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Modelling and simulation (M&S)-based approaches have been proposed to support paediatric drug development in order to design
and analyze clinical studies efficiently. Development of anti-cancer drugs in the paediatric population is particularly challenging due to
ethical and practical constraints. We aimed to review the application of M&S in the development of anti-cancer drugs in the paediatric
population, and to identify where M&S-based approaches could provide additional support in paediatric drug development of
anti-cancer drugs. A structured literature search on PubMed was performed. The majority of identified M&S-based studies aimed to use
population PK modelling approaches to identify determinants of inter-individual variability, in order to optimize dosing regimens and
to develop therapeutic drug monitoring strategies. Prospective applications of M&S approaches for PK-bridging studies have scarcely
been reported for paediatric oncology. Based on recent developments of M&S in drug development there are several opportunities
where M&S could support more informative bridging between children and adults, and increase efficiency of the design and analysis of
paediatric clinical trials, which should ultimately lead to further optimization of drug treatment strategies in this population.

Introduction

Drug treatment in the paediatric population is still fre-
quently off-label, with dosing regimens commonly empiri-
cally derived from adult clinical trial data [1]. However,
changes in physiology during paediatric development
may have substantial impact on drug pharmacokinetics
(PK) and pharmacodynamics (PD) [2]. A recent review of
paediatric drug studies showed that for a substantial
number of evaluated drugs, adjustments in dosing regi-
mens and formulations were necessary [3]. In paediatric
oncology, the conduct of prospective drug development
studies has been relatively limited as well, resulting in
higher percentages of off-label use in this therapeutic area
[4, 5]. For instance, single agent phase I studies have only
been conducted to a very limited extent [6]. Study designs
in paediatric oncology commonly evaluate safety and
efficacy of anti-cancer agents by adding the treatment to
existing regimens, which potentially leads to complex

combination treatments that are difficult to evaluate. Prac-
tical limitations such as obtaining (additional) blood
samples, and the low number of patients that are typically
available for participation in clinical studies [7] further
complicate the conduct of drug development studies.
Thus, the need for informative and efficient clinical study
designs in this particular patient population is of special
relevance.

The need for improved pharmacotherapy in children
and associated drug studies has also been recognized and
encouraged by regulatory bodies through a number of
programmes and guidelines [8, 9]. The FDA has provided a
paediatric study decision tree to help assessment of clini-
cal studies that are necessary during paediatric drug devel-
opment [10] (Figure 1). Based on this decision tree, three
basic study types are distinguished: (i) PK bridging studies,
(ii) exposure–response studies and (iii) studies evaluating
safety and efficacy, to which we will refer to as a full drug
development study. In addition to the studies in the FDA
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decision tree, studies aiming to perform post hoc drug-
treatment optimization of toxicity or efficacy can also be
distinguished.The current review is centered around these
four types of studies.

Paediatric PK bridging studies aim to determine dosing
regimens that will lead to target exposures similar to
adults. However, if differences in disease progression or the
exposure–response relationship are expected, bridging
cannot be based solely on adult target exposure levels.
Differences in disease progression can be common in pae-
diatric oncology, and are related to the differences in
biology of paediatric malignancies, compared with adults
(e.g. sarcoma vs. carcinoma) [11], which also lead to differ-
ences in response rate [12]. In such cases, the FDA guide-
lines recommend either an exposure–response study,
using surrogate biomarkers predictive of efficacy, or alter-
natively a full evaluation of safety and efficacy, e.g. a full
drug development study.

Drug treatment optimization studies typically aim to
identify either (i) patient characteristics predictive of (some
of the) inter-individual variability in drug exposure, (ii)
develop therapeutic drug monitoring and/or limited sam-
pling strategies or (iii) investigate potential drug–drug
interactions.

Modelling and simulation (M&S) in clinical pharmacol-
ogy and drug development may be roughly defined as
the area which involves development and application of
mathematical and statistical models which describe PK

and PD. Regulatory authorities have suggested that M&S
based approaches may be used to support the develop-
ment of dosing regimens in children [13–16]. Several
review articles have been published which discuss and
demonstrate the potential value of M&S to support
design and analysis of paediatric drug studies and asso-
ciated decision making [17–20]. An overview of the role
of M&S in (paediatric) drug development is depicted in
Figure 2.

