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Abstract
Slowly-cycling tumor cells that may be present in human tumors may evade cytotoxic therapies,
which tend to be more efficient at destroying cells with faster growth rates. However, the
proportion and growth rate of slowly-cycling tumor cells is often unknown in preclinical model
systems used for drug discovery. Here we report a quantitative approach to quantitate slowly-
cycling malignant cells in solid tumors, using a well-established mouse model of Kras-induced
lung cancer (KrasG12D/+). Bromodeoxyuridine (BrdU) was administered to tumor-bearing mice
and samples were collected at defined times during pulse and chase phases. Mathematical and
statistical modeling of the label-retention data during the chase phase supported the existence of a
slowly-cycling label-retaining population in this tumor model and permitted the estimation of its
proportion and proliferation rate within a tumor. The doubling time of the slowly cycling
population was estimated at ~5.7 weeks and this population represented ~31% of the total tumor
cells in this model system. The mathematical modeling techniques implemented here may be
useful in other tumor models where direct observation of cell cycle kinetics is difficult and may
help evaluate tumor cell subpopulations with distinct cell-cycling rates.

Major Findings—Mathematical modeling of label-retention data from a mouse model of lung
cancer provides quantitative evidence for the presence of two populations of tumor cells with
distinct cell-cycling kinetics.
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Quick Guide to Equations and Assumptions
Equations

The two mathematical models compared in the analysis of the chase data are the following:
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1. exponential model (one-compartment model):

(1)

Where W is the natural logarithm of the percentage of BrdU+ cells within a tumor,
and ε ~ N (0, σ).

2. bi-exponential model (two-compartment model)

(2)

Where W is the natural logarithm of the percentage of BrdU+ cells within a tumor
and ε ~ N (0,σ).

The first equation uses an exponential decay function to model the percentage of tumor cells
that are BrdU+. The parameters A and α are non-negative constants, and ε is an error term
from a normal distribution with mean zero and standard deviation σ. The second equation
models the same data as a bi-exponential decay function. The parameters A, α, B, β are non-
negative constants, and ε is an error term from a normal distribution with mean zero and
standard deviation σ.

Parameter descriptions and interpretation
• The parameter t denotes the time elapsed from time zero (after all BrdU

administration ended) during chase phase.

• The parameters α and β model how fast the cycling cells lose BrdU labeling.

• The parameters A and B give the initial percentage of BrdU+ cells for each
population.

• The parameter ratio A/B gives the relative ratio of fast- and slow-cycling
population in tumors.

•

At given time t during the chase phase,  gives the observed
percentage of slow-cycling cells in BrdU+ cells.

Assumptions
The main assumptions include the following:

1. Proliferation rates are proportional to the number of cells present;

2. Each tumor cell has a cross-sectional area of approximately 121 μm2

(measurements of cell counts and areas of a random sample of 10 tumors gave a
median value of 121 μm2, with a standard deviation of 25 μm2) (Supplemental
Table S1).

3. Cell death rates are negligible for the time period of the experiment (we previously
confirmed that cell death rates as determined by caspase-3 staining are indeed quite
low (<1%) in this setting) ((1), also Supplemental Figure S1, Supplemental Table
S2);

4. The variance of the residuals of the log-transformed data is approximately constant;

5. Proportional error structures best characterize the residual errors for both models
(based on tests of proportional and additive error structures);
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6. During BrdU pulse, every cell that undergoes cell division takes in enough BrdU to
be detectable after only one cell division;

7. The incorporation of BrdU has negligible effect on the survival of cells and their
rate of cycling;

8. All cells require the same number of cell divisions to reach undetectable label
levels (which can actually undercount cells that slowly cycle);

9. The rate of loss of BrdU label is proportional to rate of proliferation of labeled
cells;

10. All cells in the region labeled as tumor are actual tumor cells;

11. Tumors at the same time point but from different mice are comparable in age and
size distributions;

12. Tumor measurements at the same time point are independent from one sample to
another, whether from the same mouse or from different mice;

13. Selection of tumor slices to sample is random;

14. Tumor growth favors cells that cycle quickly over cells that cycle more slowly, in
that any cells that cycle more slowly will become a smaller proportion of the total
number of cells over time (for this analysis, the implication is that any population
of slowly-cycling cells that is detected at later time points was likely a larger
proportion of all cells at earlier time points);

