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Summary
We propose novel estimation approaches for generalized varying coefficient models that are
tailored for unsynchronized, irregular and infrequent longitudinal designs/data. Unsynchronized
longitudinal data refers to the time-dependent response and covariate measurements for each
individual measured at distinct time points. The proposed methods are motivated by data from the
Comprehensive Dialysis Study (CDS). We model the potential age-varying association between
infection-related hospitalization status and the inflammatory marker, C-reactive protein (CRP),
within the first two years from initiation of dialysis. Traditional longitudinal modeling cannot
directly be applied to unsynchronized data and no method exists to estimate time- or age-varying
effects for generalized outcomes (e.g., binary or count data) to date. In addition, through the
analysis of the CDS data and simulation studies, we show that preprocessing steps, such as
binning, needed to synchronize data to apply traditional modeling can lead to significant loss of
information in this context. In contrast, the proposed approaches discard no observation; they
exploit the fact that although there is little information in a single subject trajectory due to
irregularity and infrequency, the moments of the underlying processes can be accurately and
efficiently recovered by pooling information from all subjects using functional data analysis.
Subject-specific mean response trajectory predictions are derived and finite sample properties of
the estimators are studied.
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1 Introduction
The public health burden directly related to infection in the dialysis population is substantial.
Current projections estimate the United States will have as many as 710,000 prevalent end-
stage renal disease (ESRD) patients by the year 2015 [1]. Recently Dalrymple et al. [2]
showed a significant burden of infection in patients on dialysis, finding that among patients
aged 65 to 100 years, the rate of infection-related hospitalization was 52 and 53 per 100
person-years for patients on peritoneal and hemodialysis, respectively. The Comprehensive
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Dialysis Study (CDS) is a prospective cohort study of ESRD patients who newly initiated
dialysis between September 2005 and June 2007 [3] where longitudinal serum samples were
collected on a subset of participants within the first two years from the start of dialysis. In
this work, we aim to examine the potential age-varying association between infection-
related hospitalization status and serum C-reactive protein (CRP), a positive acute-phase
protein marker of inflammation which is increased during inflammation.

Varying coefficient models ([4], [5]) are designed to capture complex age- (or more
generally, time-) varying effects/associations in regression relationships. They have been
widely used in longitudinal data analysis in the past decade due to their ability to capture
time-varying associations, their ease in interpretation and natural graphical display of time-
varying dynamics ([6]–[12]). Cai et al. [13] developed extensions to generalized varying
coefficient models for modeling longitudinal generalized responses, such as binary variables
(e.g., infection-related hospitalization status) or counts of events. The generalized varying
coefficient model for longitudinal data is

(1)

where g(·) is a known inverse link (transformation) function that relates the mean outcome
to the longitudinal covariate X. Qu and Li [14] studied estimation in generalized varying
coefficient models for longitudinal data using penalized spline expansions coupled with
quadratic inference function approaches, while Zhang [15] used a generalized linear mixed
model approach where a double penalized quasi-likelihood approach is used for estimation.

There are several major challenges in the estimation of the generalized varying coefficient
models from the CDS data. First, the longitudinal measurements on the binary response,
infection-related hospitalization status, and the continuous covariate, serum CRP
concentration, are obtained at distinct time points (unsynchronized) within each subject.
Hospitalization times are stochastic and do not coincide with serum CRP measurement
times. In addition, longitudinal hospitalization data is naturally highly irregular and
infrequent over time. Thus, longitudinal data characterized by a combination of
unsynchronized, irregular and infrequent measurements pose substantial challenges to
modeling time-varying effects. We note that in other longitudinal studies, these issues may
arise due to missed and/or rescheduled visits, despite diligent plans to collect data
contemporaneously and on regular follow-up schedules.

Existing methods for the regression modeling of longitudinal data cannot handle
unsynchronized data. Binning has been proposed [16], as a data preprocessing step (if
feasible), to synchronize the response and covariate measurements to make existing methods
applicable. However, binning can lead to significant loss of data in irregular and infrequent
longitudinal designs as will be shown in the simulation studies of Section 5. For the CDS
data, binning leads to a loss of 69% of the repeated measurements (and 51% loss in subject
sample size). Hence, in this work, we develop novel estimation procedures for generalized
varying coefficient models based on unsynchronized, irregular and infrequent longitudinal
data, obviating data loss due to preprocessing steps.

The proposed estimation procedures build on recent developments in the longitudinal data
literature that introduce functional data analysis techniques ([17]–[21]) to address irregular
and infrequent designs ([22]–[24]). Yao et al. ([25], [26]) used estimates of the covariance
structure and mean function of the longitudinal trajectories for functional linear regression;
Hall et al. [27] modeled a single generalized longitudinal response trajectory (without any
covariates) using latent Gaussian processes based on functional data analysis. Recently,
Senturk and Mueller [28], Senturk and Nguyen [29] and Kim et al. [30] developed the
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functional data analysis framework for estimation in the standard varying coefficient models
and reported improved estimation results over standard estimation procedures such as local
least squares in regression modeling of sparse continuous error-prone longitudinal data.
However, there has been no work on modeling generalized longitudinal outcome, including
binary and count data, in the framework of generalized varying coefficient modeling geared
towards unsynchronized, irregular and infrequent designs.