The overall objective of this review was to review sys-
tematically the literature for publications that applied M&S
to support the development of anti-cancer drugs in the
paediatric population. In this review, we will discuss iden-
tified analyses in the context of the earlier described four
study types that are relevant to paediatric drug develop-
ment: (i) PK bridging studies, (ii) exposure–response
studies, (iii) full drug development studies and (iv) drug-
treatment optimization studies. Additionally we aimed to
identify and discuss M&S-based approaches that could
potentially address some of the challenges associated with
the design and analysis of paediatric drug development
studies of anti-cancer drugs.

Methods

A systematic search on PubMed was performed in which
search terms were chosen to identify publications where

Paediatric study decision tree

Reasonable to assume (paediatrics vs. adults)
- Similar disease progression?
- Similar response to intervention?

Yes (both)

Yes

Yes

Conduct PK–PD studies to get exposure–response for PD measurement

Conduct PK studies to achieve target concentration based on exposure–response

Conduct safety trials

Conduct PK studies
Conduct safety/efficacy trials 

Reasonable to assume similar
exposure–response in paediatrics
and adults?

No

No
No

Is there a PD measurement 
that can be used to predict
efficacy?

Conduct PK studies to achieve 
levels similar to adults
Conduct safety trials

Figure 1
Paediatric decision tree to determine necessary paediatric clinical studies, as suggested by the FDAPK, pharmcokinetic; PD, pharmacodynamic
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M&S were used to support development of anti-cancer
drugs in the paediatric population. The search query con-
sisted of five components addressing: (i) keywords for
different possible types of M&S based analyses, (ii) key-
words for different possible software packages, (iii) key-
words indicating a paediatric study population and (iv)
keywords indicating anticancer drugs were investigated.
Additionally, with respect to this last component, we
added a number of frequently used anti-cancer drugs also
specifically.

The specific search query used was as follows:
(‘population pharmacokinetic*’ OR ‘PK–PD model’ OR
‘pharmacokinetic model’ OR ‘pharmacodynamic model’
OR ‘NONMEM’ OR ‘PBPK’ OR ‘Physiologically-based model*’
OR ‘physiology-based model*’ OR ‘non-linear mixed
effect’ OR ‘WinNonMix’ OR ‘*bugs’ OR ‘S-ADAPT’ OR
‘monolix’ OR ‘PK-Sim’ OR ‘Simcyp’) AND (‘paediatric’[TIAB]
OR ‘paediatric’ OR ‘childhood’[TIAB] OR ‘paediatric’[TIAB]
OR ‘children’[TIAB] OR ‘neonates’[TIAB] OR ‘toddlers’
[TIAB] OR ‘adolescent’[TIAB]) AND (‘cancer’[TIAB] OR
‘oncology’[TIAB] OR ‘malignant*’[TIAB] OR ‘Leukemia’
OR ‘anticancer’ OR ‘anti-cancer’ OR ‘chemotherapy’ OR
‘neoplasms’ OR ‘*neoplastic*’ OR ‘etoposide’[TIAB] OR
‘methotrexate’[TIAB] OR ‘MTX’ OR OR ‘actinomycin
D’[TIAB] OR ‘asparaginase’[TIAB] OR ‘busulphan’[TIAB]
OR ‘carboplatin’[TIAB] OR ‘cyclophosphamide’[TIAB]
OR ‘cytarabine’[TIAB] OR ‘irinotecan’[TIAB] OR ‘6-

mercaptopurine’[TIAB] OR ‘clofarabine’[TIAB] OR ‘topo-
tecan’[TIAB] OR ‘busulfan’[TIAB] OR ‘vincristine’[TIAB] OR
‘ifosfamide’[TIAB] OR ‘doxorubicin’[TIAB]) AND (‘0001/01/
01’[PDAT]: ‘2012/10/01’[PDAT])

The search resulted in 117 hits on October 1 2012. After
exclusion of review articles (n = 3), animal studies (n = 1),
bio-analytical studies (n = 1), articles in a language other
than English (n = 5), non-paediatric studies (n = 6), non-
drug studies (n = 8), non-model based analyses (n = 4),
non-oncology studies (n = 14) and other irrelevant articles
(n = 2), 73 hits remained, which were included in this
review.

