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Purpose: This study presents an improved technique to further simplify the fluence-map in intensity
modulated radiation therapy (IMRT) inverse planning, thereby reducing plan complexity and improv-
ing delivery efficiency, while maintaining the plan quality.
Methods: First-order total-variation (TV) minimization (min.) based on L1-norm has been proposed
to reduce the complexity of fluence-map in IMRT by generating sparse fluence-map variations. How-
ever, with stronger dose sparing to the critical structures, the inevitable increase in the fluence-map
complexity can lead to inefficient dose delivery. Theoretically, L0-min. is the ideal solution for the
sparse signal recovery problem, yet practically intractable due to its nonconvexity of the objective
function. As an alternative, the authors use the iteratively reweighted L1-min. technique to incor-
porate the benefits of the L0-norm into the tractability of L1-min. The weight multiplied to each
element is inversely related to the magnitude of the corresponding element, which is iteratively up-
dated by the reweighting process. The proposed penalizing process combined with TV min. further
improves sparsity in the fluence-map variations, hence ultimately enhancing the delivery efficiency.
To validate the proposed method, this work compares three treatment plans obtained from quadratic
min. (generally used in clinic IMRT), conventional TV min., and our proposed reweighted TV min.
techniques, implemented by a large-scale L1-solver (template for first-order conic solver), for five
patient clinical data. Criteria such as conformation number (CN), modulation index (MI), and esti-
mated treatment time are employed to assess the relationship between the plan quality and delivery
efficiency.
Results: The proposed method yields simpler fluence-maps than the quadratic and conventional TV
based techniques. To attain a given CN and dose sparing to the critical organs for 5 clinical cases,
the proposed method reduces the number of segments by 10–15 and 30–35, relative to TV min. and
quadratic min. based plans, while MIs decreases by about 20%–30% and 40%–60% over the plans
by two existing techniques, respectively. With such conditions, the total treatment time of the plans
obtained from our proposed method can be reduced by 12–30 s and 30–80 s mainly due to greatly
shorter multileaf collimator (MLC) traveling time in IMRT step-and-shoot delivery.
Conclusions: The reweighted L1-minimization technique provides a promising solution to simplify
the fluence-map variations in IMRT inverse planning. It improves the delivery efficiency by reduc-
ing the entire segments and treatment time, while maintaining the plan quality in terms of target
conformity and critical structure sparing. © 2013 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4811100]
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I. INTRODUCTION

The intensity modulated radiation therapy (IMRT; Refs. 1–3)
has been widely used for radiation therapy (RT) of various
cancers as it ensures both high dose conformity to the target
and reasonable dose distribution by intensity modulation. The
current techniques of IMRT inverse planning can be divided
into two types: direct aperture optimization (DAO; Refs. 4–7)
and beamlet based optimization (BBO; Refs. 8–12). DAO has
the advantage of including the multileaf collimator (MLC)
physical constraints into the plan optimization, but being
computationally expensive due to the nonlinear relationship
between the MLC shape and dose distribution. On the other
hand, BBO first optimizes the fluence maps, which will then
be converted to deliverable segments by a leaf-sequencing al-
gorithm. Due to unconstrained level of beamlet intensities, the
optimized fluence maps can be arbitrarily complex with BBO.

In order to reduce the complexity and constrain the in-
tensities of fluence maps, various mathematical techniques
have been proposed for fluence-map optimization such as
L2-minimization (min.) for smoothing,13–19 and L1-min. for
the (first-order) total-variation (TV) min.20, 21 In particular,
several studies20–23 have demonstrated that the TV form for
the fluence-map optimization successfully reduces the com-
plexity of the fluence-map by enhancing the sparsity of the
fluence-map variations, and desirably facilitating the dose
delivery, while maintaining similar plan quality. However,
when stronger dose constraints are imposed on the critical
structures, such as in complicated cases and hypofractionated
radiotherapy, the fluence-map optimized by TV-min. may be-
come too complicated, which will inevitably leads to ineffi-
cient dose delivery.