The remainder of the paper is organized as follows. We detail the proposed estimation
approaches in Section 2, where binning coupled with local maximum likelihood estimation
is also outlined as a comparison/baseline approach in Section 2.4. Representations of the
varying coefficient functions of interest via the moments of the underlying covariate and
response processes are derived in Section 2.1 leading to our first direct approach to
estimation of the varying coefficient functions. A second alternative approach based on
reconstruction of the predictor processes at the observation time points for the response is
outlined in Section 2.3. Both of the proposed approaches rest on ideas of borrowing strength
from the entire data and dimension reduction. Hence, unlike binning, every observation
contributes to the estimation of the varying coefficient functions and no observation is
discarded. Furthermore, while standard approaches can predict the mean response only at
the original sparse observation times, the proposed methods lead to subject-specific
predictions of the mean response trajectories for the entire study period as outlined in
Section 3. The proposed method is illustrated with the aforementioned CDS data in Section
4. Section 5 reports on simulation studies of the accuracy of the proposed estimation and
prediction procedures, including comparisons with local maximum likelihood estimators
coupled with binning. We conclude with a brief discussion in Section 6.

2 Estimation in Generalized Varying Coefficient Models
Consider the generalized response Yi(t) and the longitudinal predictor Xi(t) for i = 1, …, n
subjects in model (1). The observed covariate and response trajectories are assumed to be
square integrable realizations of the random smooth processes X and Y. Unsynchronized,
infrequent and irregular nature of the CDS data, as described in the previous section, is
characterized by subject and variable specific random observation times and small total
number of repeated measurements. To accommodate these data characteristics, we assume
that the longitudinal response (Yi) and the covariate (Xi) trajectories for subject i, are
observed at distinct time points Tij ∈ [0, T] and Sik ∈ [0, T], for j = 1, …, Ni and k = 1, …,
Mi, respectively. Ni and Mi denote the ith subject’s total number of repeated measurements
for the response and covariate, respectively. We also assume additive measurement error on
the longitudinal covariate, i.e., Xik = Xi(Sik) + εik, where εik are mean zero finite variance
i.i.d. measurement errors. The repeated measurements on the generalized response are
denoted by Yij = Yi(Tij).

2.1 Moments Representations of the Varying Coefficient Functions
In this section, we outline our first approach for estimation in generalized varying
coefficient models based on the moments representations for the time-varying coefficient
functions of interest. We consider an expansion of Xi about its mean function, where the
variation about it’s mean is relatively small, i.e., Xi(t) = μX(t) + δZi(t), with μX(t) ≡
E{X(t)}, Zi a mean zero, bounded variance stochastic process and δ > 0 an unknown small
constant. Assuming that the function g is continuously differentiable, g′ does not vanish and
infs∈D g′ (s) > 0 where D is the range of β0(t) + β1(t)μX(t), it holds by a Taylor’s expansion
that
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It follows that μY (t) ≡ E{Y (t)} = g{β0(t) + β1(t)μX(t)} + O(δ2), since E{Z(t)} = 0 and

where GXX(t, t) ≡ cov{X(t), X(t)}. Hence, we obtain the following approximations to the
time-varying coefficients of interest,

(2)

The approximations in (2) imply plug-in estimators for the targeted varying coefficient
functions β1(t) and β0(t), respectively; both up to terms of order O(δ2). Note that the derived
expressions in (2) do not depend on δ; therefore, δ need not be estimated. Nevertheless, we
study the sensitivity of the proposed estimators to different values of δ (i.e., different
variance of X) via Monte Carlo simulations in Section 5.

Note that the derived expressions for the varying coefficient functions given in (2) depend
only on population quantities. Hence, even though the data is unsynchronized and infrequent
at the subject level, population moments can still be estimated effectively when the data
from all subjects are pooled together as will be described in the next section.

2.2 Estimation of the Moments of the Underlying Stochastic Processes
The population moments are obtained through smoothing, which also allows for pooling of
information from all subjects. In a first step, the mean functions of the longitudinal
trajectories are obtained by smoothing the aggregated data (Sik, Xik) and (Tij, Yij) for i = 1,
…, n, k = 1, …, Mi and j = 1, …, Ni, with local linear fitting. This yields μ̂X(t) and μ̂Y(t),
respectively. Next, we compute the raw covariances between (Y, X) and (X, X) as
GY X,i(Tij, Sik) = {Yij − μ̂Y (Tij)}{Xik − μ̂X(Sik)} and GXX,i(Sik, Siℓ) = {Xik − μ̂X(Sik)}{Xiℓ −
μ̂X(Siℓ)}, respectively. To obtain the final smooth estimates of the covariances, ĜY X and
ĜXX, we feed the raw estimates, GY X,i and GXX,i, into a two dimensional local least squares
algorithm. Explicit expressions of the local least squares estimators are given in Senturk and
Mueller [28]. For a computationally efficient bandwidth choice in the proposed one- and
two-dimensional smoothing, we adopt the generalized cross-validation algorithm of Liu and
Mueller [31].

To eliminate the effects of covariate measurement error on the auto-covariance ĜXX, we
exclude the diagonal raw covariance elements GXX,i(Sik, Sik), i = 1, …, n, k = 1, …, Mi in
the two-dimensional smoothing step. This is because the measurement error on the
longitudinal predictor variables only affect the variance terms along the diagonal. More
details on this phenomenon can be found in [25]–[26]. In order to guarantee the non-
negative definiteness of the estimated auto-covariance matrix, we exclude the negative
estimates of the eigenvalues and corresponding eigenfunctions from the functional principal

component decomposition , where φℓ denotes the eigenfunctions
with non-increasing eigenvalues ρℓ. Here, a nonparametric functional principal component
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analysis step would be employed on the smooth estimate of the auto-covariance surface by a
standard discretization procedure to estimate the eigenfunctions and eigenvalues. Once these
quantities are estimated, the final auto-covariance estimator is given as

 where the total number L of eigen-components included can
be chosen by various criteria, including the Akaike information criterion (AIC) or fraction of
variance explained. (For more details, see Appendix A.3 of Senturk and Mueller [28].)

