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Abstract
Diabetic kidney disease causes significant morbidity and mortality among people with type 1
diabetes (T1D). Intensive glucose and blood pressure control have thus far failed to adequately
curb this problem and therefore a major need for novel treatment approaches exists. Multiple
observations link serum uric acid levels to kidney disease development and progression in diabetes
and strongly argue that uric acid lowering should be tested as one such novel intervention. A pilot
of such a trial, using allopurinol, is currently being conducted by the Preventing Early Renal
Function Loss (PERL) Consortium. Although the PERL trial targets T1D individuals at highest
risk of kidney function decline, the use of allopurinol as a renoprotective agent may also be
relevant to a larger segment of the population with diabetes. As allopurinol is inexpensive and
safe, it could be cost-effective even for relatively low-risk patients, pending the completion of
appropriate trials at earlier stages.

Keywords
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Introduction
The past 20 years have witnessed major improvement in the management of patients with
type 1 diabetes (T1D) including better glucose and blood pressure (BP) control and the use
of drugs to inhibit the renin-angiotensin aldosterone system (RAAS). While such
improvements in clinical care have been effective at delaying the development of diabetic
complications1, the overall incidence of end-stage renal disease (ESRD) due to diabetes has
not declined2, 3 and diabetic nephropathy (DN) remains a major cause of morbidity and
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mortality among diabetic patients4–6. Thus, novel strategies are urgently needed to
complement the existing ones in order to prevent kidney function loss in diabetes.

Multiple longitudinal cohort studies have shown that elevated serum uric acid levels are
associated with higher risk of subsequent DN events such as the onset of albuminuria and its
progression and the sustained decline of glomerular filtration rate (GFR) among people with
T1D7–9. These observational data combined with animal10, 11 and laboratory12–15 studies
support the hypothesis that decreasing serum uric acid levels could prevent or slow the rate
of GFR decline among people with T1D who are at high risk for development and
progression of DN. Proof of concept for this hypothesis has been provided by two small
clinical trials showing that the uric acid-lowering agent allopurinol effectively slowed GFR
decline in hyperuricemic and normouricemic persons with moderately reduced GFR16, 17.

Below we first discuss the limitations of the current strategies to prevent kidney function
loss in diabetes. We then review the body of evidence that links uric acid to DN etiology and
progression, and, finally, we describe a randomized clinical trial currently being planned by
the PERL Consortium to test whether lowering serum uric acid with allopurinol can halt or
slow kidney function loss in T1D patients.

Limitations of current approaches to prevent ESRD in diabetes
Among the chronic complications of diabetes, DN imposes the highest individual, social and
economic burden. After 40 years of diabetes, about one in three patients with T1D develop
kidney abnormalities, which frequently progress to ESRD18. As recently shown by the Finn-
Diane19 and the Epidemiology of Diabetes Complications20 studies, in the absence of
diabetic kidney disease the health outcomes of diabetic subjects are similar to those of non-
diabetic individuals whereas the outcomes progressively worsen with increasing stages of
baseline kidney disease. This highlights the critical need for preventing the onset of DN and
stopping its progression to ESRD.

Two interventions are currently available to accomplish these goals. One is intensive
glycemic control, which has been shown by the Diabetes Control and Complications Trial
(DCCT) and Epidemiology of Diabetes Interventions and Complications (EDIC) to
effectively prevent the development of albuminuria as well as the progressive loss of renal
function21. The other is lowering systemic BP and intraglomerular pressure by means of
RAAS blockers and other antihypertensive drugs22. Although effective, both approaches
have significant limitations. Maintaining blood glucose near normal levels through intensive
glycemic control is challenging and up to 50% of diabetic patients fail to lower their HbA1c
values below the target level of 7%23. Data from the Type 1 Diabetes Exchange indicate that
this is also the case early in the course of the disease and that the American Diabetes
Association targets for A1c, BP, lipids, and BMI are met infrequently in children and
adolescents24. RAAS blockers are effective in slowing GFR decline in T1D subjects, but
this beneficial effect has been demonstrated only among patients with established
proteinuria and serum creatinine values ≥1.5 mg/dl4, corresponding to a GFR <50–60 ml/
min. Such findings are consistent with those of the Renin Angiotensin System Study, in
which RAAS blockers did not prevent the progression of kidney lesions in normotensive/
normoalbuminuric adults with T1D26, although effective in reducing progression from
microalbuminuria to macroalbuminuria27, 28. Due to the relatively late stage at which these
drugs are effective, and the relatively small magnitude of their effect, the use of these agents
yields on average a less than two year delay in the progression to ESRD2. As a result, the
annual incidence of ESRD due to diabetes in the US population has continued to steadily
rise and is at historically high levels despite the introduction of these interventions in the
mid-1990s6. Unfortunately, the ONTARGET and ALTITUDE studies have further
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highlighted the limitations of RAAS inhibition, since combination therapies with multiple
RAAS blockers increase the risk of serious adverse events29, 30. Therefore, a large residual
DN risk remains despite current evidence-based intervention strategies and novel therapies
to safely complement glucose and RAAS inhibition are urgently needed3, 26.