Theoretically, L0-min., which minimizes the number of
nonzero elements, provides the ideal solution for sparse sig-
nal reconstruction. In practice, however, solving the L0-min.
problem was computationally intractable because minimiz-
ing the number of the nonzero elements is a nonconvex op-
timization problem.24 A couple of alternative methods to
the L0-min. program have been proposed.25–27 Of those, the
reweighted L1-min,25 including the reweighted TV min. vari-
ant, has successfully demonstrated that iterating the convex
L1-min. techniques by multiplication of a weight to each el-
ement becomes more effective for sparse signal reconstruc-
tions. The weight assigned to each element is inversely related
to the magnitude of the corresponding element. By penalizing
elements with small or near zero magnitude, sparsity in the
fluence-map variations can be further improved. One unique
advantage of this method is that existing L1-minimizing tech-
niques can be used to obtain the solution.

In this paper, we use the reweighted TV min., derived
from the reweighted L1-min., to further simplify the fluence-
map and enhance the delivery efficiency for IMRT in-
verse planning. We will demonstrate that compared with the
plans by the existing techniques (such as quadratic and TV
min.), the plans obtained from the proposed method im-
prove the delivery efficiency by reducing the fluence-map
complexity, number of beam segments, and the actual treat-
ment time required to attain the similar extent of the dose

conformity to the target and dose sparing to the critical
structures.

II. METHODS AND MATERIALS

II.A. Reducing the fluence-map complexity with
L2-norm and L1-norm

In order to decrease the complexity of the fluence-map,
constrained optimization has been applied for the fluence-map
optimization in IMRT by adding a penalty term p(x) to the
data fidelity term as described in Eq. (1),

min
x∈Rn

λi ||Aix − di ||22 + β · p(x) (x ≥ 0), (1)

where n is the entire number of beamlet elements (size of
field multiplied by the number of beams), x ∈ Rn is the
beamlet-intensity map to be optimized, D ∈ R2n×n is the
2D-difference matrix, and β is a user-supplied regularization
parameter. Ai ∈ Rmi×n is the beamlet kernel or dose matrix
acquired by voxel-based Monte Carlo (VMC; Ref. 28) simu-
lations, di is the ideal prescribed dose distribution, and λi is
the importance factor of structure i. Setting p(x) = ||Dx||22,
which is standard L2-min., smoothes intensities of fluence-
map.13–19 Defining p(x) as ||Dx||1 is called TV regulariza-
tion based on L1-norm.20–22 Zhu et al.20 have shown that
TV regularization generates a simplified piecewise constant
fluence-map. Kim et al.23 demonstrate that the TV regularized
approach can be solved in a memory efficient and computa-
tionally fast way using the large scale L1-solver, called tem-
plate for first-order conic solver (TFOCS).29 Their approach
considers the variant with the constrained optimization as fol-
lows in Eq. (2),

min
x∈Rn

||x||tv = ‖Dx‖1

subject to ‖
√

λi(Aix − di)‖2 ≤ εi, x ≥ 0, (2)

where εi represents the residue imposed on planning target
volume (PTV) and the critical structures.

II.B. L0-norm characteristics differentiated
from L1-norm

Simplifying the fluence-map can be done by finding the
map with the least variations in neighboring beamlet-intensity
components, namely, increasing the sparsity of the fluence-
map variations. This brings the fluence-map optimization into
the sparse signal reconstruction, which has been mostly per-
formed by TV min. derived from L1-min. Even with TV min.,
however, the reconstructed solutions may not have sufficiently
sparse variation in which (a) there are only a few samples ac-
quired in order to reduce the scanning time in medical image
processing, e.g., CT and MRI and/or (b) the extent of dose
conformity to the structures gets far stronger, requiring the
fluence-map to be more complicated in RT. In such cases, us-
ing the L0-norm as described in Eq. (3) results in a sparser
signal reconstruction:
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General form : min
x∈Rn

||x||0 =
∑

j

1 {j : xj �= 0} subject to ‖(Ax − d)‖2 ≤ ε

Difference matrix : min
x∈Rn

||Dx||0 =
∑

j

1 {j : (Dx)j �= 0} subject to ‖(Ax − d)‖2 ≤ ε, (3)

where A is the system or sensing matrix, and d is the raw or
observation data in general. L1-min. is to sum the absolute
values of the elements, which is convex and therefore easy to
solve. Contrarily, the combinatorial problems in Eq. (3) rep-
resent that L0-norm is to compute the number of nonzeros
elements or nonzero variations of the elements. In practice,
the significant problem caused by the characteristic is that
L0-norm is nearly impossible to implement as it is a partic-
ularly difficult nonconvex optimization problem.24 Hence, it
is essential to seek different approaches that combine the fea-
tures of L0-min. for the sparse signal reconstruction with the
tractability of L1-min.

