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The leading complication of total joint replacement is periprosthetic osteolysis, which often results in aseptic loosening of the
implant, leading to revision surgery. Extracellular matrix degradation and connective tissue remodeling around implants have been
considered as major biological events in the periprosthetic loosening. Critical mediators of wear particle-induced inflammatory
osteolysis released by periprosthetic synovial cells (mainly macrophages) are inflammatory cytokines, chemokines, and proteolytic
enzymes, mainly matrix metalloproteinases (MMPs). Numerous studies reveal a strong interdependence of MMP expression
and activity with the molecular mechanisms that control the composition and turnover of periprosthetic matrices. MMPs can
either actively modulate or be modulated by the molecular mechanisms that determine the debris-induced remodeling of the
periprosthetic microenvironment. In the present study, the molecular mechanisms that control the composition, turnover, and
activity of matrix macromolecules within the periprosthetic microenvironment exposed to wear debris are summarized and
presented. Special emphasis is given to MMPs and their endogenous tissue inhibitors (TIMPs), as well as to the proteasome
pathway, which appears to be an elegant molecular regulator of specific matrix macromolecules (including specific MMPs and
TIMPs). Furthermore, strong rationale for potential clinical applications of the described molecular mechanisms to the treatment
of periprosthetic loosening and osteolysis is provided.

1. Pathobiology of Periprosthetic
Loosening Process

The total hip or knee replacement is an operation whereby
the damaged cartilage and the subchondral sclerotic bone of
the hip or knee joint are surgically replaced with artificial
materials. The continuous improvement of the materials
and the surgical techniques have given comfort to patients
suffering from painful diseases of the joints, such as primary
osteoarthritis and secondary ones caused by rheumatoid
arthritis, posttraumatic conditions, congenital dysplasia or
dislocation, and aseptic necrosis of the femoral head. After
the improvement in prophylaxis against infection, aseptic
loosening of endoprostheses represents the predominant

complication of this operation, which usually occurs during
the second decade, after the primary arthroplasty. Although
many reports have been published on the pathogenesis of
periprosthetic loosening, the precise biological mechanisms
responsible for this process have not yet been completely
elucidated.

Wear-generated particular debris at the interface between
implant components is associated with chronic inflammation
and osteolysis, limits the lifespan of the implants, and is the
main cause of initiating this destructive process. However,
many other factors, such as cyclic loading or micromotion of
the implants and hydrostatic fluid pressure, have also been
implicated revealing the high heterogeneity in the histology
of the tissue around the prosthesis [1]. Evidence in support
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Figure 1: Schematic representation of periprosthetic loosening and osteolysis. Implant-derived wear debris induces an early inflammatory
response from the resident or infiltrating macrophages in the periprosthetic tissue. Small particles are phagocytosed, whereas the larger
induce fusion ofmacrophages and giant cell formation. Activatedmacrophages release proinflammatory cytokines, chemokines, and enzymes
that recruit multiple cell types within periprosthetic tissue, which are further activated by the particles resulting in sustained inflammation,
increased secretion of cytokines/chemokines/osteoclastogenic factors/MMPs/TIMPs, and osteolysis.

of the central role of wear debris in periprosthetic loosening
and osteolysis includes the observations that osteolysis is
correlated with higher wear rates [2] and that vast numbers
of wear particles are found associated with the periprosthetic
interfacial membrane removed during revision surgery [3–
5]. Furthermore, experimental systems have demonstrated
that particulate debris can induce osteolysis in a variety
of animal models [6–12] and inflammatory responses in
cultured macrophages [8, 13–17]. Wear debris may include
particles from all the various components of the prosthesis
(such as polyethylene, metal, and ceramic) as well as bone
cement [18]. Since cellular responses are highly dependent
upon the composition, size, and shape of particles, the type
of prosthesis and bearing surface used may have a significant
impact on the potential for development of osteolysis [19].