The estimated mean and covariance functions can be plugged into the varying coefficient
function representations given in (2) to obtain

(3)

We will refer to the above estimators as the moments estimators of the varying coefficient
functions throughout the manuscript. Uniform consistency of the moments estimators, up to
terms of order O(δ2) (see Section 2.1), follow from the uniform consistency of the moments
estimators described above. More specifically, the uniform consistency of the proposed
mean and covariance function estimates have been shown for continuous longitudinal
observations in Yao et al. ([25], [26]) and generalized longitudinal observations in Hall et al.
[27]. We study the sensitivity of the finite sample performance of the moments estimators to
different δ values in the simulation studies of Section 5.

Note that instead of applying a binning procedure to each subject trajectory to synchronize
the response and covariate measurements, the proposed method uses smoothing in the
estimation of the population quantities. While regularization via smoothing of each subject’s
trajectory may be appropriate for densely measured longitudinal data, the proposed approach
with regularization applied at the estimation of the population moments is much more
suitable for infrequent and unsynchronized designs. In this way, every observation on each
subject, whether it be unsynchronized or infrequent, contributes to the estimation via the
connection between the population moments and the varying coefficient functions given in
(2).

For analysis with a fixed duration, when another time index is considered for the varying
coefficient model, other than the duration of the study, such as age, we have subject-specific
supports for the observed data: {ai; Xi(Sik); Yi(Tij)} for j = 1, …, Ni and k = 1, …, Mi, Sik,
Tij ∈ [ai + T0, ai + T1] and T0 < T1. We will refer to this case as the fixed duration case
throughout the manuscript. As we will describe in more details in the data analysis of
Section 4, for the CDS data, the protein inflammation marker and hospitalization
measurement times per subject are randomly scattered within the [100, 550] day interval of
interest, after the initiation of dialysis. Hence, in this set-up, ai refers to age at initiation of
dialysis for subject i, T0 = 100 and T1 = 550. Since each subject is observed within 100 to
550 days from their baseline age (age at initiation of dialysis, marking the beginning of the
study), the raw covariances are only available in a band around the diagonal of length twice
the duration of the study (450 days). (This will be detailed in Section 4.) Hence, the
smoothing needs to be performed only in this region around the diagonal. In addition, note
that (2) involves only the diagonal values of the auto- and cross-covariance surfaces of the
underlying covariate and response processes. Hence, the proposed age-varying coefficient
models can be estimated based on an analysis with a fixed duration time, such as the
analysis of the CDS data considered here. Properties of the proposed estimation procedures
are studied in detail under both time indices, the duration of the study and subject age
(similar to CDS data), in simulation studies of Section 5.
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2.3 Reconstruction of the Predictor Processes and Local Maximum Likelihood Estimation
Since traditional estimation procedures for modeling longitudinal data can only handle
synchronized data, our second proposed estimation approach uses the functional data
analysis framework and the estimated population moments in Section 2.2 to reconstruct the
predictor processes at the observation times of the response. Once the predictor
measurements are obtained synchronized with the response for each subject, we utilize an
extension of the local maximum likelihood estimators of Cai et al. [13] originally proposed
for i.i.d. data to longitudinal data, to obtain estimators of the varying coefficient functions.

The starting point in reconstructing the predictor trajectories will be the Karhunen-Loéve
expansion for the observed process for subject i,

where ξiℓ is the ℓth functional principal component score playing the role of random effects
with E(ξℓ) = 0 and var(ξℓ) = ρℓ, εik is the zero-mean finite variance measurement error
introduced before, Sik ∈ [0, T] and k = 1, …, Mi. Estimation of the mean function μX(t) and
the auto-covariance operator GXX from noise contaminated infrequent and irregular
observed data have been outlined in the previous section. The eigenfunctions φℓ(t) can be
recovered through a functional principal component step applied to the discretization of the
smooth auto-covariance estimator ĜXX. Following the works in [25]–[26], Senturk and
Mueller [28] proposed to recover ξiℓ from infrequent observations on the longitudinal
predictor using Gaussian assumptions on all eigen-scores and measurement error of the
longitudinal predictor based on the conditional expectation E(ξiℓ|Ui, Mi, Si). Here Ui is the
Mi × 1 observation vector Ui ≡ (Xi1, …, XiMi)

T with Xik = Xi(Sik) + εik and Mi and Si =
(Si1, …, SiMi) are the total number of repeated measurements and the vector of observation
time points for subject i, respectively. Readers are referred to [28] for explicit expressions of
ξ̂iℓ. Next, putting together all estimated model components, we reconstruct the predictor

process at the observation time points of the response: , Tij ∈
[0, T] and j = 1, …, Ni. Here, the number L of eigen-components included can be chosen by
various criteria, including AIC and the fraction of variance explained.

For reconstruction in analysis with a fixed duration, such as our analysis of the CDS data,
we estimate the eigenfunctions and eigenvalues of the covariate process via pooling all
covariate observations on the common observation period [T0, T1]. For this, we use
predictor trajectories shifted from subject-specific supports Sik ∈ [ai + T0, ai + T1] to the
common observation period Sik − ai ∈ [T0, T1], for example within the [100, 550] day
interval after the initiation of dialysis for the CDS data. (Details are provided in the data
analysis of Section 4.) Once the predictor processes are reconstructed at the response
observation times Tij − ai ∈ [T0, T1] within the common observation period, they are then
shifted back to subject-specific supports Tij ∈ [ai + T0, ai + T1] by adding ai. In summary,
we reconstruct on subject-specific intervals where the subject was originally observed,
without extrapolation.