II.C. Iteratively reweighted L1-min. to approximate
L0-norm

Several techniques25–27 exist to approximate to L0-min.
with the tractability of L1-min. Of these techniques, the it-
eratively reweighted L1-min., including the reweighted TV
min. variant, proposed by Candès et al.25 successfully demon-
strates improved sparsity of reconstructed solutions, relative
to the L1-min. The basic idea is to use a general L1-norm,
which incorporates the multiplication of weight for each ele-
ment, as presented in Eq. (4),

min
x∈Rn

||W (k)x(k)||1 =
∑

j
w

(k)
j · ∣∣xj

(k)
∣∣,

subject to ||Ax(k) − d|| ≤ ε(
wj

(k) = 1

|xj
(k)| + δ(k)

(δ(k) > 0)

)
, (4)

where W with elements wj is the weight assigned to each el-
ement, δ is the positive coefficient, and the upper-index k is
the order of iterates for the reweighting process. At the first
iterate (k = 1), the weight equals 1 (wj

(1) = 1), which equals
the standard L1-min. After computing the solution x(1), for
the next iterate (k = 2), the weight is defined as the recipro-
cal of the addition of the positive coefficient δ and the solu-
tion x(1)(wj

(2) = 1/|xj
(1)| + δ). Iteratively solving Eq. (4) can

be seen as an approximation to L0-norm problem as shown
in Eq. (5). As δ approaches zero, the weighted L1-norm ex-
actly recovers the L0-norm. In practice, however, δ should be
greater than 0 to prevent divergence when the elements of x go
to zero, yet must not be too large to retain the approximation
of the L0-norm. Candès et al.25 recommend δ � max (|xj|).
How to determine δ in this work will be discussed in a latter
section,

∑
j
wj

(k) · |xj
(k)| =

∑
j

|xj
(k)|

|xj
(k)| + δ(k)

≈
∑

j

1{xj
(k) �= 0}.

(5)

If the process is repeated a few times, the computational time
grows with each iteration, which is not computationally ex-
pensive. The greatest advantage from this approach is that
each iteration can be solved using existing L1-norm tech-
niques without additional memory costs, so no new algo-
rithms need to be developed. Importantly, it produces solution
with significantly more sparsity, which can enhance the sparse
fluence-map variations in IMRT.

II.D. Iteratively reweighted TV for the fluence-map
optimization

The principle explained in Secs. II.A–II.C is extended to
the fluence-map optimization for IMRT inverse planning by
incorporating the 2D-difference matrix D, the beamlet ker-
nels (Ai), and the importance factors (λi) into the model as
expressed in Eq. (6),

min
x∈Rn

||W (k)(Dx(k))||1 =
∑

u,v,f
wu,v,f

(k) ·|(Dx(k))u,v,f |

subject to ‖
√

λi(Aix
(k) − di)‖2 ≤ εi, x(k) ≥ 0(

wu,v,f
(1)= 1, wu,v,f

(k) = 1

|(Dx(k−1))u,v,f | + δ
(k)
f

(k ≥ 2)

)
,

(6)

where the subindices denoted by u, v correspond to the beam-
let components of fluence-map, x, while the subindex f rep-
resents the field order (n = u · v · f ). The weight for each
element is denoted by wu,v,f , and the positive coefficient
δf represents a field-specific constant in this work. The en-
tire procedures, completed by two iterations, are summarized
in Table I. At the first iterate, the initial weight is defined
as wu,v,f

(1) = 1, which is followed by solving the standard
TV min. problem. Based on the results, we can update the
weight with δf : wu,v,f

(2) = 1/(|(Dx(1))u,v,f | + δ
(2)
f ) (δ(2)

f

> 0). Finally, we perform the reweighted TV min. by one
more iteration to improve the sparsity in the fluence-map vari-
ations. After the step 2 in Table I, the variations in each voxel,
|(Dx(1))u,v,f |, can be computed and sorted at each field to de-
termine the constant, δ

(2)
f , as written in the following:

1. Sort the computed |(Dx(1))u,v,f | in descending order
at each field,

2. Determine the 5% of the smallest value of the sorted
values as illustrated in Fig. 1.
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TABLE I. The procedure to perform the reweighted TV min. for fluence-map
optimization.

