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IL-17 is argued to play an important role in the multiple sclerosiselike disease experimental autoimmune
encephalitis (EAE). We investigated the therapeutic effects of antieIL-17A in a chronic relapsing EAE ABH
mouse model using conventional scoring, quantitative behavioral outcomes, and a novel vascular cell
adhesion molecule 1 (VCAM-1)etargeted magnetic resonance imaging (MRI) contrast agent [antie
VCAMemicroparticles of iron oxide (MPIO)] to identify conventionally undetectable neuropathology. Mice
were administered prophylactic or treatment regimens of antieIL-17A or IgG and two injections of antie
VCAM-MPIO before undergoing T2*-weighted three-dimensional and gadoliniumediethylenetriamine
pentaacetic acid T1-weighted MRI. Rotarod, inverted screen, and open field motor function tests were
performed, conventional clinical scores calculated, and central IL-17A mRNA expression quantified during
acute disease, remission, and relapse. Prophylactic antieIL-17A prevents acute disease and relapse and is
associated with reduced clinical and functional severity. Treatment regimens delay relapse, improve
functional scores, and are associated with reduced VCAM-MPIO lesions during remission. No significant
alteration was detectable in levels of gadoliniumediethylenetriamine pentaacetic acide or VCAM-MPIOe
positive lesions during relapse. Prophylactic and treatment antieIL-17A were therapeutically effective in
chronic relapsing EAE, improving clinical and quantifiable functional outcomes. IL-17A expression seems
significant during acute disease but less important chronically. Disease-related immunoneuropathology is
more sensitively detected using VCAM-MPIO MRI, which may, therefore, be used to monitor therapy
meaningfully. (Am J Pathol 2013, 182: 2071e2081; http://dx.doi.org/10.1016/j.ajpath.2013.02.029)
Supported by Medical Research Council research grant G0401438 and
The Wellcome Trust (R.P.C.).
Multiple sclerosis (MS) and the MS-like disease experi-
mental autoimmmune encephalitis (EAE) are chronic in-
flammatory disorders of the central nervous system (CNS)
associated with demyelination and axonal injury,1 neurologic
disability, and subsequent sensory and motor functional
disability, which may adopt relapsing-remitting or progres-
sive patterns. Despite extensive investigation, the exact
immunopathogenic mechanisms, particularly the role of
IL-17A compared with other IL-17 family members under-
lying the conditions, remain imperfectly understood.

Conventionally, an important role is ascribed to CD4þ

interferon-geproducing myelin-reactive TH1 cells,
2 with the

polarizing factor IL-12 enhancing encephalitogenicity.3
stigative Pathology.

.

However, IL-12 knockout mice, incapable of producing TH1
cells, are still susceptible to EAE,4 suggesting that these cells
are not solely responsible and prompting the search for addi-
tional contributors. Several studies have now shown that IL-
23epolarized TH17 cells, which produce IL-17, can play an
important role in EAE. TH17 depletion from the T-cell
repertoire abolishes the induction of EAE in naive syngeneic
hosts after adoptive transfer, whereas IL-23emodulated TH17
cells are capable of transferring the condition.5 The IL-17e
producing CD8þ T (Tc17) cells have also been shown to be
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required for EAE induction and for promotion of TH17 accu-
mulation in the CNS.6 Furthermore, IL-17 has been shown to
alter characteristics of EAE, with administration of an IL-17
receptoreFc protein or antibody reducing disease severity7,8

and an antieIL-23 antibody preventing EAE relapse, likely
by the suppression of IL-17.9 However, the effects of antie
IL-17 in these studies were quite modest, and, hitherto, the
effect of suppressing IL-17A in relapsing disease is unknown.

The complexity of the interweaving web of cytokines
contributing to disease pathogenesis is becoming apparent,
as is the increasing likelihood of temporal specificity for the
dominant effects of individual contributors. For example,
IL-23edeficient mice are completely resistant to EAE,10

whereas IL-17A/F knockout mice have been shown to be
susceptible.11,12 Possible explanations for this discrepancy
could include compensatory up-regulation of alternative
signaling pathways after genetic manipulation or parallel co-
contributing IL-17edependent and IL-17eindependent
pathways.13

Antagonist studies, which result in fewer confounding
effects and, therefore, produce arguably more compelling
data, have shown that IL-17 inhibition with neutralizing
antibodies is effective at suppressing EAE,9,14 although only
partially in mice that have received IL-23emodulated
effector T cells.3 Moreover, one study reported that antie
IL-17 therapy resulted in therapeutic benefits in experimental
autoimmune uveitis, whereas IL-17 genetic deficiency did not
abrogate experimental autoimmune uveitis susceptibility.15

Mechanistically, IL-17A production in CNS-infiltrating
T cells has been associated with blood-brain barrier (BBB)
disruption and disease activity16 and the suppression of Act1
signaling, downstream of the IL-17RA, in astrocytes reduces
the number of infiltrating cells.17 Therefore, IL-17 remains an
interesting therapeutic target in these chronic inflammatory
conditions.