Uric acid as a potential pathogenic factor for diabetic nephropathy
A large body of evidence has been generated recently indicating that serum uric acid levels
are strong determinants of the development of DN and the loss of kidney function among
people with diabetes (Table 1). Prospective data from the clinic-based Joslin Kidney Study
(JKS) study identified clinical predictors of GFR loss among 355 non-proteinuric T1D
patients with preserved renal function (estimated GFR (eGFR) ≥ 60 ml/min) who were not
treated with diuretics or allopurinol at baseline. eGFR was determined from serum cystatin
C (median of 5 measures) over a 4 to 6 year follow-up. Study subjects were divided into two
groups according to the presence (n=79) or absence (n=276) of early GFR loss, defined as
an eGFR decline >3.3%/year (the 95th percentile of the rate of GFR decline in the general
population). Patients with early GFR loss were older and had longer duration of T1D, lower
GFR, and higher urinary AER at baseline. Importantly, these patients had higher serum uric
acid levels at baseline than patients with stable renal function (median 5.1 [IQR 3.7–5.3] vs.
4.5 mg/dl [IQR 4.4–5.7], p<0.0001). Moreover, a “dose-response relationship” was evident
between baseline serum uric acid levels and future risk of early GFR loss. The unadjusted
relative risk of developing increased GFR loss was 1.5 (95% CI 1.3–1.9, p=0.0002) for each
mg/dl increase in serum uric acid. This translated into a 2.4-fold increase in the risk of early
GFR loss for uric acid levels above the median (4.5 mg/dl) as compared to uric acid levels
below this value. The magnitude of this effect did not significantly change after adjustment
for urinary AER, gender, HbA1c, or, importantly, baseline GFR.

The Coronary Artery Calcification in Type 1 Diabetes (CACTI) study also found that serum
uric acid predicted the transition from normo- to micro- or macro-albuminuria as well as the
progression of subclinical atherosclerosis 31, 32. Among the 324 T1D study participants,
every 1 mg/dl increase in baseline serum uric acid was associated with an 80% increase in
the predicted odds of developing micro- or macroalbuminuria after 6 years of follow-up
(OR=1.8, 95% CI: 1.2–2.8, p=0.005)31. The Steno group also reported an association
between uric acid and development of persistent macroalbuminuria. In an inception cohort
study of 263 individuals with newly diagnosed T1D, serum uric acid measured shortly after
the onset of T1D was a significant independent predictor of macroalbuminuria 18 years later
(HR=2.37, 95% CI: 1.04–5.37, p=0.04, for every 100umol/L [or 1.7 mg/dl] increase in uric
acid)8. Also noteworthy, in the CACTI study baseline uric acid was associated with
coronary artery calcification progression (a marker of subclinical atherosclerosis) with a
30% increased odds (95% CI: 1.07–1.58, p=0.007) for every 1 SD (0.2 mg/dl) increase in
serum uric acid, independent of other known cardiovascular disease risk factors32.

These findings are especially relevant in the context of an increased prevalence of the
metabolic syndrome among young individuals with T1D and may potentially explain the
large residual risk for ESRD given the rise in prevalence of overweight/obesity33, and
metabolic syndrome34, 35 in T1D. Increased serum uric acid levels are associated with
metabolic syndrome36–38 and hyperuricemia can result from overproduction (due to high
dietary intake of purines for example), under secretion (e.g. diuretic therapy), or both39, 40.
The association of uric acid to cardiorenal disease has been reviewed previously5.