Introduction and Background
Normal adult stem cells are thought to be relatively quiescent, a property which protects
them from proliferative exhaustion (2). Because of this property, “label-retention” studies
have been used to identify and characterize tissue-specific stem cells for decades, following
the pioneering work by Potten and colleagues in the intestine (3). The existence of label-
retaining cells has been proposed to be important for radiation response (3, 4). Label-
retention approaches have also been used to identify stem cells in the interfollicular
epidermis (5–9) and the hematopoietic system (10–12). In the hematopoietic stem cell
(HSC) compartment, some studies have suggested the existence of a slowly-cycling stem
cell population (9, 10, 12) whereas other investigators have not found label retention in this
compartment (11). In cancer research, increasing attention has focused on the heterogeneity
of tumor cells present within the tumor mass (distinct from the heterogeneity of non-tumor
cells due to the presence of a tumor microenvironment) due to the hypothesis that certain
subpopulations of tumor cells have increased capacity to propagate. These “cancer stem
cells” (CSCs) or “tumor initiating cells (TICs) share with normal stem cells the ability to
self-renew and “differentiate” into committed cell types with more limited proliferative
capacity (13). Cancer stem cell populations have been identified and extensively
characterized in several solid tumors (14–17). However, it is not clear whether these CSC
populations share the property of “label-retention” that has been ascribed to some normal
stem cells. Recent data in glioblastoma and in skin cancer suggest that indeed such slowly
cycling CSCs may exist (18, 19). However, whether this is true for other tumor types
remains to be determined. A limitation to carrying out a rigorous analysis of the cell cycle
kinetics of solid tumor populations is the lack of robust and rigorous quantitative methods.

Cancer stem cells in solid tumors are traditionally identified by differential cell sorting with
specific cell surface markers (20). The operational “stemness” property is defined as an
increased ability to transplant tumors into an immunocompromised host. However, this
definition of cancer stem cells remains controversial, as transplantation success rates can
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vary widely depending on a wide range of technical factors (21). In human lung cancer,
several reports have suggested that a cancer stem cell population can be enriched using cell
surface markers, yet the cell cycle kinetics of these subpopulations (or indeed, whether
slowly-cycling cells are synonymous with cancer stem cells defined by transplantation
assays) has not been explored (22, 23).

The KrasG12D/+ mouse model has been well-validated for the study of lung cancer initiation
and progression in vivo (24). Previous work has demonstrated that this model closely
recapitulates the molecular changes seen in human non-small cell lung cancer (NSCLC)
(25). In this model, an oncogenic Kras allele is expressed only after delivery of Cre
recombinase. Cre recombinase is delivered via nasal instillation using an Adenoviral vector
(AdCre). Thus, timing of tumor initiation can be well-controlled. After Cre delivery, the
lung epithelium begins to proliferate and over time the lung parenchyma is occupied by
multiple adenomas, some of which then progress to adenocarcinoma. In the studies
described here, BrdU incorporation was measured in tumors within the lungs in this
KrasG12D/+ model. Previous work using this model identified a population of
CD45−;PECAM−;Sca1+ cells enriched for double-positive SPC/CC10 cells (BASCs) that
are activated after lung injury and thus thought to be CSCs (26). However, this population
was not enriched for transplantation ability into immunocompromised mice in the
KrasG12D/+ model(27). The fact that only a small percentage of cells in the KrasG12D/+

model can transplant tumors suggests that there is a subpopulation of cells with cancer stem-
cell characteristics. “Label retention” of slowly-cycling cells provides an alternative method
for FACs-sorting of surface markers to identify populations of cells within tumors with
important biological properties that may bypass the limitations of the transplantation
approach. An advantage of label-retention studies is that they allow for rigorous testing of
the hypothesis that a slowly-cycling population exists without the need for complex crosses
with lineage tracing reporters and other genetic tools (18, 19, 28). A priori, it cannot be
assumed that CSCs are label retaining. However, if a label-retaining population can be
identified by label-retention studies, this could justify further experimentation to allow for
isolation of these cells. In addition, it may be important in some setting to determine whether
the CSC population is synonymous with the slowly-cycling population or whether these are
overlapping but distinct entities. Recent data isolating and characterizing a label-retaining
population in breast tissue supports this approach (29).