Using the synchronized data (Tij, X̃ij, Yij) for j = 1, …, Ni, we utilize a local maximum
likelihood procedure for estimation of the varying coefficient functions. Assuming β0(t) and
β1(t) have continuous second derivatives, we approximate each function locally by β0 ≈ a0 +
a1(t − t0) and β1(t) ≈ b0 + b1(t − t0) for t in a neighborhood of the fixed time point t0. Local
maximum likelihood estimators aim to maximize the local log-likelihood,
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(4)

where Kh(·) = K(·/h)/h, K(·) denotes a kernel function, h is the bandwidth, a ≡ (a0, a1)T, b ≡
b0, b1)T and ℓ(·, ·) denotes the log-likelihood function. Maximizing the local log-likelihood
ℓn(a, b) results in the local maximum likelihood estimators for the varying coefficient
functions β̂0(t0) = â0 and β̂0(t0) = b̂0. These second set of estimators obtained for the varying
coefficient functions will be referred to as reconstruction estimators throughout the
manuscript. The maximization can be implemented using the Newton-Raphson algorithm,
with the r + 1 iteration update given by

(5)

where  and  denote the gradient and Hessian matrix of the log-likelihood,
respectively. Explicit forms of the terms involved in the updating step (5) is given for the
Bernoulli and Poisson distributed responses in the Appendix.

Note that the proposed reconstruction for the predictor process is quite different from
preprocessing steps such as binning or smoothing a single subject’s trajectory. While the
latter use only information from that particular subject, the proposed approach uses the
pooled information from all subjects. Functional data analysis framework provides a unique
opportunity for synchronizing the response and predictor measurements using the estimated
underlying population quantities, moments of the predictor process. Comparisons of the two
proposed approaches based on functional data analysis, along with a binning coupled with
local maximum likelihood approach, outlined below, are given in the simulation studies and
data analysis.

2.4 Binning and Local Maximum Likelihood Estimation
In this section we outline an equidistant binning procedure to synchronize the data followed
by local maximum likelihood for estimation of the varying coefficient functions, as a
baseline method in comparisons with the proposed estimators. For the equidistant binning,
the maximum number of equidistant bins per subject is selected such that each bin contains
at least one repeated measurement on the covariate and the response. In applications, the
maximum number of bins would be selected from a preliminary set of total number of bins
that is determined by the distributions of the subject-specific total number of repetitions for
the covariate and the response, Mi and Ni, respectively. More specifically, for subject i, the
binning yields synchronized data (tib, Xib, Yib) for b = 1, …, Bi bins, where the time tib
denotes the midpoint of the bth bin, Xib is the average of the covariate observations Xik and
Yib is the sum of the response observations Yij falling in bin b. We use the sum of the binary
and count response values within a bin to yield Binomial and Poisson distributed response
values, respectively, after binning.

The synchronized data obtained from binning is then fed into a local maximum likelihood
procedure for estimation of the varying coefficient functions. For binned data (tib, Xib, Yib)
with possibly reduced total number of subjects i = 1, …, nB (nB ≤ n) and possibly reduced
repetitions per subject b = 1, …, Bi (Bi ≤ min{Ni, Mi}), local maximum likelihood
estimators aim to maximize the local log-likelihood,
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where Kh(·) = K(·/h)/h, K(·) denotes a kernel function, h is the bandwidth, a ≡ (a0, a1)T, b ≡
(b0, b1)T and ℓ(·, ·) denotes the log-likelihood function. Maximizing the local log-likelihood
ℓnB (a, b) with similar computations as in Section 2.3, we obtain what we will refer to as
binning estimators for the varying coefficient functions β̂0(t0) = â0 and β̂0(t0) = b̂0.

3 Prediction of Subject-Specific Mean Response Trajectories
While the traditional estimation methods, such as the binning estimator outlined above, can
only predict the mean response at the bin midpoints tib, we will utilize functional data
analysis techniques to provide smooth predicted mean response trajectories throughout the
duration of the study based on the two proposed estimation procedures. We begin by the
Karhunen-Loéve expansion of the covariate trajectory of a new subject,

 where  is the ℓth functional principal

component score with  and . Based on the generalized varying coefficient
model (1), the predicted response trajectories will be obtained through

(6)

where η*(t) ≡ β0(t) + β1(t)X*(t) and Y*(t) denotes the generalized response trajectory of a
new subject.

The eigenfunctions φℓ(t) and eigen-scores  are estimated as outlined in Section 2.3 based

on the conditional expectation , where U* is the M* × 1 observation vector

 with  and M* and  are the total number
of repeated measurements and the vector of observation time points of the new subject,
respectively. Thus, using this plug-in estimate for (6) enables us to predict individual mean
response trajectories in the generalized varying coefficient model by

(7)

Here β̂0(t) and β̂1(t) refer to the moments and reconstruction estimators of the varying
coefficient functions proposed, leading to predictions from the two estimation proposals,
respectively. Note that the resulting predictions are for t ∈ [0, T], i.e. the trajectory on the
entire time domain, not just for the original infrequent observation times S*.

For prediction in analysis with a fixed duration, such as our analysis of the CDS data, we
begin by predicting subject-specific predictor trajectories on the interval [T0, T1] by using
all predictor trajectories shifted from subject-specific supports [ai + T0, ai + T1] to the
common observation period [T0, T1], similar the reconstruction procedure described in
Section 2.3. The predicted subject-specific trajectories are then shifted back to subject-
specific supports, for example to [ai + T0, ai + T1] for subject i. Hence even though the
varying coefficient functions are estimated on [min(ai) + T0, max(ai) + T1], we only need the
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estimated functions from [ai + T0, ai + T1] to obtain our predicted response trajectories on [ai
+ T0, ai + T1] for subject i. In this way we don’t extrapolate in prediction of the fixed
duration case; we predict on subject-specific time intervals where the subject was originally
observed.