Publications were subsequently categorized based on
drug, study characteristics (number of patients, study type,
indication and study objectives) and analysis characteris-
tics (analysis type, software, estimation method, model
evaluation method, model type, covariates identified). For
purposes of clarity, indications were only referenced if
more than 10 patients of a particular indication were
included.

Results and discussion

An overview of the identified studies utilizing M&S-based
approaches in paediatric oncology is depicted in Table 1. In
Figure 3, the frequency of different drugs studied is

M&S to support paediatric drug development

Paediatric

studies
PK bridging study

PK–PD study

Full development cycle

Design
Objectives

Methodology

Suitable starting dose
in children?

What is best phase
2 dose?

Power to detect
efficacy?

Which covariates account for inter-
patient variability, to optimize dosing
accross children?

Limited TDM sampling designs?
CTS
PBPK

Clinical use

Study power to detect interaction?
Magnitude of expected interaction?

PBPK
Allometry

Adult

Phase 1
pharmacokinetics
Dose finding
Safety

Phase 2
PK–PD
Dose optimization
Efficacy

Phase 3
Efficacy Individualized pharmacotherapy Drug–drug interaction study

PopPK–PD
PopPK/PK–PD
Covariate analysis

PopPK–PDPopPKPopPK
PopPK–PD

Methodology

Analysis

Objectives Describe PK, PK–PD in adults Quantify PK Quantify PK–PD
-Exposure - biomarker/tumor growth
-Predict expected outcome
-Identify covariates for dose regimen optimization

CTS
OD

CTS
OD

Figure 2
Schematic overview of the role of modelling and simulation (M&S) in paediatric drug development. CTS, clinical trial simulation; OD, optimal design; PK–PD,
pharmacokinetic–pharmacodynamic modelling; PBPK, physiologically-based pharmacokinetic modelling
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depicted. Busulphan (n = 15, 20%) and methotrexate (n =
12,16%) were the most frequently studied drugs.Also,mul-
tiple reports on etoposide (n = 4, 5%), topotecan (n = 4, 5%)
and asparaginase (n = 4, 5%) were described, while an addi-
tional number of drugs was studied less frequently. The
most frequently investigated indication was acute lym-
phoblastic leukemia (ALL), which is also the most common
malignancy diagnosed in children. A large number of
studies reported small numbers of mixed indications, or
various indications requiring haematopoietic stem cell
transplantation (Figure 4). Most analyses were reported to
be associated with a single study (n = 37, 50%), while for
21% retrospective data collection was used. Combined
(meta-) analysis of multiple studies was used for 13 studies.
We also assessed the different model evaluation methods
used (other than standard goodness of fit diagnostics), as
depicted in Table 1.

The identified articles are discussed below in the
context of the four earlier mentioned types of paediatric

studies: (i) pharmacokinetic bridging studies, (ii) exposure–
response studies, (iii) full drug development studies
and (iv) drug treatment optimization studies. For each of
these studies, we discuss the applications of M&S in paedi-
atric oncology drug development, and also address poten-
tial opportunities for additional application of M&S
techniques.

Pharmacokinetic bridging studies
Three aspects of pharmacokinetic bridging studies are dis-
cussed: (i) determining starting dose in first-in-children PK
studies, (ii) the procedure of dose regimen optimization
during bridging and (iii) optimization of pharmacokinetic
study designs.

Scaling approaches to determine starting dose in first-in-
children PK studies Prior to commencement of a trial,
appropriate starting dose levels in children have to be
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The frequency of anti-cancer drugs that were studied in the identified M&S-based analyses
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determined. Historically, paediatric starting dose levels
have been frequently set at 80% of the maximum tolerated
dose in adult patients [21], scaled by body surface area
BSA. Nonetheless, considering the narrow therapeutic
window of anti-cancer agents, the use of scaling appro-
aches that are supported by a scientific rational and prior
knowledge is of special importance in paediatric oncology.
Here, we discuss the two most commonly used scaling
approaches, namely PBPK and allometry, although alterna-
tive approaches in which literature data were leveraged in
a more empirical fashion have also been described [22].

Physiologically-based PK models Physiologically-based
PK (PBPK) models are multi-compartmental models that
represent the major tissues, organs and drug effect path-
ways in an organism, that allow prediction of drug PK.

These predictions are based on the physiological charac-
teristics of tissues, and intrinsic physicochemical drug
properties. A recent review has described the value of
PBPK modelling in the paediatric population in more detail
[23]. In paediatric oncology, only three examples of PBPK
modelling were identified.