A commonly-used method to identify label-retaining cells is to mark proliferating cells
using the thymidine analogue 5-bromo-2-deoxyuridine (BrdU). After administration of
BrdU ends, cycling cells will lose this DNA label as it will be diluted by half each complete
cell cycle. Therefore, both BrdU uptake (“pulse”) and BrdU dilution (“chase”) data are
useful in quantifying cell turnover rates. A key element of such an approach is to develop
appropriate statistical and mathematical modeling techniques to demonstrate the presence of
“label-retaining” cells. Mathematical modeling of BrdU label incorporation and retention
can quantify the behavior of the labeled cells and enable identification of populations with
different cell cycle kinetics. Rigorous mathematical approaches have been developed that
use BrdU label retention to determine cell cycle kinetics in other settings. For example,
Bonhoeffer et al. used a mathematical model of BrdU incorporation to describe the kinetics
of CD4+ and CD8+ lymphocytes circulating in uninfected and SIV-infected macaques (30).
The model was used to estimate proliferation and death rates of these specific lymphocyte
subsets. Similarly, Kiel et al. modeled BrdU incorporation and retention data from mice to
test the “immortal strand” hypothesis of asymmetric chromosome segregation during
division of hematopoietic stem cells (HSC) and concluded that asymmetric segregation of
chromosomes does not occur in the division of HSCs (3). Here we use mathematical and
statistical analysis of in vivo BrdU labeling data to determine whether tumors in a mouse
model of lung cancer contain a population of slowly cycling tumor cells. Our results
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strongly suggest that a population of slowly cycling tumor cells does exist in the KrasG12D/+

model. These studies establish the necessary justification for further analysis of this slowly
cycling population in this model. More generally, we propose that the mathematical analysis
of BrdU labeling in tumor models applied here may be broadly useful for other similar
tumor models in order to elucidate the heterogeneity of tumor cell kinetics.

Materials and Methods
Mice

For all studies, the KrasG12D/+ mouse model was used. Mice were genotyped as previously
described (24). Adenoviral Cre (AdCre) was delivered by intranasal instillation between 4
and 6 weeks of age. Mice were then allowed to age for 12 weeks prior to BrdU
administration. All animal experiments were approved by the Stanford University School of
Medicine Administrative Panel on Laboratory Animal Care (APLAC).

BrdU labeling
BrdU (Sigma-Aldrich) was administered to the mice for up to 15 days for the pulse
experiment, and 7 days for the chase experiment. Administration was done simultaneously
both through drinking water (1mg/mL) and daily i.p. injections (100 mg per kilogram body
weight) in order to maximize delivery.

Immunohistochemistry and immunofluorescence
After sacrifice, mouse lungs were removed, fixed with Z-fix (Anatech Inc) and embedded in
paraffin. Immunohistochemical or immunofluorescence staining was performed on 4 μm
sections. For primary antibodies, anti-BrdU (BD Pharmigen clone 3d4, 1:200 dilution), anti-
TTF1 (Abcam, 1:200 dilution), anti-E-Cadherin (BD Transduction Laboratories, clone 36,
1:200 dilution) and anti-cleaved caspase 3 (Cell signaling, 1:300 dilution) were used.
Detection was performed with goat anti-rat Alexa Fluro® 594 (Invitrogen), donkey anti-
mouse Alexa Fluro® 488 (Invitrogen), and donkey anti-rabbit Alexa Fluro® 488 (Invitrogen)
for immunofluorescence, or HRP-conjugated goat anti-mouse and ABC goat-anti-rabbit kit
for immunohistochemistry.