The release of implant-derived particles induces a cellular
host response, which initially is taking place in the pseu-
docapsular tissue (PCT). This membranous tissue is formed
postoperatively around the artificial joint and practically
replaces the normal joint capsular tissue, which is usually
removed during the primary joint replacement procedure.
The most important and active cells in this tissue are
macrophages and fibroblasts, which after their interaction
with the wear debris produce most of the soluble chemical
factors and mediators, which are going to be analyzed
below. Additionally these soluble factors migrate through
the joint fluid (pseudosynovial fluid, PSSF) in the layer
between the implant and the bone (interface), where they
continue their action, mainly affecting the bony tissue.
Finally the fibrous interface tissue (IFT), between the pros-
thesis and the bone, is formed and this leads to failure
of the implant, which becomes loose. The communication

of the interface layer with the space of the initial foreign
body reaction is described as effective joint space, may
result an early micromotion of the implant, and could be
related to the surgical technique [20]. The interface tissue
is heavily infiltrated with several different cell types, mainly
macrophages, lymphocytes, fibroblasts, endothelial cells, and
osteoclast precursors (OCPs)/osteoclasts. Beside enhanced
and chronic inflammatory reactions in the periprosthetic
region, the cellular recruitment to this region is promoted
by induced chemokine expression [21–25]. Macrophages
activation by phagocytosis of the wear debris particles, which
are impervious to enzymatic degradation, has been shown
to be the principle pathophysiologic mechanism in particle-
induced periprosthetic osteolysis. Activated macrophages
secrete proinflammatory and osteoclastogenic cytokines as
well as proteolytic enzymes exacerbating the inflammatory
response leading to activation of a periprosthetic osteolytic
cascade (Figure 1). It is known that particles smaller than
8–10 𝜇m are phagocytosed by macrophages, while bigger
particles induce giant cell reaction and are associated with
such cells [26]. However, it has been reported that contact
between wear particles andmacrophages without phagocyto-
sis is also important for the signal transduction of cytokines
and activation of macrophages [14].

The identity of the macrophage surface receptors respon-
sible for recognition of the particles and the full repertoire of
signaling cascades initiated or modified by particle binding
remain poorly understood although macrophages are the
best-characterized cellular target for particle action. One
important consideration in determining the involvement of
specific cell surface receptors is the extent to which different
particles become opsonized with host serum proteins prior
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to phagocytosis.There is evidence that polyethylene activates
complement [27], and this would argue in favor of a role for
complement receptors, such as complement receptor 3 (CR3),
in particle uptake. Indeed, CR3 expressing phagocytes have
been detected in granulomatous lesions associated with hip
replacement [28]. An involvement of CR3 in particle action
is also supported by observations that antibodies against CR3
reduce particle uptake [14] and that activation of this receptor
mimics several aspects of downstream signaling by particles
in thatMAPkinases [29] and the transcription factors nuclear
factor 𝜅B (NF-𝜅B) and activator protein-1 (AP-1) are activated
[14, 30], and production of proinflammatory cytokines [14]
and chemokines [30] is elevated. By contrast, research on
alveolar macrophage response to environmental particulate
matter has implicated scavenger receptors (SRs), such as
scavenger receptor A (macrophage receptor with collage-
nous structure; MARCO), in opsonin-independent uptake
of titanium particles [31], suggesting that different particles
may use different surface receptors. Accordingly, Rakshit
and coworkers suggested the involvement of opsonization,
complement, and integrin receptors, including CR3 and
fibronectin receptors, in polymethylmethacrylate action, and
an involvement of scavenger receptors (scavenger receptor
A) in macrophages responses to titanium [32]. This would
provide an intriguing explanation of the abilities of different
types of wear debris to elicit particle type-specific responses
in cultured macrophages.The concept that opsonizationmay
differentially regulate uptake of different compositions of
wear debris is also supported by observations that the spectra
of adherent human serum proteins demonstrate a level of
particle specificity [33].

Other cell types that are abundant within the peripros-
thetic tissue are fibroblasts and osteoclasts. Frequently, a
proliferation of periprosthetic fibroblasts, which constitute
a major source of proinflammatory and osteoclastogenic
mediators [34–37], is accompanied by tissue hypervascu-
larization. Periprosthetic fibroblasts exposed to wear and/or
proinflammatorymediators are amajor source of the receptor
activator for nuclear factor 𝜅B ligand (RANKL) required to
drive osteoclastogenesis in patients with osteolysis (discussed
below). Particles can also induce production in cultured
fibroblasts of proinflammatory mediators, collagenases, and
stromelysins [36, 37], which contribute to the development of
osteolysis and chemokines, which promote the recruitment of
increased numbers of osteoclast precursors to periprosthetic
tissues. The final cellular consequence of particle action is
an excess of osteoclast activity, which results in uncon-
trolled bone erosion. Osteoclasts, which are the unique cell
type capable to resorb bone, are derived from circulating
hematopoietic cells of the monocyte/macrophage lineage.
Therefore, wear particles might increase osteoclast activity
either by generation of functional osteoclasts from osteoclast
precursor cells within the periprosthetic space or recruitment
of osteoclast precursor cells from the bloodor both [19].How-
ever, it is not only an increased osteoclastic bone resorption
due to particle exposure that can disrupt the balance in the
bone remodeling process, but also a reduced bone formation
caused by a direct negative impact of particles on osteoblasts
[38]. As shown by Lochner and coworkers, wear particles