1. Define the initial weights to be 1 : w
(1)
u,v,f = 1

2. Implement TVmin. with the initial weight

Minimize
∑
u,v,f

w
(1)
u,v,f |(Dx(1))u,v,f |

subject to
√

λi · ||Aix
(1) − di ||2 ≤ εi , x

(1) ≥ 0

3. Update the weight from the fluence − map by step 2

w
(2)
u,v,f = 1

|(Dx(1))u,v,f | + δ
(2)
f

(δf
(2) > 0)

4. Implement reweighted TV with the updated weight

Minimize
∑
u,v,f

w
(2)
u,v,f |(Dx(2))u,v,f |

subject to
√

λi · ||Aix
(2) − di ||2 ≤ εi , x

(2) ≥ 0

II.E. Plan evaluations

To validate the proposed method, this work employed
five treated patient datasets: two prostate (Prostate1 and
Prostate2), two head-and-neck (HN1 and HN2), and a lung
patient data. All plans were delivered in step-and-shoot IMRT
mode. Table II presents the specified parameters of treatment
plans for each case. In particular, due to the PTV location, the
lung patient data has 6 beams with 180◦ range. For HN2 only,
it was supposed that there are multitargets to be treated with
66 and 54 Gy.

Beamlet kernels denoted by Ai in Eq. (6) were acquired by
voxel-based Monte Carlo simulation (VMC; Ref. 28) simula-
tions. The patient CT images were down-sampled to 3.92×
3.92× 5.00 mm in HN1 and to 3.92 × 3.92× 2.50 mm in the
other 4 clinical data. For all cases, to control the stiff dose re-
duction outside the PTV, besides the critical organs, the ring-
shaped tuning structures nearby the PTV were incorporated
into the fluence-map optimization. Also, to clearly demon-
strate the benefits of the proposed method in improving de-
livery efficiency, all plans were obtained by strengthening the
dose sparing to the critical organs, where the fluence-map op-
timized by the existing algorithms tends to be somewhat com-
plicated.

0 50 100 150
0

200

400

600

Beamlet Index

|D
x|

 (
so

rt
ed

)

δ=32.9

FIG. 1. This shows how to determine the field-specific constant δf in this
work. The figure represents the sorted fluence-map variations (|(Dx)u,v,f |)
acquired at 4th field of Prostate1 data after fluence-map optimization with
TV min. at the first iterate. The horizontal line corresponds to the 5% smallest
value of the sorted fluence-map variation, which will be used to determine the
weight for each element as a constant δf in the field.

TABLE II. The specifications of beam setting applied for the five clinical
data used in this work.

Pretreated Number Field size
patient data of beams (beamlet resolution) PTV

Prostate1 7 (equispaced) 16 × 18 (5 mm) 78 Gy
Prostate2 7 (equispaced) 16 × 20 (5 mm) 78 Gy
Lung 6 (180◦ coverage) 18 × 14 (5 mm) 50 Gy
HN1 7 (equispaced) 18 × 22 (5 mm) 66 Gy
HN2 7 (equispaced) 16 × 18 (1 cm) 66/54 Gy

(multiple targets)

For each dataset, this study compared three plans opti-
mized by our proposed reweighted TV min., standard TV
min., and quadratic min. to represent the regular, clinic IMRT
plans, which minimizes the quadratic difference between the
ideal and computed dose distributions without the penalized
term added. We implemented the quadratic min. by the pro-
jected gradient descent method with backtracking line-search
algorithm30 based on the model as follows:

minx∈Rn λi ||Aix − di ||22(x ≥ 0). (7)

For fair comparisons of plan quality, all three types of algo-
rithms for each patient dataset yield similar dose sparing to
the critical organs by adjusting the importance factors (λi) and
the residue assigned to each structure, denoted by εi in Eq. (6).
The resultant fluence-maps will be converted into the actual
fluence-map by the same leaf-sequencing algorithm proposed
by Zhu et al.20

To evaluate the quality of all resultant treatment plans, var-
ious criteria were used. For assessing the dose conformity to
the target, of a variety of conformality index (CI),31–36 this
work employed the conformation number (CN),31–33 consist-
ing of PTV coverage (>95%) (CN1) and the healthy tissue
protection (CN2),

Conformation Number(CN)