Quantification of immunohistochemistry
The area of each tumor cross-section was measured using Bioquant software and the number
of BrdU-positive (BrdU+) cells within each tumor was assessed by manual counting. The
number of BrdU+ cells per tumor cross-sectional area was recorded. A manual count of ten
randomly-selected tumors gave an estimate of 121 μm2 area per tumor cell (standard
deviation 24.9 μm2). This estimate was used to convert BrdU+ cells/area into units of BrdU+

cells/total tumor cells. Two mice at each time point were used to generate the pulse data. At
each time point in the chase period, approximately 5 or 6 mice were selected at random (one
time point had 7 mice, and another had 3). For each selected mouse, multiple slices of the
tumor-bearing lung were obtained and placed at random positions on slides. Approximately
five tumors were selected randomly from the available slices for each mouse for analysis (1
mouse with 1 tumor, 1 mouse with 2 tumors, 9 mice with 4 tumors and 39 mice with 5
tumors).

Mathematical modeling
At the end of the twelve weeks of the chase, labeled cells were still detected. This suggested
the possibility of a label-retaining subpopulation with a slower cycling time than other cells.
To test this hypothesis, we fit two mathematical models to the chase data and compared the
goodness-of-fit of the models. The first was an exponential decay model, which assumes
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that there is a single cell-cycling rate. The second was a bi-exponential decay model, which
assumes that there are two distinct cell-cycling rates. Each model included an error structure
that was selected to give the best fit for that particular model, to account for residual
variability. Different error structures were tested on each model, and a two-sided
Kolmogorov-Smirnov test was performed to confirm that a proportional error structure
resulted in residuals that were indistinguishable from a normal distribution for each of the
models.

Due to the random selection of the slices and tumors for analysis (described above), we
assume that the %BrdU values from a single mouse form a random sample. This is also
supported by Supplemental Figure S2, which shows chase data plotted by mouse.
Supplemental Figure S2 also provides graphical evidence that at each time point, the
distributions of the %BrdU+ values are similar between mice. In addition, the Kruskal-
Wallis test, an analog of the ANOVA test for non-normally distributed data, was performed
to compare the median %BrdU+ values for all of the mice at a given time point. With a
significance level of 0.05, five out of the nine time points showed no significant difference
between those median values. For the remaining four time points, there was at least one
mouse whose median differed from those of the other mice (although only one of those time
points would have shown a difference at a significance level of 0.01). To further investigate
possible differences between mice, we used the Wilcoxon rank sum test, a non-parametric
analog of the t-test, to compare the median %BrdU+ values for each pair of mice at a time
point. A Bonferroni correction was used to account for the multiple pairwise tests performed
at each time point. For 118 out of the 119 possible comparisons, the median values for mice
at a given time point were not pairwise different at a significance level of 0.05 (for the other
comparison, the p-value was 0.045). Based on all of these results, we assume that all %BrdU
+ values at a given time point form a random sample.

Goodness-of-fit testing
Both mathematical models were fit to the data using nonlinear regression. In both cases, a
natural logarithm transformation of the data was used to account for the heteroscedasticity
(nonuniform variance) of the data. Additive and proportional error structures were then
tested on the models. For both models, proportional error structures gave the best fit, and
were used throughout the analysis. Goodness-of-fit comparisons of the two models were
made using mean square error (MSE) and Akaike information criterion (AIC) values.

Results
Determination of minimal sufficient length of labeling phase

To determine how long BrdU label should be administered for the chase experiment, an
extended pulse experiment was performed. KrasG12D/+ mice were treated with AdCre to
initiate expression of oncogenic Kras. Twelve weeks after introduction of AdCre, when
tumors were well-established, mice were given BrdU to label proliferating tumor cells. To
determine the minimal sufficient length of labeling phase, an initial “pulse” of BrdU was
delivered to mice for up to 15 days (see methods). Mice were sacrificed on days 2, 3, 5, 7, 9,
11, 13, and 15 during the labeling period and BrdU label incorporation was assessed by
immunohistochemistry using an anti-BrdU antibody in paraffin-fixed sections of lung. As
shown in Figure 1, the cell population was effectively fully labeled by Day 7 (chase time “0
week”), with a median Day 7 level of 29.4%. Therefore, for the chase data collection, a
pulse phase of 7 days was used for the labeling of the mice.
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Detection of BrdU+ cells through a pulse-chase experiment
For the chase experiment, BrdU was administered over 7 days to a second cohort of
KrasG12D/+ mice 12 weeks after tumor initiation (n=50). After seven days of BrdU “pulse”,
mice were sacrificed at weeks 0, 1, 2, 3, 4, 6, 8, 10, and 12 (Figure 2). Four to six mice from
this cohort were sacrificed at each specified time and the remaining number of BrdU+ cells
was determined again by immunohistochemistry (Figure 2A). To confirm that BrdU label-
retaining cells, and particularly those present at the end of the chase experiment, were
indeed lung tumor cells and not cells from the surrounding stroma, we used double-labeling
with immunofluorescence using an anti-BrdU antibody and an antibody against lung
epithelial marker E-cadherin or TTF-1 (Figure 2B). The results demonstrate that the vast
majority of BrdU+ cells are indeed of epithelial origin, and therefore are likely to be lung
tumor cells.