4 Application to Data from the Comprehensive Dialysis Study
4.1 Description of CDS Data and Analysis Cohort

Longitudinal CRP levels were available for a subset of 266 participants in the CDS study
(with 1 to 5 measurements per subject) and their infection-related hospitalization data was
obtained from the USRDS database. The median time to the first serum collection is about 6
months after the initiation of dialysis and then samples were taken approximately every
three (median) months thereafter. The minimum time to first serum sample collection is
about 3.4 months; therefore, CRP measurements are mostly between [100, 550] days from
the initiation of the dialysis. To avoid boundary bias (due to extremely few data points at the
boundaries) we consider longitudinal measurements on a subset of 228 patients with CRP
measurements in this [100, 550] days period (approximately 1.2 years). This analysis cohort
yields 729 total longitudinal CRP measurements (with 47, 35, 30, 58, 58 subjects with 1 to 5
measurements, respectively). The median baseline age is 63.6 (standard deviation 10.0).
There are 304 total hospitalizations, of which 88 were infection related. The total number of
hospitalizations per person range between 0 to 16. Because hospitalization events are
stochastic, times of infection-related hospitalization statuses (0 or 1) and CRP measurement
times are unsynchronized, in addition to being highly irregular and infrequent.

As mentioned earlier, a preliminary binning step to synchronize the data leads to 51% loss in
the subject sample size since nearly half of the subjects are missing a response measurement.
In terms of the total number of measurements, this represents about 69% data loss. In our
analysis below, we compare the two proposed estimators, moments and reconstruction as
well as binning estimators. We note that in the application of the binning, we search for the
maximum number of bins formed for each subject such that each bin contains at least one
covariate and response measurement, as outlined in Section 2.4. We search for the
maximum bin number for each subject starting from 5 (and decreasing to 0), since the
maximum total number of CRP measurements per subject and hence the maximum number
of bins is 5. Nearly half of the subjects have zero bins, with no response measurements and
subject-specific total number of bins range from 0 to 3. In contrast, individuals with CRP
measurements but without any hospitalizations still contribute to the proposed estimation
procedures and in particular are used to estimate the auto-covariance GXX(t, t) in the
proposed methods.

4.2 Data Analysis Results
To illustrate the proposed methods, we consider estimation of the age-varying association
between longitudinal infection-related hospitalization status and a protein inflammation
marker, serum CRP levels. Since CRP has a skewed distribution, we take the logarithm
transformation for our analysis. The auto-covariance support in age scale of log(CRP) is
given in Figure 1, where both the auto- and cross-covariances are estimated within about a
1.2 year band ([100, 550] days from the initiation of dialysis) around the diagonal. The
estimated cross-sectional mean functions for the response and the covariate are given in
Figure 2(a)–(b), where the infection probability and mean log(CRP) concentration is
increasing slightly with age.

The estimated age-varying coefficient functions from the three estimators, moments,
reconstruction and binning are also given in Figure 2. More specifically, the middle row
((c)–(d)) contains comparisons of the moments (solid) and binning (dash-dotted) fits along

Şentürk et al. Page 9

Stat Med. Author manuscript; available in PMC 2014 July 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



with moments based bootstrap confidence intervals (dotted), while the last row contains
comparisons of the reconstruction (solid) and binning (dash-dotted) fits along with
reconstruction based bootstrap confidence intervals (dotted). We utilize percentile point-
wise confidence intervals based on 500 bootstrap samples obtained by resampling from
subjects with repetition. Both moments and reconstruction approaches yield slightly more
positive age-varying slope functions for the relationship between infection-related
hospitalization status and log(CRP) over parts of age range 60 to 80 than the binning
approach which hovers around zero over age. This observed positive association between
infection-related hospitalization and inflammation markers, particularly CRP, is consistent
with well-established findings in the literature on infection and CRP (see [32] and references
therein). Although small sample sizes lead to wider bootstrap confidence intervals, as
expected, the estimated slope functions based on the moments and reconstruction methods
are found significant with the 90% confidence intervals, especially in the mid age range of
(63–69) and (60–64, 72–74), respectively.

Next, we consider in more detail the predicted subject-specific mean response trajectories,
corresponding to the predicted probability of having an infection-related hospitalization P{Y
(t)} = 1, obtained for all subjects with the predicted subject’s data left out, provided based
on moments and reconstruction estimates separately in Figure 3. Predictions based on the
reconstruction estimates seem to vary less in general compared to predictions based on
moments estimates, especially in regions around ages 55, 66 and 78, since these are the
values where the reconstruction estimates of the slope function in Figure 3(f) cross zero. In
addition, distinct concave and convex patterns in the 100 to 550 days from the initiation of
dialysis are evident for subject-specific trajectories in both set of predictions, with estimated
infection-related hospitalization probabilities roughly above (“high” risk) or below (“low”
risk) the mean probability of infection of 0.3. Figure 4 displays the predicted response
trajectories for these high and low risk groups based on moments estimators with their
corresponding log(CRP) trajectories used in the predictions. The observed concave and
convex age-varying subject-specific infection trajectories/patterns correspond to the subject-
specific covariate log(CRP) trajectories (Figure 4(b) and (e)), explaining the patterns of the
predicted mean response trajectories. That is, the high risk and low risk groups for infection-
related hospitalization also correspond to patients with higher (mean CRP = 15.5) and lower
(mean CRP = 5.0) CRP concentrations, roughly above and below log(CRP)= 2, respectively.
We also plot the estimated mean trajectories of log(CRP) for these two groups, where a
similar concave and convex pattern exist for the mean log(CRP) trajectories within 1.2 years
from the initiation of dialysis (Figure 4(c) and (f)).