= Vτ,ref

Vτ

· Vτ,ref

Vref

�= (CN1) · (CN2), (8)

where Vτ is the volume of PTV, Vτ,ref represents the target vol-
ume receiving the dose greater than or equal to the reference
(prescribed) dose, and Vref is the total volume receiving the
dose greater than or equal to the reference dose. In this study,
CN1 is set up to be 0.95 for all plans, while trying to see the
variations of CN, where higher CN implies better target dose
conformity with healthy tissue protection. The delivery effi-
ciency is closely associated with the fluence-map complexity,
which was quantified by the entire number of segments and
modulation index (MI; Ref. 37) as shown in Eq. (9),

�u = ‖xu,v,f − xu−1,v,f ‖, �v = ‖xu,v,f − xu,v−1,f ‖
N (f ) = (Number of beamlets such that

�u,�v > f · σ ) (f = 0.01, 0.02, · · · , 2)

z(f )= N (f )

(Nu − 1)Nv + Nu(Nv − 1)
→ MI=

∫ 0.5σ

0
z(f )df,

(9)
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where x is the resultant fluence-map, Nu and Nv are the size
of beamlet, �u and �v are the intensity change between ad-
jacent beamlets in perpendicular and horizontal directions, σ

is the standard deviation of x, and N(f) is the number of ele-
ments meeting the condition above. The estimated dose deliv-
ery time (Test) can explicitly represent the delivery efficiency
of the plans by referring to Li et al.38 as expressed in Eq. (10)
for step-and-shoot IMRT delivery,

Test = MU

DR
+ TG

(
1 − 1

Nf

)
+ �TG(1 − Nf ) + TMLC,

(10)

where MU is the monitor unit per fraction, DR represents the
dose rate for plan delivery, which equals the 600 MU/min or
10 MU/s, and TG is the time for a gantry rotation of 360◦,
which is 60 s. �TG is the extra time caused by gantry control
at a beam angle, which is about 0.6 s or 0.01 min, Nf is the
number of beams applied, and TMLC denotes the summation
of MLC traveling time of all apertures applied, where MLC
leaves travel at the maximum speed 3 cm/s. The monitor unit,
MU, is calculated for each plan to make sure that 95% of the
PTV receives 100% of the prescription dose (2 Gy). Finally,
the dose sparing to the critical structures was evaluated by
watching the dose volume histograms (DVHs) and dose dis-
tributions drawn, and by calculating the equivalent uniform
dose (EUD),39–41 which is expressed as

EUD =
(

1

n

∑n

i=1
da

i

)1/a

, (11)

where di is the dose at voxel i, and n is the total number of
voxels of the structure. This work defines a to be −10, 6,
and 1, which correspond to PTV, parallel structures (such as
parotid), and serial structures (such as Rectum), respectively.

II.F. Algorithm implementation

In order to implement the proposed method with a gen-
eral TV min. based on L1-norm, this work employs the large-
scale L1-solver, TFOCS.29 As specified in Kim et al.,23 it
demonstrates fast convergence speed with the minimal mem-
ory usage for RT applications. Our proposed algorithm is per-
formed by one more iteration using the appropriate weight
for each element with the TFOCS solver. The algorithm was
implemented on a PC with 4 GB memory and Intel Core i5
CPU, 2.67 GHz in a MATLAB R2008a platform. The algo-
rithmic details can be found in the released software package
(http://tfocs.stanford.edu), which should be fitted to the RT
applications in terms of the structures of the 2D-difference
matrix for TV form. The maximum number of iterations for
the fluence-map optimization is 2000, and it automatically
stops when the difference in L2-norm between solutions at
the next and the current iterate is less than 10−5, namely
‖xl+1

(k) − xl
(k)‖2 ≤ 10−5, where subindex l is the order of it-

erations of computing kth reweighting process (x(k)).

III. RESULTS

Figure 2 compares three resultant fluence-maps opti-
mized by quadratic, conventional TV min., and the proposed
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FIG. 2. Fluence-maps acquired by quadratic min., TV min. and reweighted TV min. (proposed) for (a)–(c) Prostate2, (d)–(f) Lung, and (g)–(i) HN1 clinical
data sets. The perpendicular bar in right-hand side for each figure represents the beamlet intensities. The proposed method successfully generates simplified
fluence-maps than the other two techniques.
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FIG. 3. Comparing dose conformity to the target (CN) of the plans acquired by quadratic min. [solid (-)], TV min. [dashed (- -)], and reweighted TV min.
[dashed-dotted (-.)] in (a) Prostate1, (b) Prostate2, (c) Lung, (d) HN1, (e-1) HN2 data for PTV66, and (e-2) HN2 data for PTV54, respectively. To achieve a
similar CN, the reweighted TV min. required 10–15 fewer segments than TV min. and 30–35 fewer segments than quadratic min. based plans.