Mathematical modeling supports the existence of a distinct, slow-cycling population
At the end of the twelve weeks of the chase, labeled tumor cells were still detected (Figure
2A, 12 week and Figure 2B). This suggested the possibility of a label-retaining tumor cell
subpopulation with a slower cycling time than other tumor cells. To test this hypothesis, we
fit two mathematical models to the chase data and compared the goodness-of-fit of the
models (Figure 2C and Table 1). The first was an exponential decay model, which assumes
that there is a single cell-cycling rate (Equation 1). The second was a bi-exponential decay
model, which assumes that there are two distinct cell-cycling rates (Equation 2). Each model
included an error structure (as described in Materials and Methods section) that was selected
to give the best fit for that particular model, to account for residual variability. Different
error structures were tested on each model, and a two-sided Kolmogorov-Smirnov test was
performed to confirm that a proportional error structure resulted in residuals that were
indistinguishable from a normal distribution for each of the models. We considered a few
refinements for these two models, but finally used the simple models described above:

1. One refinement considered was allowing cells to take differing numbers of cell
divisions to reach an undetectable level of label. Kiel et al. (11) estimated that
approximately three rounds of cell division are needed to decrease the level of
BrdU present in a cell below the threshold of detection after full labeling.
Bonhoeffer et al. (30) estimated that the number of cell divisions needed to have
the BrdU level drop below the lower limit of detection to be 5 to 6 divisions. We
assumed that all cells require the same number of divisions during the chase phase
to reach an undetectable level of label, which allowed us to use the simple models.
This is a reasonable assumption if all cells begin the chase phase with equally high
levels of label. However, if there are slower-cycling cells, they could begin the
chase phase with lower levels of label than other cells, due to fewer cell divisions
during the labeling period. Since BrdU is taken up into DNA during the S phase of
cell division, the number of times a cell divides during the BrdU “pulse phase”
affects the amount of BrdU incorporated at the end of the pulse phase. Cells that
divide more rapidly can take up more label per time period than cells that divide
more slowly (31). If the label period is not sufficiently long, slower-cycling cells
may require fewer numbers of divisions for the label to become undetectable. This
could lead to an undercounting of slower-cycling cells at later times during the
chase phase, if such cells exist.

2. In contrast to the situation in normal tissues, the size of the compartment for solid
tumors changes over time. To account for this, we normalized counts of BrdU+

cells by an area-based estimate of the total number of cells in each tumor sample.
We did not include cell death in our mathematical models as tumors in the
KrasG12D/+ model are highly proliferative and yet show very few apoptotic cells.
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Cell death rates as determined by caspase-3 staining are indeed quite low (<1%) in
this setting (1). Therefore, cell death was not included in the mathematical models.

3. We also fit exponential and bi-exponential models to the pulse data and compared
the goodness-of-fit of the models. However, the data were insufficient to be able to
distinguish one model as significantly better than the other. Therefore we did not
include a model for the pulse data in our results.

Mean squared error (MSE) and Akaike information criterion (AIC) were used to compare
the models. Both MSE and AIC are measures of goodness of fit, with a smaller value
indicating a better fit. However, AIC penalizes for extra parameters, taking into account that
a model with more parameters has more degrees of freedom and will give a better fit to data
because of this. As shown in Table 1, the MSE values were 0.476 and 0.456 for the
exponential and bi-exponential models, respectively. The AIC values were 496.46 and
490.25 for the exponential and bi-exponential models, respectively. Therefore, the
mathematical model that assumed two distinct cycling periods gave a measurably superior
fit to the data than the model with a single cycling period using either criterion. Both models
incorporated variability as described in the Methods section, so the difference was not
simply due to random variability favoring a model with multiple cycling periods. In
addition, a lowess fit was made for the residuals with a proportional error structure for each
model, and visual comparison confirmed that the residuals for the bi-exponential model
were more uniformly distributed than the residuals for the exponential model (Figures 3A
and 3B).