5 Simulation Studies
5.1 Simulation Design

We carry out three simulation studies to evaluate the performance of the proposed estimators
for both binary and count responses. We study the properties of the proposed estimation
procedures under three cases: (a) unsynchronized Bernoulli response, (b) unsynchronized
Poisson response and (c) unsynchronized Bernoulli response with fixed study length
resulting in a diagonal support for an age-varying coefficient model (analogous to the CDS
analysis described above). Thus, cases (a) and (b) will allow us to more thoroughly assess
the performance of the proposed methods generally, while case (c) is designed to mimic the
characteristics of the CDS data. In all three scenarios, the proposed estimation algorithms,
moments and reconstruction estimators are compared along with the baseline method of
binning described in Section 2.4. The covariate process X is generated according to Xi(t) =
μX(t) + ξi1φ1(t) + ξi2φ2(t), where the functional principal component scores ξi1 and ξi2 are
simulated from independent normals with means zero and variances equal to σ2. To study
the sensitivity of the moments estimators to different δ values (see the Taylor’s expansions
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of Section 2.1), which correspond to different levels of variation in the covariate X, we
report results for three different variances σ2 of 2, 4, and 6. The predictor trajectories are
assumed to be observed with measurement error which are simulated independently from a
Gaussian distribution with zero mean and variance equal to 0.3. Reported results for all
simulations are based on 200 Monte-Carlo runs. Technical details of the three data cases are
given below.

Case (a)—The number of repeated measurements for n = 100 and 200 subjects are chosen
randomly between 5 and 15 with equal probabilities, independently for the response (Y) and
the covariate (X) to create unsynchronized design. The observation times Tij and Sik for each
subject are randomly selected independently for the covariate and the response from the time
interval [0, 10]. The mean function and two eigenfunctions for the predictor process are

 and , 0 ≤ t ≤ 10,
respectively. The varying coefficient functions are β0(t) = sin(πt/5) and β1(t) = −sin(πt/10).
The response Yij are simulated from a Bernoulli distribution with mean E{Yij|Xi(Tij)} =
g{β0(Tij) + β1(Tij)Xi(Tij)}, where g(p) = ep/(1 + ep).

Case (b)—For count response, the sample size, number of repetitions, observation times
and the predictor process are generated in the same way as in case (a). The varying
coefficient functions are β0(t) = t/5 and β1(t) = sin(πt/10)/3. The response Yij are simulated
from a Poisson distribution with mean E{Yij|Xi(Tij)} = g{β0(Tij)+ β1(Tij)Xi(Tij)}, where
g(p) = ep.

Case (c)—To simulate data similar to the analyzed CDS data in Section 4, the number of
repeated measurements for the response are chosen between 0 to 7 with probabilities [0.5,
0.15, 0.1, 0.1, 0.05, 0.05, 0.025, 0.025] and between 1 to 5 for the covariate with
probabilities [0.15, 0.15, 0.20, 0.25, 0.25] for n = 200 and 400 subjects. The baseline age ai
of each subject is chosen randomly from [50, 79] where the repeated measurement times for
that subject are then chosen randomly from the time interval [ai, ai + 1.2], separately for the
response and the covariate processes. This leads to unsynchronized data, corresponding to a
fixed (average) follow-up time of approximately 1.2 years, similar to diagonal support of the
age-varying coefficient model for the CDS data. The mean function and the two
eigenfunctions for the covariate process are

 and

, 50 ≤ t ≤ 80, respectively. The age-varying
coefficient functions are β0(t) = −1.5 sin{π(t−50)/30} and β1(t) = −2sin{π(t−65)/30}. The
response Yij are simulated from a Bernoulli distribution with mean E{Yij|Xi(Tij)} =
g{β0(Tij) + β1(Tij)Xi(Tij)}, where g(p) = ep/(1 + ep).

To study the performance of the proposed estimation method for the varying coefficient
functions, we use relative mean squared deviation error (ME):

Overall ME will be the average of ME0 and ME1. For comparisons, the ME values are also
obtained for the three estimation procedures, moments (MEM), reconstruction (MER) and
binning (MEB) in the three simulation cases. In the implementation of the equidistant
binning algorithm, for cases (a) and (b) we divide the study period [0, 10] into equidistant
bins, and for case (c) we divide the subject-specific observation interval [mink,j{Sik, Tij},
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maxk,j{Sik, Tij}] into equidistant bins to synchronize the data prior to local maximum
likelihood estimation.

In addition, we use relative mean squared prediction error (PEi) to study the proposed
subject-specific mean response trajectories, where

with ηi(t) = β0(t) + β1(t)Xi(t) and  based on moments
estimates (PEM) and reconstruction estimates (PER). To examine how the estimated
population moments affect the overall quality of the varying coefficient function moments
estimators given in (3), we define the following similar relative deviation quantities:

5.2 Simulation Results
The cross-sectional medians and the 5% and 95% cross-sectional percentiles of the
estimated varying coefficient functions from moments and binning methods are given in
Figure 5 for the simulation cases (a), (b) and (c) with σ2 = 4. (Percentiles of the
reconstruction estimates which are close to the percentiles of the moments estimates are
omitted in this plot.) For the proposed methods, the median varying coefficient estimates
track the true coefficient functions more closely for all three cases. The (median) binning
estimates deviate substantially more from the true underlying functions relative to the
proposed estimates, especially in simulation cases (a) and (b) (see Figure 5). Results are
similar for other simulation studies with varying σ2 (not shown).

