirmed that the SSNR-based
approach could not only determine the minimum number of training samples efficiently, but also provide a valuable
strategy for estimating the underlying performance of classifiers in advance. Once translated into clinical routine
applications, the SSNR-based protocol would provide great convenience in microarray-based cancer outcome prediction in
improving classifier reliability.
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Introduction

Recent advances in gene expression microarray technology

have opened up new opportunities for better treatment of diverse

diseases [1,2,3]. A decade of intensive research on developing

prediction classifiers has yielded a number of demonstrable

successes, especially the capability of predicting different potential

responses to a therapy [4]. For example, it helped with treatment

selection to prolong survival time and improve life quality of

cancer patients. The approbation of MammaPrintTM by U.S.

Food and Drug Administration (FDA) for clinical breast cancer

prognosis [5] illustrated the promise of microarray technology in

facilitating medical treatment in the future.

More recently, MicroArray Quality Control Project II (MAQC

II) study [6] confirmed once again that microarray-based

prediction models can be used to predict clinical endpoints if

constructed and utilized properly. However, the reliability of

prediction results relied heavily on the accuracy of statistical

parameters involved in microarray classifiers, which cannot be

reliably estimated from a small number of training samples.

Therefore it would help by collecting as many clinical samples as

possible. Nevertheless, considering the fact that relatively rare

clinical tissue samples can be used for transcriptional profiling, it is

a challenge to estimate an appropriate number of training samples

enough to achieve significant statistical power.

Several methods have been suggested for sample size determi-

nation, such as the stopping rule [7], the power analysis algorithm

[8], the parametric mixture modeling combined with parametric

bootstrapping [9], sequential classification procedure based on the

martingale central limit theorem [10], the parametric probability

model- based methodology [11], the Monte Carlo combined with

approximation approaches [12], and the algorithm based on

weighted fitting of learning curves [13], etc. Most of the above

studies were exploratory in nature, and focused on the relation-

ships between sample size, meaningful difference in the mean, and

power. It is rather possible for these methods to produce either an

underestimated or overestimated sample size, if a specific variance

and meaningful difference in the mean was used [14]. Moreover,

the statistical models and/or indices utilized in above methods are

quite difficult to implement in real applications, and are only

feasible when enough training samples are collected. Dobbin et al.

proposed a sample size calculation method based on standardized

fold change, class prevalence and the number of genes or features

on the arrays [15]. Although such method is quite simple

compared to previous approaches, it is only adapted to address

ex post facto determination of whether the sample size is adequate
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to develop a classifier. Thereby, a few issues have to be addressed

before a simple and efficient method for sample size estimation

could be developed.

Early in 2005, Van Niel et al. has pointed out that the required

number of training samples should be determined by considering

the complexity of the discrimination problem [16]. Standardized

fold change and class prevalence proposed by Dobbin et al. are

also to some extent correlated to classification complexity [15].

Popovici et al. further demonstrated that the performance of a

genomic predictor is determined largely by an interplay between

sample size and classification complexity [17]. In summary,

figuring out the relationship between sample size, model

performance, and classification complexity is of great help in

developing a user-friendly sample size planning protocol.

Three large-scale microarray datasets with a total of 10

endpoints provided in MAQC-II [6] were extensively evaluated

for the relationship between training sample size and the

performance of constructed prediction classifiers in this study. It

was found that the minimum training sample size could be

estimated from the intrinsic predictability of endpoints, and we

proposed an SSNR-based stepwise estimation protocol. External

validation results using another three large-scale datasets con-

firmed the capability of this protocol. Compared to previous

methods, the protocol proposed in this study has its advantages in

the following three aspects: firstly, it is easier to implement and

much more efficient for clinical applications; secondly, less prior

information is required, and thus experimental cost could be better

controlled; lastly, it guides the experimental design, in addition to

the ex post facto estimation of training sample size.

Materials and Methods

Datasets
Six large-scale cancer datasets have been collected in this study

for training sample size estimation and external validation

purposes. Table 1 illustrated a concise summary of the collected

datasets, including the information about sample size and sample

distribution.