We recently demonstrated that using a novel vascular cell
adhesion molecule 1 (VCAM-1)etargeted magnetic reso-
nance imaging (MRI) contrast agent [VCAMemicroparticles
of iron oxide (MPIO)], it is possible to detect endothelial
activation and VCAM-1 expression in vivo.18 This approach
has multiple advantages compared with conventional
imaging techniques, such as passive contrast gadoliniume
diethylenetriamine pentaacetic acid (Gd-DTPA) enhance-
ment. Not only does the use of a targeted agent reveal gray
and white matter lesions irrespective of their size or position
in the CNS, but, more important, it also enables the volu-
metric detection of EAE lesions at a time when conventional,
clinically usedMRI techniques do not reveal abnormalities.19

In particular, we have shown that inflammatory foci con-
taining cuffs of leukocytes around vessels are VCAM-MPIO
positive but Gd-DTPA negative.19 This finding facilitates
serial quantitation of EAE lesion load throughout disease
progression and the objective evaluation of potential thera-
peutic agents on the pathologic process during subclinical
stages,20 a facility that is going to become of increasing
relevance and usefulness in the future.
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The aims of this study were fourfold: i) to confirm and
compare the effectiveness of prophylactic and therapeutic
regimens of antieIL-17A therapy in a chronic relapsing
(CR)-EAE model; ii) to identify a sensitive quantifiable
measure of motor function and examine the correlation with
conventional clinical scores during the disease course; iii) to
compare the correlation between demonstrable MRI lesion
load using VCAM-MPIO and Gd-DTPA imaging tech-
niques and the association with conventional scoring and
motor outcome measures; and iv) to quantify the levels of
IL-17A present during different disease stages to assess its
potential pathologic contribution.
Materials and Methods

Animals

All the animals were fed standard food and water ad libitum.
Animal care and procedures were performed according to the
UK Home Office protocols and guidelines. Six- to ten-week-
old female adult Biozzi antibody high (ABH) mice (Charles
River Laboratories, Kent, UK) were allocated to four groups
by random number selection: control (nZ 12)þ control EAE
(n Z 10), prophylactic regimen (n Z 23), and treatment
regimen (n Z 70). All the antibodies (UCB, Slough, UK)
were administered s.c. at a dose of 30 mg/kg.
Pharmacologic Protocols

Group 1 control animals (nZ 8) received complete Freund’s
adjuvant (CFA) (Sigma-Aldrich, Dorset, UK) on post-
sensitization days (PSDs) 0 and 7, and these animals received
no other treatment. For group 2, CR-EAE was induced (see
the next subsection) (n Z 10), but no Ig was administered.
This group controlled for the repeated stress of the Ig injec-
tions on CR-EAE pathogenesis. CR-EAE was induced in
groups 3 (nZ 10) and 4 (nZ 10), and these animals received
eight doses of either IgG or antieIL-17A on PSDs 1, 6, 12, 20,
26, 33, 40, and 47. Group 5 consisted of untreated naive
animals (n Z 3). Under the treatment administration regi-
mens, groups 6 (nZ 4) and 7 (nZ 5) received four doses of
either IgG or antieIL-17A on PSDs 28, 35, 42, and 49 only
(ie, commencing in the period of remission). For groups 8
(n Z 24) and 9 (n Z 25), CR-EAE was induced and IgG or
antieIL-17A was administered as for groups 6 and 7. A
rescue administration protocol was used for groups 10 (nZ 6)
and 11 (nZ 6), in which CR-EAE had been induced on PSDs
0 and 7, and IgG or antieIL-17A was administered on PSDs
17, 24, 31, and 38 (ie, from peak disease onward).
CR-EAE

CR-EAE was induced by s.c. injection into both abdominal
flanks of 0.15 mL of an emulsion consisting of 500 mg of
mouse spinal cord homogenate in CFA supplemented with
ajp.amjpathol.org - The American Journal of Pathology
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AntieIL-17A Effects in CR-EAE ABH Mice
mycobacteria (Mycobacterium tuberculosis and Mycobacte-
rium butyricum) (Difco Laboratories, Detroit, MI).

Animals were injected on PSDs 0 and 7 and were
weighed and assessed daily for clinical signs according to
the following guidelines: grade 0 indicates healthy; grade 1,
flaccid tail; grade 2, incomplete hindlimb paralysis; grade 3,
complete hindlimb paralysis; and grade 4, forelimb paral-
ysis/moribund. Any animal judged to be grade 4 severity
was culled immediately.

Quantitative Motor Functional Tests

All the tests were performed as in the study by Guenther
et al,21 with minor modifications.

Rotarod Test
Mice were placed on a grooved tube rotating at 4 rpm that
accelerated at 20 rpm/min to a maximum speed of 40 rpm and
were removed after 120 seconds. The time until a mouse first
slipped, time spent on the rotarod, number of slips (double
hindlimb footfalls), and time a mouse spent gripping the rod
and going in circles were recorded. Animals were also tested
on static rods, but the results were the least discriminatory of
motor function and the data are not shown.

Inverted Screen Test
Mice were placed on a square of wire mesh screen (50 � 50
cm) surrounded by a 4-cm-wide wooden edge to prevent
animals from climbing over to the other side. The screen
was turned upside down above soft padding. After 120
seconds it was rotated back, and the mouse was removed.
The time taken for the hindlimbs to drop from the screen,
the time before a mouse fell, and the distance traveled on the
inverted screen were recorded.

Open Field Test
Mice were placed into a rectangular wooden box (50 � 70
cm) with 3-cm-deep soiled bedding (from cages of female
littermates) and were allowed to explore for 180 seconds.
A given mouse never encountered the same bedding twice
to avoid habituation.22 The number of squares crossed,
rears, burrows, and distance traveled were recorded. Open
field tests were performed on PSDs 1, 4, 7, 10, 12, 14, 20,
27, 34, 38, 41, 45, and 48.