Kersting et al. [24] described a PK bridging study where
etoposide PK in children was predicted incorporating
literature information of relevant drug metabolizing
enzymes and age-dependent protein binding. The model
predictions were compared with observed data in both
children and adults and indicated adequate predictions
across age. This example demonstrates how prior knowl-
edge about physiology can be used to yield reasonable
predictions of PK, and such approaches can thus poten-
tially be applied for other drugs as well.
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Evans et al. described a relatively simple PBPK model
which predicted the concentration–time profiles of both
free and total cisplatin in young children and adolescents
[25]. They showed how the model predictions adequately
matched observed PK data in 14 patients. The described
model structure was based on a model originally devel-
oped in dogs, and contained a limited number of compart-
ments for plasma, skin, muscle, liver, gastrointestinal tract
and kidneys. Subsequently, the model parameters were
adjusted to reflect human paediatric physiology. Interest-
ing in this approach was the adjustment of a model origi-
nally developed in animals, and how such an approach can
also be used to make predictions on expected PK in the
paediatric population.

Given the complexity of the different dynamical
changes during paediatric development, PBPK methods
are of special relevance in paediatric bridging studies for
establishing a first-in-children dose. Rationally deriving a
clinically relevant yet safe starting dose in paediatric
oncology is complex, due to the small therapeutic
windows of anti-cancer drugs, and frequently applied
combination treatments. Here, PBPK methods can poten-
tially be very useful because they allow incorporation of
relevant physiological knowledge. Out of the scope of
oncology, PBPK models have been successfully applied in
the area of paediatric pharmacology for a number of
examples [23, 26, 27]. Application in paediatric oncology
has thus far been limited, yet examples described can be
considered promising.

Allometric scaling Allometric scaling concerns the rela-
tionship between size and changes in physiology. It has
been shown how size correlates with metabolic processes
[28],based on a power relationship.The principles of allom-
etry can be used for scaling clearance and volume
between adults and children with respect to size and may
therefore be a useful pharmacometric scaling tool in
potentially determining rational starting doses when con-
ducting a trial in children [29, 30]. Although there is still
debate [31] on the value of the allometric exponent on
clearance, typically an estimate of 0.75 is used.

In the identified analyses in this review, allometric
relationships with body weight were included very fre-
quently (n = 33, 45%). In addition BSA was also frequently
included as a covariate, and it has been shown that the
relation between clearance and BSA is similar to allomet-
ric scaling using body weight (with an exponent of 0.75
on CL) [32]. An illustrative example was provided by
Trame et al. [33], who investigated different strategies for
dosing regimen individualization for busulfan in paediat-
ric oncology patients. They found that both BSA and allo-
metric scaling-based dose regimens were adequate and
similar for individualizing busulfan pharmacotherapy in
children.

A recent comparison between allometric scaling and
physiologically-based PK modelling for determining the

first dose in children found that allometric scaling may not
always be optimal in obtaining appropriate dose levels for
children, especially in very young children [34], because
this method does not take into account specific physi-
ological changes relevant to drug exposure. In addition, an
empirical comparison between allometry and PBPK in
drug development showed that in general the perform-
ance was comparable, but that the magnitude of error in
predicted exposure was much higher when using allom-
etry [35], therefore in some cases leading to ineffective or
toxic dose levels. These differences can most likely be
attributed to the lack of specifically acknowledging devel-
opmental changes in metabolic capacity or organ function
in the case of allometric scaling. Nonetheless, allometric
scaling approaches do offer relatively simple ways to
predict PK parameters in children to determine the paedi-
atric starting dose, and can be incorporated in adult popu-
lation PK models in a straightforward fashion.

Dose regimen optimization during bridging Although a
substantial number of identified M&S-based analyses
aimed to characterize PK to optimize paediatric dosing
regimens, however this was in most cases not in the
context of an explicitly conducted paediatric bridging
study. Rather, post hoc optimization of dose regimens of
drugs already in use has been conducted.