Three datasets with 10 clinical endpoints - breast cancer (BR),

multiple myeloma (MM), neuroblastoma (NB), provided in

MAQC-II [6] were selected and utilized in this study to evaluate

the impact of training sample size on model performance. For

breast cancer, endpoints BR-erpos and BR-pCR represent

estrogen receptor status and the success of treatment involving

chemotherapy followed by surgical resection of a tumor,

respectively. For multiple myeloma, MM-EFS and MM-OS

represent event-free survival and overall survival after 730 days

post treatment of diagnosis, while NB-EFS and NB-OS represent

the same meaning after 900 days post treatment or diagnosis.

Moreover, endpoints NB-PC and MM-PC, NB-NC and MM-NC

were also included in this study as positive and negative controls,

respectively. The NB-PC and MM-PC were derived from the NB

and MM datasets with the endpoints denoted by gender, while

endpoints for NB-NC and MM-NC were generated randomly.

Another three datasets, including one non-hodgkin lymphoma

(NHL) [18] dataset and two breast cancer datasets (BR2 [19] and

BR3 [20]) used in previously published prognostic modeling

studies, were used in this study for external validation purpose.

NHL is related to the survival of non-hodgkin lymphoma [18]

patients, while BR2 and BR3 are related to the estrogen receptor

status (BR2-erpos) [19] and the 5-year metastasis-free survival

(BR3-EFS) [20] of breast cancer patients.

To simulate the real-world clinical application of genomic

studies, two independent populations of patients for each dataset

created by the MAQC consortium or by the original researchers

are retained in this study as the training and validation sets. In the

case of BR2-erpos and BR3-EFS, there was no information for

sample splitting. Thus all samples were allocated into training and

validation sets randomly in this study. More detailed information

about the datasets can be found in the main paper of MAQC-II

[6] and its corresponding original papers.

Statistical Analysis
Detailed information about the study design was illustrated in

Figure 1, additional information about model construction

procedure is available in Methods S1. A dataset with a specific

sample size was firstly retrieved from the original training set as

new training samples. After model construction from the retrieved

training samples using a 5-fold cross-validation, the obtained best

classifier was then applied to predict the original validation set. To

ensure the statistical power, such procedure was repeated 100

times, resulting in 100 different sets of predictions. The average

prediction result was then utilized as an indication of model

performance corresponding to this specific sample size. The

number of training samples considered in this study ranges from

20 with a step of 20. Three widely used machine learning

algorithms including NCentroid (Nearest-Centroid), kNN (k-nearest

neighbors, k=3) and SVM (Support Vector Machine) were

selected in this study to evaluate the impact of training sample size.

Based on the 100-run results, the trend of model performance

(as measured by Matthews correlation coefficient (MCC) [21]

versus the stepwise increase of training sample size is illustrated by

whisker plot (5–95% percentile). The Matthews Correlation

Coefficient (MCC) is defined as:

MCC~
TP|TN{FP|FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPzFPð Þ TPzFNð Þ TNzFPð Þ TNzFNð Þ

p ð1Þ

where TP is the number of true positives, TN is the number of

true negatives, FP is the number of false positives and FN is the

number of false negatives. MCC varies between 21 and +1 with 0

corresponding to random prediction.

Based on the 100-run MCC values, we further proposed an

equation to approximately estimate the potential value of

increasing sample size, which considers both the relative

improvement of model performance and the cost of increasing

sample size.

v ið Þ~mcc ið Þ{mcc i{1ð Þ
mcc i{1ð Þ |

1

N i{1ð Þ|103, i~ 2, . . . ,n ð2Þ

Here mcc ið Þ and mcc i{1ð Þ represent the MCC value obtained

from the ith and (i-1)th sample size, while N i{1ð Þ is the number

of training samples at the (i-1)th step (i = 2,…,n). v value much

smaller than 1 was utilized in this study to assist in determining the

near-optimal classifier. In other words, v value combined with the

mean and variance of MCC values was finally used to determine

the near-optimal training sample size.