Antibody Conjugation to MPIO and Imaging

Purified monoclonal rat antibodies specific to mouse
VCAM-1 (clone M/K2; Cambridge Bioscience, Cambridge,
UK) or control IgG-1 (clone Lo-DNP-1; AbD Serotec,
Raleigh, NC) were conjugated to MyOne tosylactivated
MPIO (1-mm diameter; iron content, 26%) with p-toluene-
sulphonyl (tosyl)-reactive surface groups (Invitrogen,
Carlsbad, CA) as described previously.16

On PSDs 28 and 42, ABHmice were anesthetized with 1%
to 2% isoflurane in 100% O2, were injected intravenously
The American Journal of Pathology - ajp.amjpathol.org
with 100 mL of sterile saline containing 4 mg of Fe/1 kg of
antieVCAM-1eMPIO (VCAM-MPIO), and underwent
MRI 1 hour later. Mice were positioned in a 2.6-cm i.d.
quadrature birdcage coil (Rapid26; RAPID MR Interna-
tional, Columbus, OH). Electrocardiography was monitored
throughout, and body temperature was maintained at
approximately 37�C. MRI data were acquired using a 7-T
horizontal bore magnet with a Varian Inova spectrometer
(Varian Inc., Palo Alto, CA).

Magnetic Resonance Imaging

Scout images were acquired to position the center of the brain
in the middle of the magnet. Subsequently, a T2*-weighted
three-dimensional gradient echo data set was acquired with
the following parameters: flip angle, 31�; repetition time,
50 milliseconds; echo time, 5 milliseconds; field of view,
11.2 � 22.5 � 22.5 mm; matrix size, 96 � 192 � 256; two
averages; and total acquisition time, approximately 40 min-
utes. The means � SEM midpoint of acquisition was 1.5 �
0.1 hours after MPIO injection.

The data were zero filled to 128 � 256 � 256 and were
reconstructed offline, giving a final isotropic resolution of
88 mm. A single 1-mm horizontal section was acquired using
a fast spin-echo T2-weighted sequence (repetition timeZ 3.0
milliseconds; echo time Z 40 milliseconds) to enable the
positioning of 11 � 1-mm coronal sections for T1-weighted
imaging. Spin-echo T1-weighted images (repetition time Z
500 milliseconds; echo time Z 13 milliseconds) were
acquired before and 5 minutes after a bolus i.v. injection of
30 mL (1.2 mL/kg) of Gd-DTPA (Omniscan; GE Healthcare,
Chalfont St. Giles, UK) to identify BBB permeability,
equivalent to twice the high dose that is used in humans for
MS lesion detection.23

MRI Data Analysis

T2*-Weighted AntieVCAM-MPIO Images
T2*-weighted three-dimensional images were processed into
a three-dimensional isotropic data set and converted into
TIFF image files. For each image, the brain was manually
masked to exclude extracerebral structures. Individual
sections were then converted to 8-bit grayscale and thresh-
olded in the gray channel at the same level using Adobe
Photoshop software version CS2 (Adobe Systems Europe
Ltd., Maidenhead, UK).

Quantification of antieVCAM-MPIO binding (defined as
focal hypointensities) was performed by observers masked
to the identity of the data set. AntieVCAM-MPIO binding
was quantified in 256 consecutive brain sections for each
animal. Segmented images were reconstructed using the 3D
Constructor plug-in for Image-Pro Plus (Media Cybernetics
Inc., Rockville, MD) to visualize the distribution of MPIO
binding throughout the brain, with low-signal areas assigned
to the red channel and the anatomical images to the green
channel. Voxel volumes were then summed and expressed
2073
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Figure 1 Prophylactic therapy with antieIL-17A reduces clinical
disability and reverses weight loss. A: Clinical scores in each group from
PSDs 0 to 50. Scores in EAE animals treated with antieIL-17A were
significantly lower than those in mice treated with an IgG control. n Z 10
in the control EAE, EAEþantieIL-17A, and EAEþIgG groups; n Z 3 in the
naive group. Arrows indicate the day of antibody administration (PSD 1
dose not shown). B: Weight change in the groups from PSD 0 to 50.
Compared with EAEþIgG-treated mice, EAEþantieIL-17Aetreated mice
lost less weight during the acute phase, began to gain weight earlier, did
not show prerelapse weight loss, and had significantly greater weight gain
on PSDs 14 to 34. Data are shown as means � SEM. *P < 0.05.

Mardiguian et al
as raw volumes in microliters, with no surface rendering or
smoothing effects. The three-dimensional reconstructions of
VCAM-MPIO binding were then subtracted from the signal
arising from sinuses, which likely resulted from blood pooling.

T1-Weighted Gd-DTPA Contrast-Enhanced Images
Gd-DTPA contrast enhancement on T1-weighted images
was defined as regions of hyperintensity and was quantified
in 11 consecutive brain sections for each animal. These
volumes were then subtracted from the average volume of
Gd enhancement in three naive ABH mice injected with Gd.