can alter the metabolism of human primary osteoblasts
[39]. In particular, metallic particles in the wear debris of
cemented hip endoprostheses can compromise the vitality
and activity of bone cells and bone matrix. In consequence,
this may lead to a reduction of implant integration strength.
Osteoblasts are rather responsible for bone formation but
can indirectly participate in bone degeneration by changing
cell viability and expression of specific chemokines as well
as directly by the secretion of preosteolytic mediators and
specific proteinases.

Collectively, the extensive body of research on in vitro
cellular responses to wear debris suggests that while an
inflammatory response by macrophages is central to the
development of periprosthetic osteolysis, the detailed nature
of this response will vary based upon several parameters,
including prosthetic type, patterns of wear, cellular cross-
talk, host factors, and cell-associated/extracellular molecular
effectors.

2. Matrix Metalloproteinases,
Their Endogenous Tissue Inhibitors,
and Cytokines/Chemokines in
the Periprosthetic Extracellular Matrix

Extracellular matrix (ECM) degradation and connective
tissue remodeling around implants have been considered
as major biological events in the periprosthetic loosening.
Critical mediators of wear particle-induced inflammatory
osteolysis released by periprosthetic synovial cells (mainly
macrophages) are inflammatory cytokines (such as tumor
necrosis factor-𝛼 (TNF-𝛼), interleukin- (IL-) 1𝛽, IL-6, and
IL-10), chemokines (monocyte chemoattractant protein-1
(MCP-1), macrophage inflammatory protein-1alpha (MIP-
1𝛼)), inflammatory enzymes (inducible nitric oxide syn-
thase (iNOS), cyclooxygenase-2 (COX-2)), and proteolytic
enzymes, mainly matrix metalloproteinases (MMPs).

TNF-𝛼, IL-1𝛽, and IL-6 are known to be important
molecules involved in the foreign body reaction process,
and their upregulation is considered to be a marker of
inflammation.They are well recognized as key proinflamma-
tory cytokines that provoke cellular proliferation, stimulate
osteoclast formation, and increase bone resorption around
prostheses [40–44]. In particular, TNF-𝛼 has a catabolic
effect on bone. It can upregulate bone resorption in cultured
mouse calvaria by a prostaglandin-independent mechanism
and stimulates osteoblasts to produce osteoresorptive fac-
tors such as IL-6 and prostaglandin E

2
(PGE
2
) [45, 46].

High levels of TNF-𝛼 have been detected in periprosthetic
tissues of loose endoprostheses with focal osteolysis [47].
It has also been shown to exhibit a synergistic effect with
titanium particles, when added in osteoblast culture [48]. IL-
1𝛽 induces differentiation and proliferation of osteoclasts as
well as the production of MMPs and PGE

2
from fibroblasts

and synovial cells [49, 50]. It also reduces the osteocalcin
production by the osteoblasts [51]. According to Jiranek and
coworkers, IL-1𝛽might play a significant role in the formation
of IFT, because of its stimulatory activity on fibroblasts [52].
Kusano and coworkers have shown that IL-1𝛽 augments bone
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resorption in mouse calvaria culture in vitro, by inducing
MMP-2, MMP-3, MMP-9, and MMP-13 production [53].
IL-6 is strongly implicated in bone catabolism. It is pro-
duced by the osteoblasts and induces bone resorption [54].
It also stimulates the formation of osteoclast-like cells in
long-term human marrow cultures [55]. In periprosthetic
tissues from loose orthopaedic implants with osteolysis,
IL-6 levels are much higher than in tissues from loose
implants without bone loss [47]. The role of prostaglandins
in mediating pseudomembrane-associated bone resorption
remains questionable. It is proposed, from in vitro stud-
ies, that prostaglandins play an important role in bone
resorption [56]. Periprosthetic tissue, cultured in the pres-
ence of indomethacin, showed less bone resorptive capacity.
Other investigators have shown that conditioned media
from predialysed periprosthetic tissue cultures maintained
their ability to cause bone resorption, indicating that the
prostaglandins, removed by dialysis, had no effect whatsoever
upon bone resorption [57].Therefore, prostaglandins may be
implicated in the loosening process through complex mech-
anisms involving interactions with MMPs and cytokines. On
the other hand, IL-10 is synthesized by activated immune
cells, in particular monocytes/macrophages, and has pro-
found anti-inflammatory and immunoregulatory effects.This
anti-inflammatory cytokine diminishes the expression of
inflammatory mediators, inhibits antigen presentation, and
induces expression of endogenous TNF-𝛼 inhibitors (soluble
TNF receptors) to suppress the effects of proinflammatory
cytokines in periprosthetic tissues [47, 58].