Scale of Signal-to-noise Ratio (SSNR)
Suppose microarray datasets X1 (n1 samples and p genes) and X2

(n2 samples and p genes) were profiled from samples in class 1 and

class 2, respectively. The signal-to-noise ratio for the ith gene

(SNRi, i = 1,2,…,p) reflects the difference between the classes

relative to the standard deviations (SD) within the classes, and

could be presented as follows [22]:

Sample Size Planning for Cancer Outcome Prediction
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SNRi~ m1 ið Þ{m2 ið Þ½ �= s1 ið Þzs2 ið Þ½ � ð3Þ

Here m1 ið Þ,s1 ið Þ½ � and m2 ið Þ,s2 ið Þ½ � denote the means and SDs

of the log of the expression levels of the ith (i = 1,2,…,p) gene in

class 1 and class 2, respectively. SNRiis not confined to [21, 1],

with large values of DSNRi D indicating a strong correlation between

the gene expression and the class distinction. The sign of SNRi

being positive and negative corresponds to the ith gene being more

highly expressed in class 1 or class 2. SSNR is the numeric scale of

SNRi for all genes (i = 1,2,…,p) representing the numeric

difference between the largest positive- and the smallest negative-

SNR values. Assuming that SNR represents the vectors of SNR

values for all genes in a dataset, SSNR could be defined as follows:

SSNR~max SNRð Þ{min SNRð Þ ð4Þ

Results

Minimum Training Sample Size Varies with Endpoint
Predictability
Figure 2 demonstrated the trend of model performance versus

stepwise increase of training sample size for 10 endpoints using

NCentroid, with corresponding v values shown in Table S1. Two

conclusions can be drawn from the study. Firstly, training sample

size exerted apparent effects on model performance for all

endpoints except for negative controls. Secondly, the required

minimum number of training samples varies with the complexity

of different endpoints. For highly predictable endpoints (NB-PC,

MM-PC and BR-erpos) with prediction MCC around or larger

than 0.8, 60 training samples are enough to achieve near-optimal

prediction classifiers. While for endpoints (NB-EFS, NB-OS, BR-

pCR) with moderate prediction performance (MCC between 0.2

to 0.5), at least 120 training samples are needed. For hardly

predictable endpoints (MM-EFS and MM-OS), microarray-based

prediction model (MCC around 0.1) is generally not a good choice

in this case. In the event when 120 samples are needed, it makes

no sense to collect any more samples due to the negligible

improvement. For negative controls (NB-NC and MM-NC),

prediction models fail for all training sample sizes. Such results

excluded the possibility of obtaining false positive results. Figures

Table 1. A concise summary of datasets.

Data Set Endpoint Description
Endpoint
Codea Sample Size Ratio of events

Microarray Platform (number of
channel)

Training Validation Training Validation

BR Treatment Response BR-pCR 130 100 0.34 (33/97) b 0.18 (15/85) Affymetrix U133A (1)

BR-erpos 130 100 1.60 (80/50) 1.56 (61/39)

MM Overall Survival Milestone
Outcome

MM-OS 340 214 0.18 (51/289) 0.14 (27/187) Affymetrix U133Plus2.0 (1)

Event-free Survival Milestone
Outcome

MM-EFS 340 214 0.33 (84/256) 0.19 (34/180)

NB Overall Survival Milestone
Outcome

NB-OS 246 177 0.32 (59/187) 0.28 (39/138) Agilent NB Customized Array (2)

Event-free Survival Milestone
Outcome

NB-EFS 246 193 0.65 (97/149) 0.75 (83/110)

NHL Overall Survival Milestone
Outcome

NHL 160 80 1.22 (88/72) 1.67 (50/30) Lymphochip (2)

BR2 Estrogen Receptor Status BR2-erpos 196 90 2.70 (143/53) 2.75 (66/24) Affymetrix U133A (1)

BR3 5-year metastasis-free survival BR3-EFS 194 100 0.39 (54/140) 0.39 (28/72) Affymetrix U133A (1)

Control Positive control NB-PC 246 231 1.44 (145/101) 1.36 (133/98) Agilent NB Customized Array (2)