RNA Extraction and Real-Time PCR

RNA extraction and real-time quantitative PCR assays were
performed from pieces of snap-frozen brain as previously
described,24 with standard curves generated from reverse-
transcribed single-stranded RNA produced from T7 templates
for each probe set.25 Results are expressed as number of copies
of target per nanogram of input RNA corrected to the house-
keeping gene glyceraldehyde-3-phosphate dehydrogenase.

Statistical Analysis

Statistical analysis was performed using SPSS software
version 19 (SPSS Inc., Chicago, IL). Paired-samples t-tests
or U-tests were used to identify differences between the
groups for parametric or nonparametric parameters,
respectively. Data are expressed as means � SEM, and
statistical significance was assigned at P < 0.05. Results
were analyzed in an intention-to-treat manner, with dead
animals included in the respective cohort figures.

Results

Prophylactic Administration of AntieIL-17A in a
CR-EAE Model Prevents Development of Acute Disease
and Subsequent Relapse and Improves Clinical
Outcomes

This study aimed to evaluate the therapeutic effects of
prophylactic antieIL-17A treatment on disease course and
progression in a CR-EAE model. Assessment of treatment
was made by calculating mean clinical cohort scores and
disability ratings over particular stages of the EAE illness:
the acute phase, PSDs 13 to 30 (PSDs 13 to 25 in the
prophylactic regimen); remission, PSDs 31 to 40; and
second relapse, PSDs 41 to 50.

Acute disease developed in all the EAE control animals by
PSD 17 and in all those treated with the IgG antibody
regimen by PSD 16 (Figure 1A). In contrast, 40% of mice
that received prophylactic antieIL-17A did not show signs of
acute disease and remained well, with an undetectable clin-
ical score. EAE mice administered antieIL-17A that
did display signs of acute disease had a significantly lower
means� SEM score than those that received IgG: 0.98� 0.11
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compared with 0.57� 0.17 (PZ 0.043). Similarly, antieIL-
17Aetreated mice exhibited significantly reduced disability
on 7 individual days during the acute illness phase (PSDs 15
to 18 and 20 to 22; P < 0.5), which was confirmed with
Kaplan-Meier plots for animals scoring>1 on a Mantel-Cox
test (P Z 0.0082).
AntieIL-17A was effective in preventing relapse com-

pletely (PSDs 30 to 50) in all but one of the EAE mice that
had become disabled during the acute phase, whereas 60%
of the IgG-treated animals and EAE controls showed signs
of a spontaneous relapse. Moreover, clinical scores were
significantly lower (P < 0.05) in antieIL17Aetreated mice
compared with those given IgG on PSDs 48 to 50, ie, during
disease relapse (Figure 1A).
Weight loss is often recorded during the analysis of EAE

disease progression because it acts as a quantitative surro-
gate marker for disease severity. Mice treated prophylacti-
cally with antieIL-17A lost up to 5% of their baseline
weight during the acute disease phase compared with EAE
controls and those treated with IgG, with the average loss in
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 AntieIL-17A prophylaxis improves motor task performance.
A: Time spent on the inverted screen. Note that the EAEþantieIL-17A
group remained on the inverted screen for longer than IgG-treated animals
during the acute phase of disease. B and C: EAEþantieIL-17Aetreated
animals also displayed a significant improvement on the rotarod, where
total time spent (B) and time for the first footfall (C) in EAEþantieIL-17A
mice were significantly better in the acute phase. Data are shown as
means � SEM. n Z 10 in the control EAE, EAEþantieIL-17A, and EAEþIgG
groups; n Z 8 in the CFA control group. *P < 0.05.

AntieIL-17A Effects in CR-EAE ABH Mice
both groups being almost 25% (Figure 1B). Furthermore,
antieIL-17Aetreated mice gained significantly more
weight over PSDs 14 to 34, began to gain weight earlier
than the other groups (ie, from PSD 17 compared with PSD
20), and did not experience the prerelapse weight loss seen
in EAE controls and IgG-treated animals from PSD 36.

Prophylactic Administration of AntieIL-17A in a
CR-EAE Model Improves Functional Motor Outcomes

Three different motor tests were used in this study to acquire
a more objective and quantitative assessment of disease
severity: the inverted screen, which tests coordinated
movement and strength; the rotarod, which tests balance,
coordination, and motor planning; and the open field test as
a measure of general activity and behaviors such as rearing
and burrowing. Different outcome measures were recorded
for each to identify the most sensitive measure of motor
function, eg, total time on rotarod and time to first footfall.

In all the recorded outcome measures, the performance of
CFA control animals did not deviate from that at baseline. In
contrast, the inverted screen and rotarod tests revealed
a significant quantitative difference in performance between
the antieIL-17A and IgG treatment groups during the acute
disease and relapse phases (Figure 2). AntieIL-17A animals
spent longer on the inverted screen and rotarod and
continued on for longer before the first footfall.

Time until first footfall on the rotarod was the most
sensitive measure for discriminating between the treatment
groups, whereas those in the open field test proved least
sensitive. However, note that significantly more rears were
observed on preclinical PSD 14 onward in the antieIL-17Ae
treated group compared with the other EAE treatment groups
(Supplemental Figure S1).