Chemokines play pivotal roles in the recruitment of
inflammatory and immune cells subsequent to the develop-
ment of periprosthetic inflammation following wear particle
generation. MCP-1 andMIP-1𝛼 are two chemokines involved
in this adverse process by recruitingmonocytes/macrophages
and lymphocytes to the site around prostheses and play
important roles in periprosthetic osteolysis [59–61]. Previous
studies suggest that high levels of inflammatory enzymes,
such as iNOS and COX-2, are also present in the tissues
around prostheses and therefore may account for peripros-
thetic bone resorption [62]. Macrophages are the major
inflammatory cells accounting for this response. iNOS is
closely involved in regulating inflammatory responses and
COX-2 is induced by many cytokines, such as TNF-𝛼 and
IL-1𝛽, and the overexpression of these two enzymes plays a
key role in chronic inflammatory diseases [63]. Furthermore,
iNOS and COX-2, as well as TNF-𝛼 and IL-6, are inductive
regulators of osteoclastogenesis [64].

A key role in periprosthetic ECM remodeling and des-
truction belongs to MMPs because of their ability to degrade
in concert most extracellular matrix components, such as
collagens, gelatin, elastin, laminin, fibronectin, or proteogly-
can core proteins. MMPs contain four well-defined domains:
a signal peptide, a propeptide with a conserved cysteine
residue, a catalytic domain with a Zn-binding site, and
a hemopexin-like domain at the COOH-terminal region,
and they are frequently subgrouped based on substrate
specificities and sequence characteristics. There are six main
families ofMMPs: collagenases (MMP-1, MMP-8, andMMP-
13), gelatinases (MMP-2 andMMP-9), stromelysins (MMP-3,

MMP-10, and MMP-11), matrilysins (MMP-7 and MMP-26),
membrane-type MMPs (MT-MMPs: MMP-14, -15, -16, -17,
-24, and -25), and other MMPs, which are not categorized in
any of the previous groups (MMP-12, -19, -20, -21, -23, -27, and
-28). The expression of MMPs is under tight control at the
transcription level and their proteolytic activity is regulated
posttranslationally in several ways [65]. MMPs are synthe-
sized as zymogens, which are then activated extracellularly,
with the exception of MMP-11 (stromelysin 3), MT-MMPs,
MMP-21, MMP-23, and MMP-28. Although pro-MMPs can
be activated in vitro by various proteolytic and nonproteolytic
means, the in vivo activation mechanisms have not yet been
completely clarified. Further, the proteolytic activity ofMMPs
is regulated by specific tissue inhibitors of metalloproteinases
(TIMPs). Four TIMPs have been identified (named TIMP-1
to -4), which form high-affinity 1 : 1 noncovalent complexes
with all active MMPs, thereby inhibiting their action. TIMPs
inhibit all MMPs tested so far, but TIMP-1 is a poor
inhibitor for MT3-MMP, MT5-MMP, and MMP-19. TIMP-3
has been shown to inhibit members of the ADAM (a dis-
integrin and metalloproteinase) family (ADAM-10, -12, and
-17) and ADAMTSs (ADAM with thrombospondin motifs)
(ADAMTS-1, -4, and -5). TIMP-1 inhibits ADAM-10. While
TIMP-1-null mice and TIMP-2-null mice do not exhibit
obvious abnormalities, TIMP-3 ablation in mice causes lung
emphysema-like alveolar damage [66] and faster apoptosis of
mammary epithelial cells after weaning [67], indicating that
TIMP-3 is a major regulator of metalloproteinase activities
in vivo. However, the functions of TIMPs go beyond the
inhibition of MMPs and are also partakers in the activation
and coactivation of others [68]. The balance between the
levels of activated MMPs and free TIMPs determines in part
the net MMP activity. In addition to regulating the MMPs,
TIMPs have also been shown to have angiogenic and growth
factor-like activities [69].