One clear example where population PK M&S was
used extensively in paediatric drug development was for
i.v. busulfan. M&S-based analyses supported both
paediatric labeing in the US [36] and Europe [37]. The
publication from Nguyen et al. [37] clearly described the
application of M&S during the paediatric development.
Population PK–PD M&S allowed characterization of inter-
individual variability and understanding of associated
patient related determinants of this variability. Subse-
quently, with a simulation analysis, optimal dosing regi-
mens were derived across different age groups. The
report by Nguyen et al. is illustrative because it clearly
demonstrates the impact of M&S in the context of
the paediatric clinical drug development process where
adult human exposure needed to be bridged to paediat-
ric patients, and to derive optimal paediatric dose
regimens.

The population PK–PD models extensively used in the
analysis by Nguyen, but also in most other analyses iden-
tified, involved compartmental PK models that employed
non-linear mixed effect (NLME) modelling, in which differ-
ent levels of variability can be estimated, and which allow
analysis of sparsely sampled datasets [38].Because of these
advantages, most of the identified M&S analyses (n = 59,
80%) used a NLME approach to analyze the data and to
characterize inter-individual variability. The majority of
identified analyses used NONMEM (n = 50, 68%) or ADAPT
(n = 9, 10%) for data analysis, while the remaining analyses
(n = 15, 21%) used a broad range of less frequently used
software packages.
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Informative sampling designs Recently, Foo et al. [39] sug-
gested an adaptive optimal design methodology for pae-
diatric PK bridging studies which allowed adjustment of
optimal study designs during execution of the trial, adap-
tively assessing when sufficient paediatric patients were
included in a clinical trial. Although this example was only
described in the context of a simulation study, it is poten-
tially promising because it aims to optimize the number of
paediatric patients in a clinical study combined with the
often limited number of patients available with paediatric
malignancies.

The applied method in the aforementioned example,
optimal design, is a statistical methodology that aims to
optimize a study design with respect to a design criterion
[40]. To define an optimal design, a prior model is neces-
sary. Most commonly, optimal designs have been applied
to optimize parameter estimation precision, in order to
identify optimal sparse sampling designs that allow
adequate estimation precision. Optimal design methods
may, however, also be used to optimize other design
parameters such as number of subjects, groups, dose levels
or even study power [41]. Because of the practical and
ethical limitations of PK studies in the paediatric oncology
population, optimal design approaches can be especially
relevant, in order to allow informative studies with minimal
sampling and/or subjects.

A challenge to the application of optimal design (or any
other design optimization method), is that prior knowl-
edge (e.g. prior model) may sometimes be limited, which
complicates application of such design optimization
methods. If no prior model is available, it could potentially
be considered to use a PBPK model to support the optimi-
zation [27]. In addition, especially in paediatric oncology,
the number of practical restrictions in terms of study
design can be substantial, thereby restricting the design
space to optimize a clinical study design.

In our review, however, we did not identify any studies
that applied optimal design to derive optimal sparse sam-
pling schedules, or any other design optimization,
although the benefit of such methods has been demon-
strated in adults [39, 42–45]. Given the limited number of
patients frequently available and potential other limita-
tions in paediatric oncology drug development, design of
an informative clinical study design is important and
optimal design or approaches such as clinical trial simula-
tion can be relevant tools to optimize clinical study designs
where feasible.

Exposure–response studies
Development of biomarkers for treatment response in
paediatric oncology is an active field,with many recent and
potentially promising developments [46–49]. In adult
oncology, exposure–response models have been devel-
oped [50, 51]. However in this review focusing on paediat-
ric oncology, exposure–response models for biomarkers
(potentially) predictive for efficacy were not identified.

Nonetheless, development of biomarkers as surrogate
measures of efficacy is of special importance for the evalu-
ation of anti-cancer drugs in children. Although phase II
studies frequently use outcome-based measures such as
progression free survival (PFS), other, longitudinal continu-
ous (bio-) markers could potentially be more informative
and sensitive measures in early phase clinical trials. For
instance Bruno et al. [52] suggested the use of change in
tumour size as a more informative endpoint of phase II
trials. Additionally, when analyzing biomarkers in a model-
based framework, measures of outcome (e.g. PFS, overall
survival (OS)) may be linked to biomarkers of disease pro-
gression. In adult oncology for instance, Claret et al. [53]
developed PK–PD-outcome models that quantify the rela-
tionship between drug exposure, tumour growth inhibi-
tion and outcome (PFS/OS). Thus, recent developments in
adult oncology indicate potentially promising results of
exposure–response modelling of anti-cancer drugs, but
unfortunately no applications have been reported yet in
the development of paediatric anti-cancer drugs.