AntieIL-17A Administration after the Acute Disease
Phase Prolongs Remission and Reduces Relapse
Functional Disability

EAE disease severity has previously been shown to be
reduced by antieIL-17A therapy in a monophasic EAE
model.7 Herein, we were interested to discover whether we
could suppress relapse in CR-EAE. After administration of
antibodies from PSD 28, ie, during remission of established
CR-EAE disease, IgG-treated mice relapsed 2 days earlier
than those given antieIL-17A (means � SEM PSD 37.4 �
6.09 versus 39.8 � 7.20) and exhibited a higher level of
disability during relapse, with a maximum mean clinical
score on PSD 39 almost twice that of the antieIL-17Ae
treated mice (Figure 3A). The first IgG-treated mouse
relapsed on PSD 32, and from this point clinical scores were
higher in that group on all days, becoming statistically
significance on PSDs 37 to 41 and 43. In addition, antie
IL-17Aetreated mice gained more weight than IgG mice,
although this difference was not statistically significant
(Figure 3B).
The American Journal of Pathology - ajp.amjpathol.org
Motor testing was performed three times before treatment
(PSDs 13, 16, and 20) and three times after treatment (PSDs
34, 37, and 41) (Figure 4). CFA controls scored consistently
well on all three motor tests; however, the inverted screen
and rotarod tests revealed differences in motor performance
consistent with the observed differences in clinical scores.
AntieIL-17Aetreated mice spent longer on the screen
overall than IgG-treated mice and had a longer interval
before their hind legs fell, statistically significant on PSDs
2075
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Figure 3 Administration of antieIL-17 treatment inhibits relapse. A:
Clinical scores for animals treated from PSD 28. IL-17Aetreated animals
were less disabled and relapsed later than those that received control IgG.
*P < 0.05 EAEþantieIL-17A versus EAEþIgG control mice. B: Record of
the weights of the animals revealed no significant differences between
animals with EAE. Data are shown as means � SEM. n Z 25 in the
EAEþantieIL-17A group; nZ 24 in the EAEþIgG group; nZ 12 in the CFA
control and naive group. Arrows indicate the day of administration of
vehicle or anti–1L-17A.

Mardiguian et al
37 and 41 (Figure 4A). Similarly, antieIL-17Aetreated mice
performed statistically significantly better than their IgG
counterparts on the rotarod on the same days (Figure 4B),
suggesting that they not only had greater strength but also
better levels of coordination and limb control during the
clinically defined relapse phase.

Unlike the results on the motor tests, the traditional EAE
clinical scoring scheme did not reveal any differences
between the treatment groups on PSD 37 as the animals were
still asymptomatic. This finding suggests that the motor tests
can produce a quantitative outcome measure that is more
sensitive than traditional EAE disease scoring, with time to
first footfall on the rotarod test being particularly revealing.
Figure 4 AntieIL-17A treatment after acute disease improves motor
task performance. A: Inverted screen performance. The EAEþantieIL-17A
group remained on the inverted screen for longer before a double hindlimb
footfall and remained on the screen for longer than IgG-treated animals on
PSDs 37 and 41. B: Rotarod performance. EAEþantieIL-17Aetreated
animals also displayed an improvement on PSDs 37 and 41. Note that both
groups were comparable during the acute phase of disease (PSDs 13, 16,
and 20) compared with CFA controls. Data are shown as means � SEM.
n Z 25 in the EAEþantieIL-17A group, n Z 24 in the EAEþIgG group;
n Z 12 in the CFA group. *P < 0.05 EAEþantieIL-17A versus EAEþIgG.
AntieIL-17A Administration during Acute Disease
Reduces Clinical Severity during Subsequent Remission
and Relapse

The previous elements of the study have shown that antie
IL-17A suppresses the acute and relapse phases of disease if
the therapy is initiated in the period with no clinical signs.
Herein, we sought to confirm the therapeutic efficacy of
a treatment regimen in a CR-EAE model where animals
were treated from peak disease. Antibody was administered
every 7 days from PSD 17. In this rescue treatment regimen,
2076
the acute disease phase was comparable for both groups of
EAE mice, with weight losses beginning on PSD 7,
disability appearing 2 days later, and peak clinical scores on
PSD 16 (Figures 5A). CFA controls all had clinical scores
of zero throughout but did initially lose some weight, which
was later regained (Figure 5B).
After the peak of the acute disease phase at PSD 16, both

groups entered remission. AntieIL-17Aetreated animals
returned to baselinemore rapidly and exhibited lowermeans�
SEM clinical scores throughout remission than their IgG-
treated counterparts (0.7� 0.2 versus 0.2� 0.1;P< 0.05). On
PSD 33, both groups started to relapse. However, although in
the IgG-treated group this relapse was sustained until the end
of the experimental period, the antieIL-17Aetreated group
experienced a transient relapse with complete recovery by
PSD 38 (Figure 5A). As illustrated in Figure 5A, after each
administration of antieIL-17A, the clinical score was
significantly reduced compared with IgG-treated controls,
particularly apparent during the relapse phase.
A marked decrease (maximum 25% to 30%) in body

weight was observed in both groups from PSDs 13 to 17, ie,
during the acute disease phase in the absence of treatment.
However, weight returned to control levels by PSD 28 and
ajp.amjpathol.org - The American Journal of Pathology
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Figure 5 Treatment at peak disease. A: Clinical scores of CR-EAE ABH
animals treated with IgG (control) or antieIL-17A (n Z 6 in each group).
Administration of antieIL-17A on PSDs 17, 24, 31, and 38 (arrows)
resulted in improved clinical scores, with quicker remission and minimal
relapse. *P < 0.05. B: Body weight in CR-EAE ABH mice treated with IgG
(control) or antieIL-17A. During the acute phase of EAE, a marked
reduction in body weight was evident in all the animals, which subse-
quently returned to control levels throughout remission and subsequent
relapse. No significant differences in weight were observed between the
treatment groups. Data are shown as means � SEM.