Numerous studies have demonstrated that specificMMPs
and TIMPs are expressed in periprosthetic tissues and are
critically involved in the bone resorption and subsequent
implant failure (Tables 1 and 2). In a study conducted by
Takei and coworkers, the mRNA expression patterns of 16
different types of MMPs in synovium-like interface tissues
between bone and prosthesis of loose artificial hip joints
were analyzed to evaluate which MMPs were present at
the mRNA level and possibly contributed to periprosthetic
loosening [70]. It was shown that periprosthetic tissues were
characterized by highly elevated expression ofMMP-1,MMP-
9, MMP-10, MMP-12, and MMP-13; moderate expression
of MMP-2, MMP-7, MMP-8, MMP-11, MT1-MMP (MMP-
14), MT2-MMP (MMP-15), MT3-MMP (MMP-16), MT4-
MMP (MMP-17), and MMP-19; lower expression of MMP-
3; and little significance of MMP-20. Quantitative analysis of
mRNA expression of their endogenous inhibitors (TIMPs)
in periprosthetic tissues showed a significant upregulation
of TIMP-1, -2, and -3 mRNA expressions in contrast to the
decreased levels of TIMP-4 [71]. On protein level, strong
immunoreactivity was observed for the extracellular matrix
metalloproteinase inducer (EMMPRIN/CD147) in the lining-
like layers, sublining area, and vascular endothelium of
synovium-like interface tissue around loosened prostheses.
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Table 1:Matrixmetalloproteinases (MMPs) in periprostheticmicroenvironment (expression and/or activity: ↑with bold data: high; ↑without
bold data: moderate).

MMPs Substrates
Expression and/or activity in

periprosthetic microenvironment
[References]

Collagenases
Contain hemopexin
domain and peptide
linking with catalytic
domain

MMP-1 (interstitial collagenase; collagenase 1)
MMP-8 (neutrophil collagenase; collagenase 2)

MMP-13 (collagenase 3)

Collagen type I, III, V,
VII, VIII, X, gelatin,
IL-1𝛽, MMP-2, -9,

fibronectin

↑MMP-1 [39, 58, 70, 72, 80, 82, 90]
↑MMP-8 [70]

↑MMP-13 [70, 82, 89]

Gelatinases
High substrate
specificity to native
collagen and gelatin

MMP-2 (gelatinase A; 72 kDa metalloproteinase)
MMP-9 (gelatinase B; 92 kDa metalloproteinase)

Collagen type IV, V, VII,
X, proteoglycans, gelatin,

elastin, laminin

↑MMP-2 [58, 70, 73, 74, 76, 77, 80, 90]
↑MMP-9 [58, 70, 76, 77, 80, 90, 91]

Stromelysins

Metalloproteinases of
stroma

MMP-3 (stromelysin 1)
MMP-10 (stromelysin 2)
MMP-11 (stromelysin 3)

Proteoglycans,
fibronectin, laminin,

elastin, gelatin,
plasminogen,

vitronectin, fibrinogen,
fibrin, collagen type III,
IV, V, antithrombin III,
MMP-1, -2, -8, -9, -13

↑MMP-3 [58, 70, 74, 80]
↑MMP-10 [70]
↑MMP-11 [70]

Matrilysins
The smallest among
MMPs, lack of
hemopexin domain

MMP-7 (matrilysin, metalloendopeptidase)
MMP-26 (matrilysin-2, endometase)

Collagen type IV,
proteoglycans,

glycoproteins, gelatin
↑MMP-7 [70]

Membrane-type
MMPs

(A) Transmembrane-
type
MMPs

MMP-14 (MT1-MMP)
MMP-15 (MT2-MMP)
MMP-16 (MT3-MMP)
MMP-24 (MT5-MMP)

Collagen type I, II, III,
gelatin, elastin, laminin,

fibronectin, fibrin,
proteoglycans,

proMMP-2, proMMP-13

↑MMP-14 [70, 73]
↑MMP-15 [70]
↑MMP-16 [70]

(B) GPI-anchored
MMPs

MMP-17 (MT4-MMP)
MMP-25 (MT6-MMP) ↑MMP-17 [70]

Other MMPs

MMPs that are not
categorized in any of
the previous groups

MMP-12 (macrophage metalloelastase)
MMP-19

MMP-20 (enamelysin)
MMP-21, MMP-23
MMP-27, MMP-28

↑MMP-12 [70]
↑MMP-19 [70]

Moreover, double immunofluorescence labeling revealed
EMMPRIN/MMP-1 double-positive cells in lining-like areas
and the sublining area of interface tissue.These data indicated
that EMMPRIN expression was upregulated in interface tis-
sues, and that locally accumulated EMMPRINmaymodulate
MMP-1 expression [72].