The performance of the methods are summarized in more details in Tables 1 and 2, with
respect to the relative mean squared deviation error (ME) and subject-specific relative mean
squared prediction error (PE). More specifically, provided in Tables 1 and 2 are the median,
25% and 75% percentiles of ME and PE for the proposed moments and reconstruction
estimators over all three simulation cases. Also reported for comparison is the ratio of the
ME’s for the proposed methods over the binning approach, denoted by rME, MB and rME, RB
for the moments and reconstruction methods, respectively. The ratios rME reported in Table
1 are roughly fluctuating around 0.1 to 0.2 for general unsynchronized data cases (a) and (b)
and around 0.5 to 0.75 for unsynchronized data with diagonal support analogous to the CDS
data (i.e., case (c)). Thus, the efficiency gain of the proposed methods over bining is about
80% to 90% for general unsynchronized data cases and about 25% to 50% for special case
(c) with age-varying coefficient model under fixed study length analysis similar to the
analysis of CDS data. The relative mean squared prediction error (see PE in Table 2) of the
proposed prediction methods are quite small for all three simulation cases, showing clearly
the efficacy of the proposed subject-specific predictions.

There are several clear conclusions that can be drawn. First, there are gains over the binning
combined with local-likelihood approach in all three cases (a, b and c) consistently with
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sample size. Second, the gains of the proposed approaches over binning is more in cases (a)
and (b), where the time domain is common to all subjects. And this is expected since
synchronizing the data through binning is expected to lead to more loss of information in the
respective time index in cases (a) and (b). In cases (a) and (b), the time index for the varying
coefficient model considered is the duration of the study and the predictor and response
measurements span the entire observation interval leading to significant loss of information
for synchronization methods such as binning. In contrast, in case (c), the time index of the
varying coefficient model considered is age and the predictor and response measurements
are only observed on subject-specific subsets of the entire age-domain, which leads to loss
of less information in the age time-scale when data is synchronized via binning.

As for the comparison between the two proposed methods, moments and reconstruction
approaches, we note that the reconstruction method leads to more favorable results over the
moments estimators in estimation of the varying coefficient functions and prediction for
simulation cases (a) and (b); moments estimators lead to smaller relative prediction error for
simulation case (c), σ2 = 2 and 4. Nevertheless, the moments approach provides a more
direct approach to estimation without need for data synchronization, leading to
computational savings compared to reconstruction approach, especially in simulation case
(c). For example in simulation case (c), while the moments approach estimates the mean and
covariance processes of the observed data only along the diagonal, the reconstruction
approach additionally reconstructs each predictor trajectory based on the functional principle
components decomposition of the shifted predictor trajectories. We note here that most of
the computations involved in the proposed estimation algorithms (estimation of the moments
of the predictor and response processes including the bivariate smoothing procedures and
the choice of appropriate bandwidths and eigen-components, as well as reconstruction of the
predictor trajectories) can be carried out with the publicly available software package PACE
(http://anson.ucdavis.edu/~ntyang/PACE; [25], [26], [20], [21]).

Since the small δ assumption needed in the derivation of the moments estimators cannot be
checked in applications, we study the sensitivity of the moments varying coefficient function
estimators and predicted response trajectories to the constant δ, regulating the variance of
the covariate process. Summaries of the error measures in Table 1 have been given for three
different variation levels of X, namely σ2 = 2, 4 and 6. More detailed summaries of the
deviation of the separate components of the varying coefficient functions proposed in (3),
specifically MEY X, MEXX, MEμY, and MEμX are given in Table 3 for case (a). (The results
are similar, for the other cases.) Since smaller σ2 values correspond to a larger proportion of
the variation in the observed covariate trajectories due to measurement error, the covariance
processes and hence the varying coefficient functions become more difficult to estimate. The
same phenomena has been reported by Hall et al. [27] in estimating eigenfunctions of the
covariance processes. Hence, even though smaller σ2, hence δ, values correspond to smaller
biases from the Taylor expansion approximations, we observe an increase in the overall ME
values as σ2 decreases. However, relative mean squared prediction error is shown to be quite
robust to the variation in the variance of the covariate. We conclude that the exact value of
σ2 (or equivalently δ) has a modest effect on the errors in estimation of the varying
coefficient functions for both proposed methods (moments and reconstruction), while the
individual predictions are relatively robust to fluctuations in σ2.

6 Discussion
The works reported here fill an important methodological gap. For unsynchronized
longitudinal data where the time-dependent response and covariate measurements within
each individual are measured at distinct time points, no estimation method exists to estimate
time-varying effects in a generalized regression relationship. Informal approaches, based on
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preprocessing steps that use information in single subject trajectories to synchronize the data
to make standard estimation methods applicable, as demonstrated in this work, lead to
severe loss of data and introduce further estimation bias in irregular and infrequent
longitudinal designs. The proposed methods based on functional data analysis framework
resolve these challenges, by offering new ways for pooling information from all subjects
under challenging longitudinal data structures, characterized by unsynchronized, irregular
and infrequent longitudinal measurements.

The proposed methodology was motivated by an age-varying generalized regression model
between unsynchronized longitudinal infection-related hospitalization status and serum
CRP, a marker of inflammation, in the Comprehensive Dialysis Study. Alternative modeling
of the CDS data has been suggested by one referee, where the index of the varying
coefficient model can be set to time since dialysis (vintage) and baseline age can be included
in the model as a cross-sectional covariate. Note that such a model with additional cross-
sectional covariates can be readily implemented using the reconstruction estimation
approach. The regression relationship as a function of vintage is also generally of interest in
dialysis; however, it cannot be feasibly addressed with the current data, since follow time
from initiation of dialysis is short. In addition, in this particular application, our scientific
interest is the age-varying trends between CRP concentration and infection-related
hospitalizations. We finally note that the proposed model with the age index carries different
interpretations than the one where the index is time since initiation of dialysis.