Figure 6 AntieIL-17A treatment decreased VCAM-MPIO binding in CR-
EAE mice on PSD 28. AeH: Images showing the interaction of VCAM-MPIO
with VCAM-1 expressed on the endothelial surface detected as focal
hypointensities on T2*-weighted images. On PSD 28, in mice treated with
antieIL-17A, the presence of MPIO binding in the cortex/striatum (A),
hippocampus/thalamus (B), midbrain (C), and cerebellum/medulla (D) was
reduced compared with mice treated with IgG at the same level (EeH).
IeL: Three-dimensional reconstruction showing that antieIL17Aetreated
mice (I) exhibited less MPIO binding during remission (PSD 28) than IgG-
treated mice (K). On PSD 42, no significant differences in MPIO binding
were observed (J and L, respectively). M: A significant reduction in VCAM-
MPIO binding in antieIL-17Aetreated animals (black bars) was found
compared with IgG-treated controls (white bars) on PSD 28, but no
significant difference was observed on PSD 42. Data are shown as means �
SEM. *P < 0.05. Dashed lines represented baseline VCAM-MPIO binding in
naive animals.
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remained constant during remission and subsequent relapse,
with no significant differences found between antieIL-17Ae
and IgG-treated animals (Figure 4B).

AntieIL-17A Treatment Decreases VCAM-MPIO Binding
and Gd-DTPAeEnhancing Lesions in CR-EAE ABH Mice
during Remission but Not Relapse

The rescue administration protocol was used in the MRI
studies. IgG or antieIL-17Awas administered on PSDs 17, 24,
31, and 38 (ie, from peak disease onward), and animals were
imaged on PSDs 28 and 42. As previously demonstrated,19

binding of VCAM-MPIO to the vascular endothelium in vivo
was evident as focal hypointensities on T2*-weighted images
owing to the paramagnetic effects of the iron oxide micropar-
ticles (Figure 6, AeH). On PSD 28, the presence of VCAM-
MPIO binding in the cortex/striatum, hippocampus/thalamus,
midbrain, and cerebellum/medulla (Figure 6, AeD, respec-
tively) of antieIL-17Aetreated mice was more pronounced, as
assessed by blinded observers (D.A. and N.R.S.), than in IgG-
treated mice at the same levels (Figure 6, EeH). Furthermore,
the spatial distribution and extent of VCAM-MPIO binding,
visualized by three-dimensional reconstruction (Figure 6,
IeL), were significantly lower in antieIL-17Aetreated mice
The American Journal of Pathology - ajp.amjpathol.org
(P Z 0.013) during remission on PSD 28 than in IgG-treated
controls. VCAM-MPIO binding remained significantly
elevated over baseline on PSD 42. On PSD 42, no significant
differences in VCAM-MPIO binding were observed between
antieIL-17Aetreated and control mice (Figure 6M).

PosteGd-DTPA T1-weighted images were also acquired on
PSDs28and42 to examine theextent ofBBBbreakdownand to
compare regional enhancement with VCAM-MPIO binding.
PosteGd-DTPA T1-weighted images showed a significant
increase in the number of enhancing lesions (ie, BBB break-
down) in IgG-treated mice on PSD 28 compared with antie
IL17Aetreated mice, which showed no breakdown. However,
2077
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Figure 7 Quantitative analysis of VCAM-MPIO binding and Gd-DTPA
enhancement. AeD: Gd-DTPAeenhancing T1-weighed images from the cere-
bellum of antieIL-17Ae or IgG-treated animals on PSDs 28 (A andB) and 42 (C
and D). E: The number of Gd-DTPAeenhancing lesions (indicating BBB break-
down) in each treatment group. An increase in the number of hyperintensities
was found in IgG-treated mice (white bars) compared with antieIL-
17Aetreated animals (black bars) on PSD 28, but the mean number of total Gd-
DTPAeenhancing lesions per animal was not different on PSD 42. Data are
shown as means � SEM. *P < 0.05. Arrows indicate Gd-DTPA-enhancing
lesions.

Figure 8 mRNA expression of IL-17A in the CNS was higher acutely
than chronically. Real-time quantitative PCR (n Z 6) on PSDs 10, 14, 17,
and 28 revealed significantly elevated mRNA expression of IL-17A on PSD
14, during acute disease, compared with CFA mice. This expression declined
by PSD 17. The horizontal dotted line indicates basal IL-17A expression in
naive animals. Data are shown as means � SEM. *P < 0.05.
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as with VCAM-MPIO, no significant difference could be
detected on PSD 42 despite the improvement in clinical signs
(Figure 7). In addition, it is of note that although many lesions
are visible in antieIL-17Aetreated mice using VCAM-MPIO
imaging, these are undetectable using Gd-DTPA, suggesting
that the former is a more sensitive modality for identifying
neuropathologic features in CR-EAE.

mRNA Expression of IL-17 in the CNS Is Highest in
Acute Disease Compared with Subsequent Phases