Full drug development studies
One example of a paediatric anti-cancer drug in which
M&S has supported a full drug development study, was the
development of clofarabine [54, 55], which was first
approved by the FDA for acute lymphoblastic leukemia
(ALL) in paediatric patients instead of an adult indication
[56]. Bonate et al. described a population PK analysis of
clofarabine and intracellular clofarabine triphosphates,
based on available data from multiple clinical studies in
paediatric patients, also identifying predictors of inter-
individual variability [55]. In this study, it was shown that
both the white blood cell count and body weight were
clinically important predictors for the expected drug expo-
sure. This analysis was later also extended with adult data
and the metabolite 6-ketoclofarabine [54].

Paediatric drug development studies generally suffer
from increased risks for dropout, but also large (age-
related) variability in patient characteristics, which may in
turn affect the outcome of a clinical trial. In addition, for full
drug development studies in which PK, safety and efficacy
are characterized, substantial numbers of patients and
time are required. Therefore, specifically, the conduct of
such studies in the area of paediatric oncology is highly
challenging, and unexpected events or other sources of
variability may impact on the outcome of a clinical trial.
Specifically for such trials, clinical trial simulation (CTS) is a
M&S methodology which may be considered for a priori
evaluation of the likelihood of a trial meeting its objectives,
because it allows evaluation of the impact of variability
introduced by a range of unexpected events during trial
execution (subject dropout, missed samples, lack of com-
pliance) [57]. In CTS, a clinical trial with the expected expo-
sure and/or response profiles of individual patients can be
simulated, using developed exposure–response models.
Subsequently, random events such as missing data can be
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applied to the dataset, and subsequently the obtained
simulated trial data can be analyzed using the planned
statistical analysis procedures. In the context of paediatric
oncology however, CTS approaches have not been
reported.

Drug treatment optimization studies
Even if a drug is already clinically used, paediatric dosing
regimens of anti-cancer agents can potentially be opti-
mized further with respect to either pharmacokinetics (e.g.
target exposures), or with respect to toxicity profiles or
based on ultimate outcome (e.g. efficacy measures). In
such treatment optimization studies, it is often important
to understand and quantify variability between patients,
which is why population PK–PD methods are frequently
applied.

Optimization of pharmacokinetics Most of the studies (n =
59 80%) which were identified in this review (Table 1)
descriptively analyzed PK in paediatric oncology patients
using population PK modelling approaches, with the
ultimate aim to identify patient covariates predictive for
inter-individual variability in PK parameters. The analyses
identified were generally built using either therapeutic
drug monitoring (TDM) data or data obtained from phase
I studies.

The frequency of inclusion of various patient character-
istics as covariates is illustrated in Figure 5. In seven studies
(9.5%), adult data were also co-analyzed, which could be
considered a useful approach to support characterization
of body size and maturation effects on PK parameters.
In some studies [58–64], covariates predictive of inter-
individual variability in PK parameters were investigated
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while the sample size was relatively small. However, accu-
rate identification of covariate effects requires a repre-
sentative distribution of the covariate of interest. Thus,
conclusions related to influential covariates derived from
such studies should be considered carefully [65].

Eleven studies developed population PK models to
develop or optimize TDM or limited sampling (LS) strate-
gies. In this context, M&S can be used, for instance, to
perform simulations studies to evaluate the success rate of
different TDM or LS strategies. Additionally, optimal design
techniques may be used to derive the most informative
sampling times for obtaining information about the
expected drug exposure. Specifically for TDM approaches,
inter-occasion variability (IOV) is an important component
of variability to consider, because it may inflate residual
variability estimates and cause bias in parameter estimates
[66]. When IOV is large, TDM strategies may be less useful.
Yet, a substantial number of the identified analyses did not
report evaluation of IOV (70%), although in some cases this
may be related to availability of only single occasion data.

Recently, integration of physiological components for
dose optimization strategies in the context of paediatric
oncology was demonstrated by Panetta et al. who
described an analysis in which the intracellular PK of meth-
otrexate metabolites in leukemia cells was characterized,
and related to ALL cell lineages. Also a folate-pathway
model was included in this framework to derive optimal
treatment schedules [67]. Overall this analysis demon-
strated how insight can be obtained into intracellular phar-
macology of drugs and the relationship with treatment
efficacy.