The role of uric acid as a predisposing factor for DN does not appear to be limited to T1D.
In an Italian cohort of type 2 diabetic patients with normal kidney function and without overt
proteinuria, the risk of chronic kidney disease (CKD) during a 5 year follow-up was
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significantly higher in participants with versus without hyperuricemia (29.5 vs. 11.4%,
p<0.001). After adjusting for potential confounders, each 1-SD increment in serum uric acid
was associated with a 21% increase in the risk of CKD42. Furthermore, a post-hoc analysis
of the Reduction of Endpoints in Non-Insulin Dependent Diabetes Mellitus with the
Angiotensin II Antagonist Losartan (RENAAL) Trial found that the lowering of serum uric
acid induced by losartan (an effect that seems specific to this RAAS blocker) accounted for
20% of the renoprotective benefit of this medication43.

The consistency and strength of these prospective data and their independence from other
DN risk factors and potential confounders strongly suggests that moderately elevated serum
uric acid may have a role in the pathogenesis of DN and the deterioration of kidney function
observed in T1D. This hypothesis is supported by population-based studies44–47 in which
hyperuricemia predicted chronic renal failure. In animal models mild uric acid elevation has
also been shown to cause renal disease10, 11. Hypothesized pathogenic mechanisms of
elevated uric acid in kidney disease include alterations of nitric oxide (NO) pathways,
activation of the RAAS48, induction of pro-inflammatory cytokines12, 13, and increased
oxidative stress resulting from the generation of uric acid by xanthine oxidase14, 15. In vitro,
uric acid leads to decreased NO production49, increased CRP50, and induction of
cyclooxygenase-210. In addition to suppressing NO production, uric acid may directly
deplete NO51. Consistent with the in vitro data, experimental hyperuricemia induced in the
rat by a uricase inhibitor has led to endothelial dysfunction and similar associations have
been made in humans52, 53. Increased uric acid has also been shown to activate the intrarenal
RAAS, leading to tubulointerstitial disease in animals and humans13, 39, 54, 55. Other
mechanisms by which uric acid may contribute to DN include stimulation of cytokines such
as TNF-α, TGFβ-156, 57 and chemokines such as monocyte chemoattractant protein-110, 58

(Figure 1). While the extent of the pathogenic role of uric acid in endothelial dysfunction,
inflammation, and kidney disease in humans is still debated, such studies lend plausibility to
a contribution of hyperuricemia to the development and progression of diabetic kidney
disease.

Lowering serum uric acid to prevent renal function loss in diabetes
If increased serum uric acid itself predisposes to diabetic nephropathy and kidney function
loss in diabetes, lowering its levels may help prevent this complication of diabetes and could
be added to current therapies as a widespread intervention to curb the epidemic of ESRD in
the diabetic population. This hypothesis is especially attractive because of the availability of
a drug – allopurinol – characterized by a proven efficacy in lowering serum uric acid, a good
safety profile, extensive post-marketing surveillance, and low cost owing to its generic drug
status59 (Table 2). Allopurinol (1,5-dihydro-4H-pyrazolo [3,4-d]pyrimidin-4-one) is an
inhibitor of xanthine oxidase, the enzyme responsible for the conversion of hypoxanthine to
xanthine and of xanthine to uric acid. Allopurinol has been on the market since 1964 as the
main drug for the therapy of symptomatic hyperuricemia (gout) and asymptomatic
hyperuricemia (cancer treatment) and for uric acid kidney stones. At the average dosage
(300 mg/day), allopurinol causes a 30–40% reduction in serum uric acid60–62, but up to a
60% reduction can be obtained using the maximum dosage of 600 mg/day63. Uric acid
lowering with allopurinol reverses many of the adverse physiological effects of uric acid,
leading to suppression of the RAAS, reduced oxidative stress, improved NO bioavailability
and endothelial function, and a decline in urinary inflammatory biomarkers11, 57, 64–67.