To assess the levels of IL-17A production in the CNS,
1-mm slices through the cerebellum and brain from EAE
and CFA animals were collected on PSDs 10, 14, 17, 28,
and 38 during the course of disease and were analyzed using
quantitative RT-PCR. The expression of mRNA for IL-17A
was significantly higher during the acute phase of EAE on
PSD 14 compared with all other time points and with CFA
controls. Thus, despite the clinically apparent therapeutic
effects of antieIL-17A, CNS mRNA expression of the
cytokine returned to baseline levels by PSD 17 (Figure 8).
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Discussion

This study aimed to investigate the effects of prophylactic
and treatment regimens of antieIL-17A therapy on ABH
mice with CR-EAE using the conventional clinical EAE
score, new behavioral tests, and neuroradiologic outcome
measures. Overall, in the prophylactic and treatment regi-
mens, antieIL-17A therapy was shown to ameliorate clin-
ical signs in CR-EAE ABH mice. The therapeutic efficacy
observed with the prophylactic dosing regimen was partic-
ularly significant, preventing the development of acute
disease and subsequent relapse and improving clinical and
behavioral outcomes. However, in a more clinically relevant
treatment paradigm in which antieIL-17A was given at
peak disease, the treatment ameliorated the clinical signs in
the relapse phase, but the underlying radiologic findings
were unaffected. Although antieIL-17A has shown promise
in early clinical trials, it will be important to discover
whether it, like so many other therapies for MS, affects
disease progression in the longer term.

The Importance of Enhancing the Relevance of Animal
Disease Models

Developing animal models with sufficient etiologic and
phenotypic relevance to their human disease counterparts
raises numerous challenges. MS is an imperfectly understood
demyelinating and neurodegenerative condition that affects
individuals over many years, often multiple decades, causing
idiosyncratic impairments of sensory, motor, autonomic, and
neurocognitive functions, which may be primarily progres-
sive or relapsing-remitting and secondarily progressive in
nature. The heterogenous features of the condition, in clinical
terms and pathologically, as demonstrated by inconsistent
MRI morphologic changes26 and histopathologic varia-
tion,27,28 pose particular problems in terms of generating
a truly representative animal model.
ajp.amjpathol.org - The American Journal of Pathology
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Moreover, despite the widespread acceptance of EAE as
a suitable parallel condition in animals, current methods used
to assess disease severity, ie, the conventional clinical
scoring system, are based on gross observation, whereas the
improvements most sought after by patients with MS are in
fine motor control, with a subsequent reduction in functional
impairment. There is little evidence in the literature analyzing
the EAE disease course using motor or behavioral tests, and
previous reports have been limited by the short timeframe
over which animals were examined (PSDs 0 to 20)29 or the
lengthy intervals between tests.30

This study is, therefore, important in its use of behavioral
measures of motor function throughout the disease course,
which demonstrated that the decreased clinical score in
antieIL-17Aetreated mice corresponded to a functional
improvement in coordination and limb control and a reduc-
tion in weakness and paralysis, a more useful assessment of
CR-EAE disability. In the future, such motor tests could,
therefore, be used, in conjunction with imaging and histo-
logic studies, to provide more sensitive pretrial evaluations
of therapeutic interventions.

Assessment of the Clinical-Neuropathologic
Association

One of the greatest challenges in the investigation into the
etiologic processes behind MS and EAE has been the
dissociation between the clinical presentation of the condi-
tion and the detection of pathologic changes associated with
disease activity. Current clinical guidelines include MRI
in the diagnostic criteria for MS, with conventional T2-
weighted MRI or passive contrast (Gd-DTPA)eenhanced
T1-weighted techniques used to identify two or more char-
acteristic neurologic lesions separated in space and time.31

It is well-known, however, that neither of these approaches,
both of which are weighted toward the later stages of
pathology, such as BBB breakdown, accurately reflects dis-
ease activity, and there is often a discrepancy between
conventionally detectable lesion load and clinical score. There
is, therefore, a need for methods that detect earlier disease and
the underlying neuroimmunopathologic processes.

In recent years, a variety of approaches to detect early
pathologic changes have been developed. Gadofluorine M,
a new passive contrast agent, has been reported to reveal more
MS lesions.32 Interactions of the compoundwith albumin and
extracellular matrix proteins result in gadofluorine-labeled
myelin debris, which can subsequently be phagocytosed by
macrophages. This allows for visualization of lesions by
passive accumulation across a compromised BBB and by the
recruitment of labeled macrophages to areas of more acute
pathology when the BBB is still intact.

Alternative approaches include the use of paramagnetic
myeloperoxidase sensors to detect areas of inflammatory
cell infiltration33 and ultra-small superparamagnetic parti-
cles of iron oxide to detect and quantify inflammation.34e37

Myeloperoxidase is abundantly secreted by inflammatory
The American Journal of Pathology - ajp.amjpathol.org
cells and can activate a myeloperoxidase-paramagnetic
sensor containing a Gd-DTPA molecule, reported to act as
a more sensitive marker of active inflammatory lesions and
correlating with increased clinical severity.38 Similarly, i.v.
administered ultra-small superparamagnetic particles of iron
oxide have been shown on T2*-weighted images capable of
identifying early and late active inflammatory processes in
MS39 either by passively crossing a compromised BBB or
after systematic phagocytosis by macrophages that are
subsequently recruited into the CNS. The latter approach
has previously been used to evaluate relapse and efficacy of
FTY720 treatment in a CR-EAE mouse model.40