reweighted TV min. for Prostate2 [Figs. 2(a)–2(c)], Lung
[Figs. 2(d)–2(f)], and HN1 [Figs. 2(g)–2(i)] cases. We see that
the proposed method produces sparser fluence-map variations
due to the reweighting process. Although the plans acquired
by standard TV min. generates simpler fluence-map variations
relative to the quadratic min. representing regular IMRT plan-
ning, the resultant fluence-maps are still complicated in order
to meet stronger dose constraints, which can be overcome by
reweighting process with more iteration. The computational
time of the proposed method for the fluence-map optimization
ranges from 6 to 10 min., which is about twice of the standard
TV min. based approach due to the extra iteration, whereas its
memory expenses (0.3–0.8 GB) remain unchanged in com-
parison with two existing algorithms.

In order to see how the simplified fluence-maps can af-
fect the delivery efficiency, we quantify the dose conformity
to the target by CN, while varying the number of segments
for all five cases, as illustrated in Figs. 3(a)–3(e). The solid
(-), dashed (--), and dashed-dotted (-.) lines are matching the
plans obtained from the quadratic, TV, and reweighted TV
min. algorithms, respectively. This figure noticeably describes
the benefits from the proposed method over the existing op-
timization techniques in terms of the dose conformity to the
target (CN), since a similar CN can be achieved with much
fewer segments applied by using the proposed method. As
summarized in Table III, to attain a similar CN, the number
of entire segments of the plans by the proposed method was
reduced by 10–15 segments relative to the plans by conven-
tional TV min., and reduced by 30–35 segments compared
with the quadratic min. based plans. Simultaneously, the plan
complexity measured by MI can be decreased by about 20%–
30% over TV min. and by about 40%–60% over quadratic
min. based algorithm. Particularly, in the HN2 case with mul-
tiple targets (PTV66 and PTV54), a similar target dose con-
formity to PTV66 (CN = 0.75) was accomplished by the

quadratic and TV min. based plans with more segments used.
However, the dose conformity to PTV54 of those (CN = 0.73,
0.78) cannot get better than that of the plan by the proposed
method (CN = 0.79) within the range of segments given. This
result points out that the reduction in fluence-map complexity
through reweighted TV min. can provide more secure con-
trollability for multiple targets as well as single target than
the existing algorithms.

TABLE III. Comparison of the quality of the plans acquired by three dif-
ferent algorithms for five clinical data sets in dose conformity to the target
(CN), and fluence-map complexity (number of segments and MI).The pro-
posed method enables for attaining the similar CN with much fewer segments
and simpler fluence-map complexity (MI) than the existing methods can do.

Algorithms
Patient case Criterions

QP TV Reweighted TV

Prostate1 Segments 70 50 40
CN 0.8629 0.8671 0.8632
MI 7.44 4.19 3.39

Prostate2 Segments 70 50 40
CN 0.8753 0.8779 0.8731
MI 7.88 4.26 3.28

Lung Segments 65 50 35
CN 0.8843 0.8854 0.8870
MI 8.92 5.39 3.53

HN1 Segments 70 50 35
CN 0.8739 0.8719 0.8710
MI 6.71 3.37 2.47

HN2 Segments 95 80 65
CN (PTV66) 0.7521 0.7522 0.7549
CN (PTV54) 0.7286 0.7728 0.7878

MI 7.33 5.75 4.63
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TABLE IV. Estimated treatment time of the three plans by quadratic min.,
TV min., and the proposed method for the five clinical cases. The plans by
the proposed method can save the estimated dose delivery time by about 10–
30 s over the TV min. based plans, and about 30–80 s over the quadratic min.
based plans.