PBPK methods can also be used to investigate the
impact on PK for specific conditions. Li et al. used PBPK
modeling to investigate specifically the effect of malignant
effusions in paediatric oncology patients on the disposi-
tion of methotrexate [68]. Thus even when a general pae-
diatric dose regimen has already been established,
additional co-morbidities may arise that will further affect
PK and of which the effect may not be comparable
between adults and children. Since PBPK methods aim to
represent human physiology, these models can be
adapted to include representations of any relevant factors
such as the investigated effect of malignant effusion in this
example.

Optimization for toxicity and outcome measures A
limited number of studies was performed specifically
describing models for toxicity or outcome measures (n =
7). Haematological toxicity is a commonly occurring dose-
limiting toxicity for many anti-cancer drugs. Exposure–
response models describing the time course and
variability of blood cell counts may therefore be useful to
optimize treatment with respect to the incidence of severe
haematological toxicity. In the field of paediatric oncology,
Berg et al. [69] first described the relationship between
decrease in absolute neutrophil count and exposure to

pyrazolacridine in children and young adults using an
empirical post hoc sigmoid Emax model, which allowed
assessment of limiting exposure levels in these patients.
Later, Sonnichsen et al. [70] described the actual time
course of the neutrophil count. However in this analysis,
the authors did not consider the impact of exposure on the
shape (e.g. magnitude of decrease) of the neutrophil count
time course, which limits the use of such a model in inves-
tigating alternative dose regimens. Finally Zamboni et al.
[71] also described the time course of neutropenia
induced by topotecan using a model with a number of
transit compartments. This analysis also incorporated the
relationship between drug exposure and the response in
neutrophil count decline, allowing the model to be used
for investigation of alternative dose regimens. In adult
oncology, Friberg et al. [72] developed a model similar to
the analysis described by Zamboni et al. also incorporating
transit compartments accounting for the maturation
process of neutrophils in the bone marrow. The model by
Friberg et al. was, however, developed in the context of
population PK–PD modelling, allowing improved quantifi-
cation of variability and analysis of more sparse data,which
is frequently the case for clinical data of haematological
toxicity. The model by Friberg et al. (Figure 6) is now con-
sidered to be well established as it has been applied to a
range of anti-cancer agents. Very recently, an adapted
version of the model by Friberg et al. has also been imple-
mented for paediatric oncology patients [73] for topote-
can. Potentially, (paediatric) maturational effects of
haematopoesis could also be incorporated in this model,
but it has not yet been investigated if such effects are
present and clinically relevant.

Model-based analyses have also been reported for
other types of toxicities in paediatric oncology. Usually,
these were implemented as post hoc logistic regression
analyses linking exposure to the probability of toxicity, in
contrast to the more integrated models as described for
haematological toxicity. For instance White-Koning et al.
reported on a exposure–response model for erlotinib-
induced skin toxicity in adult and paediatric patients [74].
In this PK–PD analysis, it was demonstrated that the higher
recommended dose in children compared with adults for
erlotinib is mainly due to pharmacokinetic rather than
pharmacodynamic differences. Another PK–PD model in
paediatric cancer patients was reported that described the
relationship between methotrexate exposure and the
probability of gastrointestinal toxicity in patients with and
without Down’s syndrome [75]. Patients with Down’s syn-
drome have decreased tolerance to methotrexate, but
this analysis allowed exclusion of the impact of pharma-
cokinetic differences between patients with and without
this syndrome. Finally, Aquerreta et al. [76] developed a
combined PK–PD model quantifying the probability for
developing renal toxicity, mucositis and vomiting for pae-
diatric oncology patients treated with methotrexate. The
model could be used to optimize rationally high dose
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methotrexate treatment, and it also confirmed upper
thresholds of methotrexate plasma concentrations that
should be avoided in paediatric patients.

With the increasing survival of paediatric oncology
patients, the long term cardiac toxicity of anthracyclines
is receiving substantial interest. Recently in adults an
exposure–response study for cardiotoxicity was described
and utilized to optimize treatment [77, 78]. A similar
approach could also be of relevance in the paediatric
oncology population.