Cross-validation supports that the two-compartment model is a superior model
To further verify that the bi-exponential model was indeed a better fit to the data, a number
of cross-validation tests were performed. The cross-validations give a measure of the
sensitivity of the models to the data, by testing whether the models over fit the data. For
each cross-validation, a subset of data (the validation data) was removed from the full data
set. The remaining data (the training data) were fit with the two models described in the
Quick Guide to Equations and Assumptions. The structure of the training data sets for the
various cross-validations is described below.

Cross validation 1 (omit one mouse): A training data set was formed by removing all
data taken from a single mouse. This procedure was repeated so that each mouse was
left out once, for a total of 50 cases. The fitting algorithm for the bi-exponential model
did not converge in one of these cases, so there were only 49 cases in which the two
models could be compared.

Cross validation 2 (omit one mouse per time point): A training set of data was
formed by removing all data from one mouse at each time point. This was done 1000
times, with random selection of the mice.

Cross validation 3 (omit one tumor per mouse): Each training set of data was formed
by randomly removing all of the data from one tumor from each mouse. This was done
1000 times.

Cross validation 4 (omit two tumors per mouse): Training sets were formed by
removing two samples at random from the data from each mouse. This was done 1000
times.

Cross validation 5 (omit 20% of data per time point): Training sets were formed by
removing approximately 20% of the samples at each time point at random. This was
done 1000 times.
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The mean square error (MSE) and the Akaike information criterion (AIC) were computed
for each of the models when they were fit to a training data set. The percentages of times the
bi-exponential model gave a superior fit (as measured by lower MSE or AIC) are recorded
in Table 2. For all five types of cross-validations performed, the bi-exponential model gave
a better fit than the exponential model as determined by both MSE and AIC. The MSE was
lower for the bi-exponential model in 100% of cases. The AIC was lower for the bi-
exponential model in more than 75% of cases for each of the five cross-validations.

For each of the fitted models derived from the training data, the MSE was computed for the
validation data. The percentages of cases in which the MSE value was better (lower) for the
bi-exponential function than the exponential function are recorded in Table 2. In each of the
cross-validation methods performed, the bi-exponential model had lower MSE values than
the exponential model for the majority of cases (over 50%), and was therefore concluded to
be the superior model.

Predictive checks supported selection of the bi-exponential model
As further model validation, two predictive checks were performed for the models. The best-
fitting exponential and bi-exponential models to the full data set were used to produce
simulated data.

• Predictive check 1: The same number of data points at each time point as
contained in the original data set were simulated for each time point, and this was
done 1000 times, to give 1000 full data sets of simulated data for each of the two
models.

• Predictive check 2: A total of 500 data points were simulated at each time point.
This was repeated 1000 times, to give 1000 simulated data sets (each with 500 data
points at each time) for each of the two models.

For each predictive check, the distributions of the simulated and real data at each time point
were compared. The two-sided Kolmogorov-Smirnov test was applied to determine
statistical significance for differences between the distributions, with the null hypothesis
being that any two distributions being compared cannot be distinguished (with a significance
level of 0.05). Table 3 summarizes the results of the tests, with the entries giving the
percentages of cases (out of 1000 simulations) in which the null hypothesis was rejected and
the two distributions being compared were distinguishable according to the Kolmogorov-
Smirnov test. In addition to the comparisons of simulated and real data, comparisons were
made between simulated data sets for the two different models. Those results are included in
the tables as well. In both predictive checks, for the majority of the points, the bi-
exponential model was indistinguishable from the data more often than the exponential
model was. This was true for six of nine time points in the first test (Table 3, upper panel)
and eight of nine time points in the second test (Table 3, lower panel).