Algorithms
Patient case Criterions

Quadratic TV Reweighted TV

Prostate1 Test(s) 173 148 135
TMLC(s) 70 45 33

MU 440 433 423

Prostate2 Test(s) 180 146 134
TMLC(s) 73 43 32

MU 473 432 425

Lung (180◦ coverage) Test(s) 145 104 90
TMLC(s) 75 38 25

MU 360 320 312

HN1 Test(s) 227 190 165
TMLC(s) 93 65 43

MU 752 657 630

HN2 Test(s) 285 229 199
TMLC(s) 150 103 74

MU 758 672 656

To clarify the benefits of the proposed method in deliv-
ery efficiency, Table IV specifies the estimated treatment time
(Test) and the MLC traveling time (TMLC) of three treatment
plans with MUs required for each case. The comparisons
were made with different number of segments for three dif-
ferent plans that produce similar plan quality in CN as seen in
Table III. For instance, 70, 50, and 35 segments were applied
to the plans by quadratic min., TV min. and reweighted TV
min, respectively, in HN1 patient data as seen in Table III.
The plans with fewer segments achieved by the reweighted

TV can lead to shorter treatment time, which mostly come
from 25% to 30% reduced MLC traveling time (10–30 s) over
TV min. based plans and from 50% to 60% reduced MLC
traveling time (30–80 s) over quadratic min. based plans.
Besides the great profits from the MLC traveling time, the
MU levels required for achieving a similar plan quality af-
fect the treatment time. The plans by the proposed method
have about 3%–5% smaller MUs than conventional TV min.
based plans, while those can lower MUs by up to 15% than
the quadratic min. based plans. This reduction can further
decrease the entire treatment time as well in such cases as
Lung, HN1, and HN2, whereas the profit is relatively low
in the prostate cases. Combining the two variable factors,
the advantage in estimated delivery time obtained from the
proposed method is about 12–30 s over the TV min., and
35–85 s over the quadratic min. based plans.

To see the extent of the dose sparing to the organs-at-
risk (OAR), DVHs and the dose distributions are employed
as shown in Figs. 4 and 5. As in the delivery time estima-
tions, with reference to Table III, the different number of seg-
ments were applied for three plans that have a similar dose
conformity to the target (CN) for each dataset. As illustrated
in Fig. 4, with respect to the DVHs of the critical structures in-
volved in the fluence-map optimization, the plans with fewer
segments from the proposed method turned out to be similar
to the plans from two existing techniques for five clinical data.
This tendency can be also seen in Fig. 5, which describes the
dose distributions acquired by three different methods for all
clinical datasets. The dose of radiations from three different
algorithms is distributed in an analogous fashion, which im-
portantly implies that the plan acquired by the reweighted TV
min. can preserve the critical structures at the similar extent
even with fewer segments. The numerical results in Table V
regarding EUDs of all structures involved in the fluence-map
optimization support the consequences above. The three plans
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FIG. 4. DVHs of all structures involved in three plans acquired by quadratic min. [solid(-)], TV min. [dashed(- -)], and reweighted TV min. [dashed-dotted(-.)]
in (a) Prostate1, (b) Prostate2, (c) Lung, (d) HN1, and (e) HN2 data, respectively. The plans by the proposed method can maintain the similar dose sparing to the
critical organs even with fewer segments applied.
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Prostate1 Prostate2 Lung HN1 HN2(a)
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FIG. 5. Dose distribtuions obtained from three different algorithms with the designated number of segments in (a)–(c) Prostate1, (d)–(f) Prostate2, (g)–(i) Lung,
(j)–(l) HN1, and (m)–(o) HN2 clinical data. This claims that the proposed method even with much fewer segments does not harm the critical structures. (The
iso-dose lines are 40%,70%, and 100% of the prescribed dose).

obtained from different algorithms yield similar EUDs of
the critical organs although the plans by the reweighted TV
min. have much fewer segments than the plans by the two
existing algorithms. Additionally, the important fact to note is
that in most cases, the EUDs of the PTV of the plans from the
proposed method are lower than those by the existing tech-
niques, which shows that reweighted TV min. makes the dose

TABLE V. EUDs of all structures concerned in the fluence-map optimiza-
tions with three different methods. This shows that the reweighted TV can
preserve the critical structures to similar extent to the existing techniques,
even with fewer segments applied to the treatment planning.

Algorithms
Patient case Structures

Quadratic TV Reweighted TV

Prostate1 PTV 81.28 81.04 80.99
Rectum 45.09 44.59 44.06
Bladder 13.25 13.13 13.11

Femoral heads (L,R) 16.05/14.83 15.81/15.33 15.91/15.21

Prostate2 PTV 81.41 81.07 81.02
Rectum 46.97 46.55 46.80
Bladder 13.21 12.89 12.79

Femoral heads (L,R) 16.57/16.21 16.67/16.51 16.94/16.34

Lung PTV 53.30 52.78 52.66
Chest wall 6.51 6.40 6.18
Spinal cord 28.72 29.15 29.29

HN1 PTV 69.99 69.55 69.52
Spinal cord 16.90 16.00 15.83
Brain stem 15.27 14.54 13.95
Parotid (L) 11.97 11.30 11.49

HN2 PTV66 70.47 70.66 70.16
PTV54 58.27 58.16 57.56

Spinal cord 27.87 27.60 27.83
Brain stem 26.23 25.63 25.76
Parotid (L) 10.95 10.92 10.74

distribution inside the PTV more uniform due to further sim-
plification of the resultant fluence-maps.