While allopurinol is eliminated through the kidneys, it can be used in patients with impaired
renal function after appropriate dose adjustments. Skin rashes are the most commonly
reported adverse effects (up to 3% of patients). Rashes may be followed by more severe
hypersensitivity reactions such as exfoliative lesions and the Stevens-Johnson syndrome
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(SJS), but such occurrences are very rare, in the order of 1 in 10,00068 and their likelihood
can be further reduced by excluding subjects who are HLA-B*5801 positive69, 70. About
60% of allopurinol induced cases of SJS and toxic epidermal necrolysis (TEN) carry the
HLA-B*5801 allele70 and HLA-B*5801 positive persons are estimated to be about 300
times more likely to develop SJS/TEN than those without this allele71. Other potential
adverse effects include gout flares (if there is a history of gout), hepatotoxicity, and, rarely,
bone marrow depression. Effective uric acid-lowering can also be achieved with newer
agents such as the xanthine oxidase inhibitor febuxostat61, 62, which likely has similar
neurohormonal and anti-inflammatory effects compared to allopurinol61, 72. While
febuxostat has not been associated with serious skin reactions, this agent is still being
examined in a large cardiovascular safety trial (NCT01101035) because of a numerically
(though not statistically) higher risk of cardiovascular events associated with this medication
in Phase III trials. Although it seems unlikely that febuxostat will be shown to increase
cardiovascular risk, the use of this medication in high cardiovascular risk patients, such as
those with diabetes, for indications other than gout and hyperuricemia should be carefully
evaluated before further data become available.

Two small clinical trials have provided proof of concept for using allopurinol to lower the
risk of kidney function loss. The first of these studies included 51 subjects, 25% with
diabetes, who had proteinuria or serum creatinine of 1.35–4.5 mg/dl and a serum uric acid
>7.6 mg/dl. Participants were treated for one year with allopurinol 100 to 300 mg/day. At
the end of the treatment period, 4 of 25 subjects (16%) in the allopurinol arm had
experienced significant worsening of their kidney function (defined as >40% increase in
serum creatinine) as compared to 12 of 26 subjects (46%) in the placebo arm (p=0.015)16.
The second study included 113 subjects, 37% of whom with diabetes, who had GFR <60 ml/
min and relatively stable renal function (<50% serum creatinine increase in the previous 3
months). Participants were treated with allopurinol 100 mg/day for 24 months. At the end of
the study, the GFR had increased, on average, by 1 ml/min in the treatment arm versus a 3
ml/min loss in the placebo arm17. Together, these two studies suggest that lowering uric acid
by means of allopurinol may indeed halt or slow the progression of kidney disease.
However, these trials have important limitations. First, sample size was small and as such
could only yield modest statistical significance, leaving room for the possibility of false
positive results. Second, the generalizability of their results is unclear. Due to the inclusion
criterion of a serum uric acid >7.6 mg/dl, the participants in the first study had very high
serum uric acid (about 10 mg/dl in both study arms). Whether the positive results observed
in that study would also apply to subjects with lower uric acid levels, for instance in the 5–7
mg/dl range, remains unclear. The second study may not be generalizable because of the
relatively old age of its participants (71 years on average), which was perhaps accounted for
by the requirement for a relatively stable renal function. Whether allopurinol would have the
same effect among younger subjects with more aggressive forms of kidney disease remains
to be determined. Finally, and importantly for the topic of this paper, the nature of kidney
disease was quite heterogeneous in both studies and only a minority of participants had
diabetic nephropathy.

The PERL Consortium
In order to conduct an adequately powered clinical trial testing the hypothesis of a beneficial
effect of allopurinol on kidney disease specifically among diabetic subjects, we have
established a unique international consortium of investigators from 6 academic centers
where large rosters of T1D patients are available along with long-standing expertise in the
study of diabetic complications, especially DN, and in DN clinical trials. Three of these
centers have been involved in clinical and basic research that is directly related to uric acid
and renal disease development and progression8, 9, 31, 32. Included in this initiative are the
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Joslin Diabetes Center, the Universities of Minnesota, Colorado, Toronto, and Michigan,
and the Steno Diabetes Center in Copenhagen, Denmark. The Consortium has been named
PERL (Preventing Early Renal Function Loss in Diabetes) to emphasize the Consortium’s
focus on intervening early in the course of kidney disease, when renal damage is most likely
to be arrestable or reversible, and interventions are, thus, more likely to be effective in
delaying late-stage clinical outcomes such as hemodialysis, renal transplantation, and death.
A distinctive feature of the PERL Consortium is the choice of outcome on which to measure
allopurinol effectiveness. Past clinical trials of interventions at the early stages of DN have
used albuminuria as the primary outcome73. By contrast, the Consortium has selected GFR
as the primary outcome variable. This choice is based on the recent results of prospective
studies showing a dissociation between the natural history of GFR decline and that of
albuminuria in T1D74–76. For example, the DCCT-EDIC study found that 24% of subjects
who progressed to GFR <60 ml/min/1.73m2 did so without first developing
microalbuminuria77. In the JKS, an increased rate of GFR decline (>3.3%/yr) was observed
in 9% of normoalbuminuric and 31% of microalbuminuric T1D patients78. Since it is the
loss of renal function that drives the increased morbidity and mortality associated with DN,
it has been decided by the Consortium that this, rather than albuminuria, should be the
outcome on which the efficacy of an intervention should be measured.