MM-PC 340 214 1.33 (194/146) 1.89 (140/74) Affymetrix U133Plus2.0 (1)

Negative control NB-NC 246 253 1.44 (145/101) 1.30 (143/110) Agilent NB Customized Array (2)

MM-NC 340 214 1.43 (200/140) 1.33 (122/92) Affymetrix U133Plus2.0 (1)

aBR - Breast Cancer; MM - Multiple Myeloma; NB - Neuroblastoma; pCR - Pathologic Complete Response; erpos – ER Positive; OS – Overall Survive; EFS – Event-free
Survival; NHL- non-hodgkin lymphoma; PC – Positive Control; NC – Negative Control;
bRatio of good to poor prognoses (i.e., good/poor prognoses).
doi:10.1371/journal.pone.0068579.t001

Figure 1. Study work flow. Work flow for evaluating the impact of
different number of training samples.
doi:10.1371/journal.pone.0068579.g001
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S1 and S2 obtained from kNN and SVM confirmed the above

results.

Figure 2. Impact of training sample size. Prediction MCC based on different number of training samples for 10 endpoints using NCentroid.
doi:10.1371/journal.pone.0068579.g002
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SSNR Correlates Well with Endpoint Predictability
The above results showed that the minimum training sample

size required for model construction varied with endpoint

predictability. Thus it is of vital importance to estimate endpoint

complexity in advance of determining the required minimum

number of training samples. We proposed an index SSNR in this

study, and evaluated its capability as an indication of endpoint

predictability. Figure 3(a) demonstrated the relationship between

SSNR and model performance based on all training samples using

NCentroid. Here we can see that SSNR correlates well with model

performance (MCC values), with a pearson correlation coefficient

of 0.897. As a confirmation, we further swapped original training

and validation sets, and reevaluated the correlation between

SSNR and endpoint predictability. Figure 3(b) illustrated

corresponding results. A correlation of 0.859 further confirmed

that SSNR correlates well with endpoint predictability. Such

conclusion was further supported by the correlation of 0.875 and

0.864 for kNN and 0.887 and 0.901 for SVM classifiers as shown in

Figure S3.

SSNR Guides the Determination of Training Sample Size
The above results confirmed that SSNR was a valid estimation

of endpoint predictability and it serves as the basis of training

sample size estimation. However, such results were based on ex

post facto analysis using all training samples (far more than 60 or

120 ones), leaving it an unaddressed issue whether SSNR could

guide training sample size estimation in real applications. Thus we

further evaluated the feasibility of using SSNR as a guidance of

training sample size estimation from the following two aspects:

first, SSNR value was inspected based on 60 or 120 training

samples to see if it can successfully differentiate endpoints with

different prediction complexities; secondly, the effectiveness of

SSNR was verified for estimating required minimum training

sample size in real applications using three external validation

datasets.

We randomly retrieved 60 or 120 samples from the original

training set, constructed prediction classifiers, predicted original

validation sets using the classifier, and then recorded correspond-

ing SSNR and prediction MCC values. To ensure the statistical

power, such procedure was repeated 100 times, resulting in 100

pairs of SSNR and MCC values. The capability of SSNR in

differentiating endpoints with different complexity was then

evaluated from corresponding means and standard deviations

(SDs). Figure 4(a) demonstrated the relationship between SSNR

and MCC values using 60 training samples based on NCentroid. We

can see that SSNR could successfully differentiate the first three

simpler endpoints (SSNR$2) from others, while no apparent

difference was observed among the rest. Excluding the first three

endpoints (NB-PC, MM-PC and BR-erpos), we further evaluated

the relationship between SSNR and MCC for the rest 7 endpoints

using 120 training samples. As shown in Figure 4(b), the five

endpoints with SSNR$1 (NB-EFS, NB-OS, BR-pCR, MM-EFS

and MM-OS) were successfully separated from the other two

negative controls (SSNR,1) in this case. Therefore, it was

confirmed that SSNR could guide training sample size determi-

nation efficiently. Corresponding results obtained from kNN and

SVM shown in Figure S4 confirmed the above results.