In another study,Nawrocki and coworkers used immuno-
histochemistry (IHC) to identify the cells responsible for the
synthesis of MMPs in the periprosthetic microenvironment
[73]. MMP-2 (gelatinase A) and its activatorMT1-MMPwere
strongly detected in macrophages and multinucleated giant
cells in contact with polyethylene wear debris. Similar results
have been also obtained by other IHC studies on MMP-2 in

this pathological process [58, 74, 75]. Indeed, these studies
reported the expression of MMP-2, as well as those of other
MMPs, such as MMP-9 andMMP-1 and, in a more restricted
pattern,MMP-3, inmacrophages, fibroblasts, and endothelial
cells. The strong expression of MMP-2 and its activator MT1-
MMP in phagocytic cells of periprosthetic samples suggests
their contribution to aseptic loosening of prosthetic compo-
nents. These data are supported by the observation that high
levels of gelatinolytic activities were also previously detected
in the same type of lesion [76–79]. Of particular interest was
the colocalization of MMP-2, MT1-MMP, and TIMP-2 in the
same cells [73]. The strong expression of TIMP-2 in interface
tissue around implants was also reported by Ishiguro and
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Table 2: Tissue inhibitors of metalloproteinases (TIMPs) in peri-
prosthetic microenvironment (expression and/or activity: ↑ with
bold data: high; ↓ without bold data: low).

TIMPs Preferred
MMP/ADAM/ADAMTS

Expression and/or
activity in periprosthetic

microenvironment
[References]

TIMP-1
Most MMPs, ADAM-10
(inhibition). MT3-MMP,
MT5-MMP, MMP-19
(weak inhibition)

↑TIMP-1
[71, 74, 76, 78, 80, 82]

TIMP-2 Most MMPs (inhibition).
MMP-2 (activation)

↑TIMP-2
[71, 73, 76, 80, 82]

TIMP-3

Most MMPs, ADAM-10,
-12, -17, and ADAMTS-1,

-4, -5 (inhibition).
MMP-2, MT3-MMP

(activation)

↑TIMP-3 [71]

TIMP-4 Most MMPs (inhibition) ↓TIMP-4 [71]

coworkers [80]. These data support the concept of Strongin
and coworkers, who postulated that proMMP-2 activation
could be mediated by a trimolecular stoichiometric com-
plex involving MMP-2, TIMP-2, and MT1-MMP [81]. More
specifically, these authors demonstrated that the activated
form of MT1-MMP acts as a cell surface TIMP-2 receptor.
The MT1-MMP/TIMP-2 complex may in turn serve as a
receptor for proMMP-2, leading to its processing into the
active enzyme. Interestingly, the detection of a soluble type
of MT1-MMP (∼56 kDa) in synovial and pseudosynovial
fluid of patients with rheumatoid arthritis, osteoarthritis,
and loose arthroplasty endoprostheses has been previously
reported, without clarifying the origin of this type or its
activation state. It was proposed that this form was probably
processed proteolytically from the transmembrane type of
MT1-MMP [75]. A protein band of∼56 kDawas also detected
in periprosthetic tissues extracts and pseudosynovial fluids
from loose arthroplasty endoprostheses that was ascribed to
a soluble form of MT1-MMP [82].

The contribution of differentmembers of theMMP family
in gelatinolytic and collagenolytic potential was evaluated by
gelatin zymography, and the degradation of synthetic dini-
trophenyl-Pro-Gln-Gly-Ile-Ala-Gly-Gln-D-Arg (DNP-S) to-
gether with reverse phase high performance liquid chroma-
tography, respectively [82]. Activated species of both MMP-1
and MMP-13 were identified in most periprosthetic tis-
sues, which could be responsible for the detected DNP-S-
degrading activity, while the gelatinases MMP-2 and MMP-9
did not contribute in this potential, since they mainly existed
in complex with TIMP-2 and TIMP-1, respectively. These
data indicated that MMP-1 and MMP-13 may play a key
role in the degradation of periprosthetic ECM, since they
degrade native type-I and type-III collagens. Moreover, they
may directly contribute to bone resorption, by removing the
osteoid layer from calcified bone, facilitating the osteoclastic
bone resorption [83–85]. Accordingly, it has been previ-
ously reported that periprosthetic tissue extracts exhibited
high TIMP-free collagenolytic activity although TIMP-1 and

TIMP-2 have been detected in periprosthetic tissues [78, 79].
TIMPs produced by pseudosynoviocytesmay be released into
synovial fluid to limit MMP proteolysis, but their localization
far from local degradation sites leads to the hypothesis of
a disruption of the MMP-TIMP balance in favor of MMPs
surrounding wear particles.