A clinical trial to test the efficacy of allopurinol in preventing kidney
function loss in diabetes

Based on the above considerations, the PERL Consortium has designed a randomized
clinical trial to evaluate the efficacy of the uric acid-lowering drug allopurinol, as compared
to placebo, in reducing GFR loss among subjects with T1D. The study has the following
characteristics:

a. Design
The study will be an international multi-center, stratified, double-blind, placebo-controlled,
parallel-group randomized clinical trial.

b. Participating Centers
The trial will be carried out at the Joslin Diabetes Center, the Universities of Minnesota,
Colorado, Toronto, and Michigan, and the Steno Diabetes Center in Copenhagen, Denmark.
The participation of multiple centers will allow us to complete the recruitment of all study
subjects within a reasonable period of time. While each of the centers has access to
relatively large populations of T1D subjects, the inclusion and exclusion criteria of the study
would make it challenging for a single center to recruit the entire study sample.

c. Study population
Four hundred T1D subjects at high risk for GFR loss because of the presence of micro- or
macroalbuminuria and a relatively high serum uric acid (≥4.5 mg/dl), who still have only
mildly or moderately decreased renal function (GFR=45–100 ml/min/1.73 m2) will be
included in the study. The focus on subjects with these characteristics is based on the
following considerations:

1. T1D. The association between uric acid and GFR has been thus far demonstrated
only among T1D patients. While this effect may also be present in T2D, it seems to
be wise to limit the first study to T1D, given that kidney damage and clinical
progression may be more heterogeneous in T2D79.
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2. GFR in the 45–100 ml/min/1.73 m2 range. The rationale for focusing on this GFR
interval is two-fold. First, this stage of nephropathy is early enough to greatly
increase the potential benefits of an intervention in terms of delay to ESRD.
Second, this stage is sufficiently advanced as to enrich the study population for
“GFR decliners” who have already started to lose renal function and on whom the
efficacy of the intervention can be tested in a clinical trial of practical length.
Although not so among non-diabetics, 100 ml/min/1.73 m2 is a relatively low value
for people with T1D80.

3. Microalbuminuria or moderate macroalbuminuria. While albuminuria is not
considered an adequate surrogate outcome for testing the efficacy of DN
interventions73, it is still one of the strongest predictors of future renal function
loss81. Therefore, targeting subjects with increased urinary albumin excretion will
further enrich the study population with “GFR decliners,” increasing the power to
detect a meaningful benefit in a trial of achievable size and practical duration.

4. Serum uric acid ≥4.5 mg/ml. This value of serum uric acid corresponds to the
median value in the JKS. In that population, serum uric acid concentrations above
this level were independently associated with a 2.4 fold increase in the odds of
early renal function decline (95% CI 1.3–4.2)9. Thus, patients with uric acid above
4.5 mg/ml are highly prevalent, have an increased risk of GFR loss, and are, thus,
an ideal target population for a uric acid-lowering intervention.

d. Treatment
After a 10 week run-in period, during which RAAS inhibition will be standardized and BP
normalized, if needed, patients will be randomized 1 to 1 to receive either oral allopurinol or
placebo. The plan is to titrate the allopurinol dose from 100 to 400 mg per day based on
serum uric acid and GFR, with the goal of decreasing serum uric acid to 2.5–4.5 mg/dl, with
a reduction of at least 30% from baseline levels. Since allopurinol is eliminated through the
kidneys and the baseline GFR will range from 45 to 100 ml/min/1.73 m2, we expect inter-
individual variability in allopurinol dose requirements. We also expect a fairly wide range of
baseline serum uric acid levels (from 4.5 to ~9.0 mg/dl based on JKS data). Thus, using a
variable allopurinol dose titrated on the basis of serum uric acid values and kidney function,
as we propose, will allow us to maximize the reduction of serum uric acid, and consequently
the power of the study, without decreasing the uric acid concentrations to non-physiological
levels and/or triggering adverse reactions due to an excessive allopurinol dose relative to
kidney function. Treatment will continue for 3 years, during which study participants will be
followed by monitoring renal function, albuminuria, serum uric acid concentration, and the
occurrence of adverse effects. The follow-up will continue for 12 weeks after allopurinol is
discontinued and the GFR measured again in order to exclude the possibility of transient
effects of this drug on GFR that are unrelated to permanent effects on the disease process.