We further proposed an SSNR-based protocol for training

sample size determination in this study. Firstly, 60 training samples

were collected and SSNR value was evaluated. If SSNR is larger

than 2, 60 training samples size is large enough to achieve a near-

optimal prediction model. Otherwise, at least 120 training samples

were collected and SSNR value was evaluated again; If SSNR

value based on 120 training samples was larger than 1, 120

training samples are enough for model construction this time.

Otherwise, the performance of prediction classifier would be

deemed as very poor.

Three external validation datasets (BR2-erpos, BR3-EFS and

NHL) were further used to confirm the performance of above-

mentioned protocol in real applications. For BR2-erpos, the SSNR

value based on 60 training samples (100 repetitions) reached

2.1660.38 (larger than 2), and thus 60 samples were enough

according to the protocol. For BR3-EFS, the SSNR values based

on 60 and 120 training samples were 1.5560.23 (,2) and

1.1860.11 (.1), respectively. Therefore, 120 training samples

were needed to achieve a near-optimal model this time. For NHL,

the SSNR values based on 60 and 120 training samples were

1.4260.22 (,2) and 1.2560.13 (.1), respectively. As for BR3-

EFS, at least 120 training samples were required. Figure 5(a–c),
illustrated the performance of prediction classifiers using different

number of training samples for above validation datasets. It

confirmed the results mentioned above and the capability of the

sample size determination protocol proposed in this study.

Discussion

Microarray data has demonstrated excellent superiority in

aiding cancer outcome estimation by providing prediction

classifiers. The model reliability relies heavily on the accuracy of

statistical parameters estimated from training samples. A small

number of training samples cannot provide a highly reliable

prediction classifier. Therefore, determining the required mini-

mum number of training samples becomes a vital issue for clinical

application of microarrays. Most of current methods are too

complex to be utilized for routine application. Therefore, we

proposed a simple SSNR-based approach for training sample size

determination in this study and illustrated its utility based on three

large-scale microarray datasets provided in MAQC-II. The results

on three external validation sets confirmed that the SSNR-based

protocol was much easier to implement and more efficient for

sample size estimation compared to current statistical methods.

Three important findings should be noted in this study. First, it

can be seen in Figure 2 that the number of training samples

exerted evident impact on model performance, and the minimum

number of training samples required for model construction varied

with endpoint predictability. Secondly, SSNR value correlates well

with endpoint predictability with a correlation coefficient around

0.9 (Figure 3), which implied the possibility of using SSNR as an

indication of endpoint predictability. Thirdly, an SSNR-based

stepwise function was proposed in this study for determining the

minimum number of training samples based on the relationship

between training sample size, endpoint predictability, and SSNR

value. The discrete relationship between training sample size and

complexity of endpoints was also implied by Mukherjee et al. early

in 2003 [23], further supporting the SSNR-based determination

approach proposed in this study. Moreover, we found that the

proposed approach can also be successfully extended to toxicoge-

nomics (see Figure S5).

An important aspect of this study is that the confidence of

abovementioned findings was also confirmed by both internal and

external validation strategies. For internal validation, two positive

(NB-PC, MM-PC) and two negative control (NB-NC, MM-NC)

datasets were essential to assess the performance of clinically

relevant endpoints against the theoretical maximum and mini-

mum performance provided by the controls. Specifically, the

much higher SSNR values for two positive control datasets shown

in Figure 4(a) confirmed the capability of using SSNR as an

indication of endpoint predictability, while the negligible impact of

Sample Size Planning for Cancer Outcome Prediction
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training sample size on model performance in two negative control

datasets further precludes the possibility of obtaining false positive

results. Thus, including positive and negative control datasets in

such analyses would be of great help in ensuring the reliability of

the final results. Moreover, the reliability of a training process can

only be ascertained by external validation samples. Therefore, the

external validation datasets together with internal controls have

played an important role in confirming the capability of SSNR-

based training sample size determination approach in this study.