Immunohistochemical study of the plasminogen activa-
tion system, which is closely associated with MMP activities,
disclosed localization in periprosthetic tissues of urokinase
plasminogen activator (uPA), uPA-receptor (uPAR), and
tissue type plasminogen activator (tPA) in macrophages
with phagocytosed metal, polyethylene, cement particles, or
accompanying pieces of necrotic bone [86]. Plasminogen
activator inhibitor-1 (PAI-1) staining was present in the
neighboring areas that stained for uPA or tPA, but PAI-
1 staining was also found overlapping and outside these
areas. These findings suggest a role for the uPA/uPAR and
PAI-1 in activation and focalization of extracellular matrix
degradation in periprosthetic tissues. The expression of the
plasminogen activation system by macrophages containing
phagocytosed material suggests undegradable microdebris
as a possible initiating and perpetuating stimulus for a
proteolytic activation cascade, which may contribute to loos-
ening of the prosthesis. In contrast to most ECM-degrading
proteases, uPA has restricted substrate specificity. Although
uPA best-documented proteolytic action is the conversion
of inactive plasminogen to active plasmin, it has been also
reported that it is able to activate the cell surface MT1-MMP
proenzyme [87]. Like uPA, plasmin is also a serine protease
but, in contrast to uPA, has broad substrate specificity. Apart
from native collagen, plasmin can degrade most proteins
present in the ECM. It can also activate the precursor forms of
a number of MMPs, such as MMP-3, MMP-9, MMP-12, and
MMP-13 [88]. Elevated protein levels of MMP-13, together
with uPA and PAI-1 in periprosthetic pseudocapsular and
interface tissues were also reported by Diehl and coworkers
[89]. However, no significant correlation between the protein
expression of these factors and years from arthroplasty to
revision or to type of fixation (cemented versus cementless)
was observed.

It should be noted that the physical characteristics of
wear particles (size, shape, and sintering temperature) as
well as their amounts in the periprosthetic tissues can
modify the toxicity of the biomaterials and the production
of cytokines, MMPs, and TIMPs by various cell types. For
example, macrophages seemed to release MMPs (MMP-1, -2,
and -9) in proportion to the amount of particulate debris
at the prosthetic interface [90]. Laquerriere and coworkers
demonstrated that sintering temperature (that modify crys-
tal size and surface area) had little effect on MMPs and
TIMPs production. Nonphagocytable particles inducedmore
MMP-9, although phagocytable particles inducedmore IL-1𝛽
release. The shape of the particles was the most impor-
tant factor since needle-shaped particles induced the most
significant upregulated expression of MMPs (mostly MMP-
9) and IL-1𝛽 [91]. In another study, human osteoblasts were
incubated with particles experimentally generated in the
interface between hip stems with rough and smooth surface
finishings as well as different material compositions [39].
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The results revealed distinct effects on the cytokine release
of human osteoblasts towards particulate debris. Thereby,
human osteoblasts released increased levels of IL-6 and IL-
8 after treatment with metallic wear particles. The expression
of VEGF was slightly induced by all particle entities at lower
concentrations. Apoptotic rates were enhanced for oste-
oblasts exposed to all the tested particles. Furthermore, the
de novo synthesis of type 1 collagen was reduced and the
expression of MMP-1 was considerably increased. Therefore,
by the secretion of degrading effectors, osteoblasts may
actively contribute to matrix weakening.

3. Molecular Mechanisms Controlling
the Periprosthetic Microenvironment:
Implication of MMPs/TIMPs and
an Emerging Role for Proteasome