The novel VCAM-MPIO contrast agent used in this study
facilitates visualization and, therefore, quantification of
vascular endothelial VCAM-1 expression patterns,41 allow-
ing for the detection of spatial and temporal changes with
disease progression. Induction of cell adhesion molecule
expression on the luminal endothelial surface is one of the
first steps in leukocyte infiltration into the CNS; thus, this
technique targets an early phase in pathogenesis, which is
likely to occur before significant monocyte recruitment.
During remission, reduced levels of VCAM-MPIO binding
were demonstrated on the cerebral vasculature of antie
IL-17Aetreated mice relative to the expression seen in IgG-
treated animals. Similarly, Gd-DTPAeenhancing lesions
were seen in the IgG group but not at all in antieIL-17A
animals, suggesting that VCAM-MPIO may be a more
sensitive marker of disease activity than Gd-DTPA.

A further advantage of the VCAM-MPIO system is the
absence of any confounding effects on immune function.
For example, it is likely that phagocytosis of ultra-small
superparamagnetic particles of iron oxide, as a cell marker,
will alter leukocyte function and that accumulation of iron
in the brain is inevitable. This is not a feature of the VCAM-
MPIO approach because the particles are rapidly cleared
from the circulation and target site, making the technique
ideal for serial imaging studies. Moreover, the limitations of
other approaches, such as a long delay between agent
administration and imaging, are avoided in this technique,
enhancing its practicality in a clinical context.

Neuropathologic Mechanisms Underlying Different
Stages of CR-EAE Disease

Despite the advantages of VCAM-MPIO imaging, Gd-
DTPAeenhancing lesions and VCAM-MPIOeinduced con-
trast remained unchanged by antieIL-17A treatment during
the relapse phase of the study. This dissociation betweenMRI-
determined lesion load and clinical signs may suggest that the
disease processes responsible for the clinical signs are distinct
from those that generate the signals currently observable by
MRI and may or may not be affected by antieIL-17A treat-
ment. In particular, lesions in EAE models reflect not only
increased endothelium VCAM-1 levels but also additional
inflammatory (edema and conduction block), demyelinating,
and axonal injury components, whichmay also be spatially and
2079
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temporally distinct. However, we have shown that VCAM-
MPIO binding is associated with inflammatory foci that are
also associated with demyelinating and axonal injury and
where binding may or may not be associated with BBB
breakdown.19 A more likely explanation for the clinicoradio-
logic mismatch might be that antieIL-17A therapy is more
effective at ameliorating spinal disease, which we were unable
to image. MS pathology affects the whole of the neuraxis,
and it is clear that the behavioral outcomes are likely to depend
more on the presence of spinal disease.We previously showed
that the spinal cord mounts a more florid inflammatory
response after injury and may be more tractable to therapy
given that the bloodespinal cord barriermay bemore penetrant
as a consequence of increased numbers of inflammatory
lesions.42 However, it is becoming increasingly clear that
cortical pathology43 and diffuse extralesional axonal damage in
the brain44 are likely to contribute most to long-term disability
and cognitive decline. Thus, it is important for any new therapy
for MS to show disease-modifying properties in the brain.
Herein, antieIL-17A did not change the radiologic outcomes,
which suggests that it might not be well suited to target MS
lesions in the brain.

The number of IL-17eproducing cells in the CNS in the
relasping stage of the disease, ie, chronic EAE, has been
shown to be lower than in acute EAE, but they are still known
to be present in the periphery.9 Others have also shown that
cells with a combined TH1/TH17 are present in very early
disease.45 Likewise, this study demonstrated that peak CNS
IL-17 mRNA expression was present in the acute disease
phase, reducing with disease progression, and this may
account for the increasing ineffectiveness of antieIL-17A in
affecting the MRI indices of ongoing CNS inflammation.

The distribution of inflammatory cells in the systemic and
CNS compartments and the relative contribution of these
cells in the disease pathogenesis remain crucial but poorly
understood components. It will be of interest to discover
whether IL-17epositive T cells are actively excluded from
the brain during the remission and relapse periods in CR-
EAE, as might be suggested in this study by the lower CNS
cytokine levels during these periods.

However, this reduced relapse phase expression does not
diminish the potential therapeutic validity of targeting IL-17A
to reduce the relapse rate. Patients with MS generally have
higher circulating peripheral cytokine and chemokine levels,
and this peripheral expression may contribute to the control of
leukocyte recruitment to chronic central lesions.46 Indeed, given
the effects of IL-17 on the innate immune system,47 it seems
likely that the peripheral cytokine does contribute to the mobi-
lization and migration of peripheral leukocyte populations,
although the exact mechanisms still remain to be elucidated.

Conclusions

This study demonstrated the efficacy of antieIL-17A
treatment prophylactically and as a means of reducing the
severity of established clinical disease in the CR-EAE
2080
mouse model of MS. Conventional scoring and behavioral
outcome measures were included, with use of the latter
enhancing the relevance of EAE assessment to the clinical
aspirations of patients with MS.
It has also been shown that the novel molecular MRI

approach identifying endovascular VCAM-1 expression used
in this study has the ability to detect clinically silent disease in
remission and relapse. This highlights the need for the
development of further molecular imaging tools, in mice and
humans, to detect the earliest immunopathologic processes.
Supplemental Data

Supplemental material for this article can be found at
http://dx.doi.org/10.1016/j.ajpath.2013.02.029.
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