Similar results obtained from three well-known classification

methods used in this study (i.e. NCentroid, kNN and SVM, with

corresponding results provided in Figure 2 and Figure S1 and
S2, respectively) further confirmed the reliability of the SSNR-

based training sample size estimation approach. The reason is out

of the scope of this study. However, this phenomenon conforms to

the lack of significant differences among a large number of

classification methods reported for microarray applications in

terms of prediction performance [24]. A similar conclusion was

Figure 3. Relationship between SSNR and endpoint predictability based on all training samples. The ex post facto relationship between
SSNR values and endpoint predictability (prediction MCC) based on (a) normal and (b) swap modeling using NCentroid on all training samples. Here
green (a) and orange columns (b) represent the SSNR values obtained from original training and validation sets, while the rectangles faced yellow are
corresponding prediction MCC values of models on original validation and training samples, respectively.
doi:10.1371/journal.pone.0068579.g003

Sample Size Planning for Cancer Outcome Prediction
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also proposed by MAQC-II [6]. Such results would preclude the

restriction of different classification algorithms, and further extend

the applicability of the SSNR-based training sample size

determination approach.

The superiority and applicability of the SSNR-based approach

can be summarized as follows. Firstly, from a statistical point of

view, it was not biased by deduction procedures by avoiding

sophisticated statistical calculations. Secondly, in respect of clinical

routine applications, it is much more straightforward and efficient,

as the only requirements are collecting 60 and/or 120 samples and

calculating corresponding SSNR values. In the meantime, the

SSNR-based protocol can also provide a valuable strategy for

estimating the performance of classifiers in advance. Taking

external validation datasets shown in Figure 5 as an example,

SSNR values being 2.1660.38, and 1.1860.11 for BR2-erpos,

and BR3-EFS also implied that the performance of final prediction

classifiers in this case would be excellent, and moderate,

respectively.

Figure 4. Relationship between SSNR and endpoint predictability based on 60 and 120 training samples. The relationship between
SSNR values and endpoint predictability (prediction MCC) based on (a) 60 and (b) 120 training samples using NCentroid, respectively. Here blue
columns and black bars represent the means and SDs of SSNR values in 100 repetitions, while yellow rectangles and red bars are means and SDs of
MCC values.
doi:10.1371/journal.pone.0068579.g004

Sample Size Planning for Cancer Outcome Prediction
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Conclusions
Microarray technology combined with pattern recognition has

been demonstrated as a promising strategy in providing prediction

classifiers for cancer diagnosis, prognosis and treatment response

estimation and so on. Compared to traditional experience-based

diagnosis relying on complex biochemical testing and miscella-

neous image systems, microarray-based prediction classifiers, if

reliably constructed from enough training samples, would provide

a much more objective, accurate, and valid depiction of cancer

outcomes. Consequently, the SSNR-based training sample size

determination approach would provide great convenience for

clinical application of microarrays in cancer outcome assessment

by providing a simple and pragmatic way of estimating training

sample size. Moreover, the fact that training sample size impacts

the performance of final prediction classifiers further implied the

importance of systematically evaluating each procedure in the

model construction process and developing practical guidance for

microarray-based class comparison analysis.

Supporting Information

Figure S1 An additional figure for the impact of training
sample size using kNN. Prediction MCC based on different

number of training samples for 10 endpoints using kNN.

(TIF)

Figure S2 An additional figure for the impact of training
sample size using SVM. Prediction MCC based on different

number of training samples for 10 endpoints using SVM.

(TIF)

Figure S3 An additional figure for the relationship
between SSNR and endpoint predictability based on all

training samples. The ex post facto relationship between

SSNR values and endpoint predictability (prediction MCC) based

on normal and swap modeling using kNN and SVM on all training

samples.

(TIF)

Figure S4 An additional figure for the relationship
between SSNR and endpoint predictability based on 60
and 120 training samples. The relationship between SSNR

values and endpoint predictability (prediction MCC) based on (a)

60 and (b) 120 training samples using kNN and SVM, respectively.

(TIF)

Figure S5 An additional figure for the impact of training
sample size for toxicogenomic dataset NIEHS.

(TIF)

Table S1 Corresponding n values for different training sample

size of 10 endpoints using NCentroid.

(DOCX)

Methods S1.

(DOC)
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