e. Study outcomes
The GFR at the end of the intervention (as measured by the plasma clearance of non-
radioactive iohexol and adjusted for the GFR at randomization) will be the primary outcome
for the measure of the intervention’s efficacy. With this approach, it will be possible to
detect beneficial effects on the rate of kidney function decline before hard end-points such
as ESRD or even serum creatinine doubling are reached. Also, the use of a quantitative
outcome rather than a dichotomous endpoint will maximize power, making the study more
cost-efficient. The plasma iohexol clearance has been shown to provide accurate and
reproducible GFR measurements82, 83. It is highly correlated with inulin clearance (the gold
standard to measuring GFR84) and it is a safe, cost-effective method to test hundreds of
patients enrolled in multicenter clinical trials26. Secondary outcomes will include: 1. The
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GFR at the end of the washout period (to test for effect durability); 2. Estimated GFR
(eGFR) time trajectory estimated from quarterly serum creatinine and cystatin C
measurements using the CKD-EPI SCr and the CKD-EPI SCr-SCysC equations 85,86; 3.
Time to doubling of baseline serum creatinine value or ESRD; 4. Median urinary AER
during the last three months of the intervention period, adjusted for the median urinary AER
at baseline; 5. Time to fatal or non-fatal serious cardiovascular events.

f. Power
The study is powered to detect a difference in GFR loss between treatment arms equal to 1
ml/min/1.73 m2 per year. While this effect may seem clinically insignificant, it translates
into large differences in GFR after 30 or 40 years of diabetes, which for T1D patients who
develop diabetes in their first two decades of life may make the difference between
developing ESRD in their 70s rather than their 50s.

Study implementation
A pilot of this study including 60 subjects recruited at two of the PERL center (Joslin and
Steno) is currently underway with the support of the Juvenile Diabetes Research Foundation
with the goal of establishing the feasibility of the trial and piloting all of its clinical research
procedures and data flow and management (NCT01575379). The PERL Consortium has
also been awarded an R34 trial planning grant by the NIDDK and a decision concerning the
funding of the pivotal trial will be made in 2013.

Summary and conclusions
DN and ESRD continue to be major obstacles to the goal of reducing morbidity and
mortality among people with T1D. With glycemic and BP control and the use of RAAS
blockade failing to adequately curb this problem, there is a major need for novel approaches.
The multiple observations linking serum uric acid levels to kidney disease development and
progression in T1D strongly argue that uric acid lowering with allopurinol needs to be tested
as one such novel intervention and a pilot of such trial is currently being conducted by the
PERL Consortium. Of note, while this trial is focused on T1D individuals who are at highest
risk of losing renal function, the use of allopurinol as a renoprotective agent may also be
relevant to a much larger segment of the T1D population. As shown by the JKS, the
association between serum uric acid and GFR loss is linear across the entire range of uric
acid levels and can also be observed among individuals with normoalbuminuria9, and as
shown in the Steno inception cohort, uric acid is a DN risk predictor shortly after T1D
onset8. Thus, decreasing serum uric acid may be beneficial also for T1D patients who have
not yet developed microalbuminuria and/or have completely normal uric acid levels. The
fact that this drug is inexpensive and relatively safe could make its use cost-effective even
for these low-risk subjects, following appropriate trials at these earlier stages.
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Figure 1.
Mechanisms through which increased uric acid may contribute to the development of
diabetic nephropathy.
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Table 2

Characteristics of allopurinol.

Characteristic Description

Class Xanthine oxidase inhibitor

Efficacy 20–60% reduction of serum uric acid

Dosage flexibility 100 to 600 mg per day in 100 mg increments

Post-marketing surveillance On the market since 1964

Side effects Skin rashes, rarely severe (Steven-Johnson syndrome). Liver damage, usually reversible. Bone marrow
depression.

Use with impaired renal function It can be used when GFR is <60 ml/min but dosage must be adjusted.

Cardiovascular safety Excellent

Cost Inexpensive (available as generic)
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