In summary, a number of illustrative examples have
been published demonstrating how PK–PD models for
toxicity can be developed for paediatric oncology patients,
to help in the understanding of potential mechanisms or
factors that may play a role in the development of various
toxicities. Nonetheless, the applications are limited
compared with the much larger number of exposure–
toxicity analyses that have been described for adults. The
ultimate application of such models by optimizing dosing
regimens for toxicity have however not been conducted.
One possible exception is the study by Panetta et al. [73],
who described a population PK–PD model that incorpo-
rated a tumour growth inhibition model based on paedi-
atric xenograft data, together with a (clinical) model for
topotecan-induced neutropenia, in order to investigate
optimal treatment regimens taking into account both
efficacy and toxicity in paediatric patients with neuroblas-
toma. This analysis demonstrated how useful computa-
tional approaches can be in evaluating potential dose
regimens and for leveraging of preclinical data. Nonethe-

less, this example has not yet been verified or supported by
a clinical study or any other clinical observations.

Besides toxicity, post hoc logistic regression analyses
have also been reported for measures of outcome. Jönson
et al. [79] reported a model-based analysis accounting for
the probability of relapse after methotrexate. It was found
that dosing regimens based on body weight for meth-
otrexate may give more predictable PK but could poten-
tially also improve outcome measures in these patients.
Furthermore, Martelli et al. considered inclusion of event-
free survival in their PK analysis [80], but here no clear
relationship could be identified.

Finally, an example of the link of model-based analysis
and routine patient care was recently provided by Barrett
et al. [81], who described the integration of hospital data-
base systems with a Bayesian model-based framework for
determination of optimal dose adjustment strategies in
individual patients. They showed how the management of
paediatric drug treatment can be greatly enhanced by the
use of this system, especially for drugs with narrow thera-
peutic windows that may easily lead to suboptimal treat-
ment or toxicities.

Conclusion

We reviewed the application of M&S-based analysis
in paediatric oncology in the context of the four types
of clinical studies that can typically be performed: PK
bridging studies, exposure–response analyses, full drug

Drug effect

Maturation of blood cells

Rebound/Overshoot effect

MTT

Prol

Drug PK model

“C”

Feedback = (C0/Ct)g

Transit 1 Transit 2 Transit 3 Circ
kcirc=ktr

ktrktrktr

kprol=ktr*Feedback*(1-E)

E=C * SLOPE
E=(Emax*C) / (EC50+C)

ktr

Figure 6
Semi-physiological model for haematological toxicity developed by Friberg et al. for adult patients. C = Drug concentration, E = Effect, Emax = Maximum effect,
EC50 = Half-maximum effect concentration, SLOPE = Drug effect, ktr = Transition rate constant, MTT = Mean transition time
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development studies and drug treatment optimization
studies. M&S-based approaches have been used success-
fully in other areas of paediatric drug development and in
adult-oncology,but the application of M&S to support pae-
diatric drug development proactively has been very
limited.

Overall, most studies identified were descriptive PK
studies that aimed to characterize PK in paediatric
patients, and to identify potential predictors of variability
in PK parameters, in order to optimize further dose regi-
mens of already clinically used drugs or to optimize TDM
strategies of such drugs. Although these analyses have
been useful to further optimize drug treatment, formal
analyses related to bridging of exposure were much more
limited. The clinical development of busulphan and
clofarabine are illustrative examples for the overall role
M&S approaches can play in a clinical drug development
process.

The use of PBPK modelling for first-in-children dose
selection is promising, but only a limited number of exam-
ples have currently been published, most likely because
this is a relatively new development in the field of quanti-
tative clinical pharmacology. Although in many cases, con-
ventional empirical dose selection approaches [21] may
still be considered, scaling methods such as PBPK could be
useful to provide scientific support for the selected start-
ing dose-level.

With respect to exposure–response studies, no reports
in paediatric oncology have been described. Nonetheless,
exposure–response analyses could still be considered
promising when biomarkers in paediatric patients are
further developed, but this task is complex also due to the
intrinsic differences in disease biology between children
and adults.

Given the low incidence of paediatric malignancies and
ethical and practical constraints in this particularly sensi-
tive group of patients, efficient design and analysis of clini-
cal studies is crucial, and M&S approaches can potentially
support and streamline the paediatric drug development
process of anti-cancer drugs, since they allow integration
of (prior) knowledge, efficient analysis of sparse or hetero-
geneous data, and can be used to support decision
making, thereby stressing the relevance of these methods
to be used more in the field of paediatric oncology drug
development
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