Predicted values
The parameter estimates for the two-compartment model in Table 1 indicate that
approximately 31% of the cells were initially in the slow population, and that the mean
turnover rates for the fast and slow populations were 1.8 and 5.7 weeks/cell, respectively.
Figure 4 shows the bi-exponential function prediction of the slowly-cycling population over
the course of the chase experiment. It was created by first bootstrapping the data sets to
create 1000 new data sets, and fitting each data set to get a new set of parameter estimates.
Those 1000 sets of parameter estimates were then used to calculate the fraction of slowly-
cycling cells at each experimental time point. The 2.5, 50, and 97.5 percentiles of those
values were plotted.
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Discussion
We performed mathematical modeling and statistical analysis of BrdU label-retention data
in tumors using a mouse model of human lung cancer. In every test performed, a model with
two distinct cycling rates was found to fit the data better than a model with a single cycling
rate. Multiple methods of cross-validation and predictive checks confirmed this conclusion.
Residuals for both models were fit by lowess curves (Figures 3A and 3B), visually
demonstrating a more uniform distribution of residuals for the bi-exponential model. The
modeling and analysis provide quantitative evidence for the existence of a label-retaining
population of cells, and thus indicate that there are likely two distinct proliferation rates in
this solid tumor model. Further experimentation will be required to determine whether these
label-retaining cells are indeed tumor-initiating “cancer stem cells”.

Conclusion
Mathematical modeling was applied to BrdU-labeled tumor cells in a mouse model of lung
cancer. Measures of goodness-of-fit for the competing mathematical models demonstrated
that two distinct proliferation rates are more likely than a single proliferation rate, providing
quantitative evidence of a population of “label-retaining” tumor cells. The mathematical
modeling also allowed us to estimate the proliferation rate of this label-retaining population
as well as to estimate the proliferation rate of the faster-cycling, non-label-retaining
population. Additionally, these estimated rates allow for the determination of the fraction of
tumor cells that are label-retaining at various times during the chase phase. This provides an
upper bound on the fraction of tumor cells in the samples that may have stem cell-like
properties, and an estimate of their proliferation rate. The parameter estimates for the two-
compartment model in Table 1 indicate that approximately 31% of the cells were initially in
the slow population, and that the mean turnover rates for the fast and slow populations were
1.8 and 5.7 weeks/cell, respectively.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Determination of minimal sufficient length of labeling phase
All pulse data, expressed as the percentage of tumor cells that are BrdU-positive (%BrdU+).
Times shown are the days since the first dose of BrdU administration began. We attempted
to test a mono-exponential and a bi-exponential model for the pulse data, but the time period
was insufficient to distinguish between the two models.
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Figure 2. Detection of BrdU+ cells through a pulse-chase experiment
A. Representative examples of BrdU staining of mice at the indicated time points during the
“chase” phase. B. Representative co-immunofluorescence staining of BrdU and epithelial
markers E-Cadherin or TTF-1 at the end of “chase” phase. C. All chase data, expressed as
the percentage of tumor cells that are BrdU-positive, in a log-linear plot. Time “0”
represents when BrdU administration for chase experiment stopped.
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Figure 3. Residual analysis for exponential and bi-exponential models
A. Residuals for the exponential model, with a proportional error structure, fit to chase data.
The red curve is a lowess fit. B. Residuals for the bi-exponential model, with a proportional
error structure, fit to chase data. The red curve is a lowess fit.
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Figure 4. Percentage of labeled cells during the chase period in the slower-cycling population
predicted by the bi-exponential model
Time “0” represents the time at which BrdU administration was stopped. The solid curve is
a median curve, and the shaded region shows the 95% bootstrapped confidence interval.
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Table 2
Summary of cross-validation results

Upper panel shows the percentage of cases in which the bi-exponential model was superior to the exponential
model, when both were fit to the training data sets. Lower panel is the percentage of cases in which the bi-
exponential model was superior to the exponential model, as determined by lower value of MSE on the testing
data set, for each model determined by fitting to the validation data sets.

Percentage of training data sets for which the bi-exponential model fit was better

Cross-validation According to MSE According to AIC

1 100 % 100 %

2 100 % 98.2 %

3 100 % 97.9 %

4 100 % 75.3 %

5 100 % 100 %

Percentage of validation data sets for which the bi-exponential model fit was better

Cross-validation According to MSE

1 53 %

2 79.2 %

3 80.9 %

4 86.5 %

5 100 %
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