As mentioned above, the reconstruction method can readily accommodate additional cross-
sectional covariates, while including additional longitudinal covariates in the model would
require further study for both proposed estimation techniques. Developments needed to
accommodate additional longitudinal covariates would involve considering separate
Taylor’s expansions for the additional covariates in the moments approach and would
require joint reconstruction of multiple longitudinal predictor trajectories for the
reconstruction method. We recognize these as topics that require further research.

It is also of interest to study the asymptotic distributions of the proposed estimators leading
to asymptotic inference for the varying coefficient functions of interest. In addition,
confidence intervals can be obtained for subject-specific mean response trajectories g{η*(t)}
given in (6), building onto the proposed confidence intervals of Senturk and Nguyen [29] for
η*(t) (the mean response trajectory in a varying coefficient model with continuous
response). Senturk and Nguyen propose asymptotic pointwise confidence intervals for η*(t)

of the form , where Φ(·) denotes the Gaussian cdf and ŵt denotes the
estimated asymptotic variance which is given in [29]. Multiple extensions can be considered
for generalized varying coefficient models. A naive approach would be to consider the

transformed confidence bounds  where
η̂*(t) is as given in (7). Another approach is to consider the confidence interval

, where g′{η̂*(t)} is used to target g′{η*(t)}. However both
proposals require further research to assess their properties.
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Appendix

Newton-Raphson Updates for Local Maximum Likelihood Estimators
The log-likelihood function ℓ(pij, Yij) in (4) is equal to yij log(pij) + (1 − yij) log(1 − pij) and
−pij + yij log(pij) − log(yij) for the Bernoulli and Poisson distributions, respectively, where
pij = g[a0 + a1(Tij − t0) + {b0 + b1(Tij − t0)}X̃ij]. In addition, for both Bernoulli and Poisson
distributions, the Newton-Raphson update given in (5) will have the form

where  ≡ {1, …, 1; X̃i1, …, X̃iNi; (Ti1− t0), …, (TiNi− t0); (Ti1− t0)X̃i1, …, (TiNi −
t0)X̃iNi}

T is the predictor matrix of size Ni × 4, p̂ij ≡ g[âr0 + âr1(Tij − t0) + {b̂r0 + b̂r1(Tij −
t0)}X̃ij], W2i ≡ diag{Kh(Ti1 − t0), …, Kh(TiNi − t0)} and Ỹi(âr, b ̂r) ≡ (Yi1 − p̂i1, …, YiNi −
p̂iNi)

T. For the Bernoulli distribution, W1i(âr, b̂r) ≡ diag{Kh(Ti1 − t0) p̂i1(1 − p̂i1), …,
Kh(TiNi − t0) p̂iNi (1 − p̂iNi)}, while for Poisson W1i(âr, b̂r) ≡ diag{Kh(Ti1 − t0)p̂i1, …,
Kh(TiNi − t0)p̂iNi}.
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Figure 1.
(a) Support (Sik, Siℓ), k, ℓ = 1, …, Mi, i = 1, …, n, of the auto-covariance for the covariate
process. (b) A closer view of the support for ages between 60 and 67.
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Figure 2.
(a)–(b) The smoothed cross-sectional estimate of the mean function μ̂Y (age) (solid) for the
presence of an infection-related hospitalization (a) and μ̂X(age) (solid) of log(CRP) (b)
along with ±2 sliding window standard deviation error bars (dotted). (c)–(d) Estimated
varying coefficient functions β0(age) (c) and β1(age), the slope function of log(CRP) (d)
from the proposed moments fits (solid) along with moments based 90% bootstrap
confidence intervals (dotted) for the CDS data. Estimated functions from the binning fits
(dash-dotted) are also displayed. (e)–(f) Estimated varying coefficient functions from
proposed reconstruction fits (solid) and binning fits (dash-dotted) along with reconstruction
based 90% bootstrap confidence intervals (dotted).
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Figure 3.
(a)–(b) Observed values (dots) for presence of an infection-related hospitalization and
predicted subject-specific mean response curves (solid) based on moments estimates (a) and
reconstruction estimates (b). Also displayed (thick solid gray) is the smoothed estimate of
the mean function μ̂Y (age) of infection.
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Figure 4.
(a) Predicted subject-specific infection-related hospitalization probability trajectories based
on moments estimates for high infection risk group, and (d) for lower infection risk group.
(b) Log(CRP) trajectories of the subjects with high infection probabilities corresponding to
(a) and (e) similarly for subjects with lower infection-related hospitalization probability
corresponding to (d). (c) Smoothed estimate μ̂X of the mean log(CRP) trajectories for
log(CRP) values higher than 2, and (f) lower than 2.
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Figure 5.
Simulation results on estimated varying coefficient functions β0(t) and β1(t) for the three
simulation set-ups: case (a) unsynchronized binary response, case (b) unsynchronized count
response and case (c) unsynchronized binary response with diagonal support analogous to
the CDS data. Displayed results are from simulations with σ2 = 4. The cross-sectional
median curves of the proposed moments estimates (thick solid grey) along with 5% and 95%
cross-sectional percentiles (dotted) are plotted along with the true varying coefficient
functions (solid). Also displayed are the cross-sectional median curves from binning fits
(dash-dotted). Percentiles presented are based on 200 Monte Carlo runs/data sets.
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