IV. DISCUSSION

Fluence-map complexity is an important issue in IMRT in-
verse planning because it is directly related to delivery effi-
ciency and treatment time. First-order TV min. based on L1-
norm casts the inverse planning as a sparse signal reconstruc-
tion problem, hence offering a salient method for enhancing
delivery efficiency by generating piecewise constant fluence
maps. However, when the dose sparing to the critical struc-
tures gets stronger, the fluence-map will inevitably become
more complicated to satisfy the dose constraints, which can
negatively affect the delivery efficiency, i.e., dose delivery
time. To further enhance the delivery efficiency by reduc-
ing the fluence-map complexity, we proposed the reweighted
TV min. technique originated from the reweighted L1-min.,
in which the L1-min. program is iteratively executed by
reweighting the elements at each iteration. The weight as-
signed to each element is inversely related to the magnitude
of the corresponding element. By penalizing elements with
small or near zero magnitude, the proposed technique ensures
sparsity in the fluence map variations. The apparent advan-
tage of this method is that existing L1-minimizing techniques
can be used with only minor modifications in order to achieve
the desired results.

In step-and-shoot delivery based IMRT inverse planning,
we have demonstrated the benefits of the proposed method
in terms of the delivery efficiency, while target dose confor-
mity and dose sparing to the critical structures is maintained
or strengthened. For five clinical cases (two prostate, one
lung, and two HN data) with IMRT, the proposed method can
produce simpler fluence-maps than the existing techniques
(quadratic and standard TV min.). Notably, for all clinical
cases, using reweighted TV min. helps achieve a similar dose
conformity to the target (CN) with 10–15 fewer segments
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relative to the TV min. based plans and with 30–35 fewer
segments compared with the quadratic min. based plans.
With such conditions, the fluence-map complexity (MI) was
decreased by about 20%–30% and about 40%–60% over TV
min. and quadratic min. based algorithms, respectively. Ulti-
mately, the reduction in the fluence-map complexity can lead
to the greatly decreased MLC traveling time and slightly de-
creased MU levels, which save the entire estimated dose de-
livery time (Test) by about 12–30 s over the TV min., and
35–85 s over the quadratic min. based plans.

There are several algorithmic parameters to be chosen as
discussed in Sec. II. The important parameter in the imple-
mentations of the proposed method is the positive coefficient
(δf), which is recommended Candès et al.25 to be lower than
the maximum element or variation of elements. This work
defines it as a field-specific constant. If it is too large, the
reweighted L1-min. does not approximate L0-min., whereas
too small coefficient will lead to oversimplified fluence-map
and damage plan quality. Although the way to determine δf

is empirical, the values used in this work should be close to
the optimal one for IMRT inverse planning as verified by our
clinical datasets.

Another consideration is the number of iterations for the
reweighting process. The work proposed by Candès et al.25

has suggested iterating the algorithm three to five times, while
we propose to iterate just once. Unlike image processing
problems with an image size typically ∼256 × 256 or larger,
the “image” or fluence-map for inverse planning has smaller
sizes, e.g., ∼16 × 18, and thus does not require a greater
number of iterations for assuring the solution with sparser
variations. Also, from our experimental observations, the ad-
ditional iterations in inverse planning can oversimplify the
fluence maps, which could make the target conformity and
dose sparing to the certain critical structures worse. For these
reasons, this work suggests iterating the reweighting process
only once.

V. CONCLUSIONS

We have proposed a reweighted L1-minimization tech-
nique to simplify fluence maps in IMRT inverse planning
and improve delivery efficiency. Results using clinical data
in lung, prostate, and head and neck cases show that the
proposed technique reduces the number of segments and
fluence-map complexity compared with conventional L1-
minimization technique, which in turn leads to shorter treat-
ment time, while maintaining target conformity and dose
sparing to critical structures.
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