A large body of studies reveals a strong interdependence of
MMP expression and activity with the molecular mecha-
nisms that control the composition and turnover of peripros-
thetic ECMs. MMPs can either actively modulate or be
modulated by the molecular mechanisms that determine the
debris-induced remodeling of the periprosthetic microenvi-
ronment (summarized in Figure 2). One likely mechanism
whereby particulate debris may induce osteoclast genera-
tion and activation is an indirect one, mediated through
the actions of proinflammatory mediators that can act on
osteoclast precursors and, most importantly, modulate the
RANKL/osteoprotegerin (OPG) ratio through actions on
cells within the periprosthetic tissue. RANKL is a type II
homotrimeric transmembrane protein, which is normally
expressed on osteoblastic cell membrane but is also expressed
by fibroblasts and activated T cells [92]. Binding of RANKL to
RANK on preosteoclasts (OCPs) activates NF-𝜅B and Jun N-
terminal kinases (JNKs) pathways to induce cell differentia-
tion [93].NF-𝜅B is likely themost notable transcription factor
implicated in wear debris action. This protein complex, long
known as a key regulator of inflammatory gene expression, is
also emerging as an important player during osteoclastogene-
sis. Supporting evidence for a role of NF-𝜅B in periprosthetic
osteolysis comes from observations that deficiency of NF-𝜅B
in mice protects against titanium-induced calvarial osteol-
ysis [94], and that inhibition of NF-𝜅B blocks wear debris
induction of osteoclastogenesis in vitro [95, 96]. Osteoblasts
also secrete OPG, a soluble decoy receptor for RANKL,
which strongly binds to RANKL and effectively inhibits its
activity on preosteoclasts differentiation andmaturation [97].
OPG is a glycoprotein possessing 4 cysteine-rich domains
at its Nterminus by which it binds to RANKL, whereas
its C-terminus contains 22 homologous death domains of
unknown function and a heparin binding domain by which
the glycoprotein interacts with matrix macromolecules, such
as glycosaminoglycans and proteoglycans. Importantly, any
imbalance in the RANKL/OPG ratio impairs normal bone
remodeling and evidence suggests a role of RANKL/OPG
ratio in wear debris-induced osteolysis. In particular, it has
been shown that RANKL blockade with OPG [98, 99] or
RANK:Fc (RANKL antagonist consisting of the extracellular

region of RANK fused to the Fc portion of human IgG1),
or by using mice genetically deficient in RANK prevents
wear debris-induced osteolysis in the murine calvarial model
[100]. Moreover, wear debris can increase the RANKL/OPG
ratio in murine calvarial tissues [101], and several reports
have identified elevated RANKL expression in IFTs [102–
105]. However, the fact that several different cell types within
the periprosthetic tissue are capable of RANKL expression,
including osteoblasts, fibroblasts, T lymphocytes, and also
macrophages and giant cells [102–106], makes the cellular
basis for elevated RANKL expression very complicated.

Several MMPs are overexpressed and correlated with
osteoclast differentiation, maturation and activation by inter-
feringwith the RANK/RANKL/OPG system in inflammation
and cancer [107]. MMP-9 is likely to play an important
role in the recruitment of osteoclasts at inflammatory and
metastatic sites since the use of chemical inhibitors or anti-
sense oligonucleotides against MMP-9 abrogated the recruit-
ment of osteoclasts [108]. Franco and coworkers showed that
doxycycline (Dox), which can suppress the enzyme activity of
MMP-9 [109], as well as MMP-9 inhibitor (MMP-9 inhibitor
I), downregulated the expression of RANKL-induced osteo-
clast maturation genes in conjunction with the suppression
of RANKL-induced osteoclastogenesis [110]. These findings
indicated that MMP-9 induced by RANKL plays a role as
an upstream effector of osteoclast gene expression, and, as
such, itmay also be a regulator of osteoclastogenesis. Previous
studies reported that MMP inhibitor (RP59794) [111] or
MMP-9 gene knockout [112] reduced osteoclast migration,
which results in reduction of the resorption process in the
growth plate and, as a consequence, attenuated development
of bone marrow cavity. However, since the latter studies
treated the aspect of osteoclast migration, but not differ-
entiation, the study by Franco and coworkers is the first
to report the involvement of MMP-9 activity in RANKL-
induced osteoclastogenesis. In another report, MMP-7 could
solubilize RANKL in mouse models of prostate and breast
cancer promoting osteoclast activation and osteolysis [113].
The limiting step in RANKL-dependent osteoclastogenesis is
the contact of RANKL-expressing osteoblasts with RANK on
the cell surface of osteoclasts. This limitation is prohibited by
proteolytic cleavage of RANKL from the cell surface through
the action of MMP-7 and cathepsin G. Importantly, it has
been shown in tumor-induced bone disease that soluble
RANKL retains its activity and is liberated at the tumor-bone
interface promoting osteoclastogenesis without the necessity
of direct interaction of osteoblast with osteoclasts [113–115].

Possible accumulation of cell membrane and matrix
proteoglycans at the inflammatory periprosthetic ECM may
alsomodulate the RANK/RANKL/OPG system through both
MMP-independent and -dependentmanners. For example, it
has been shown that myeloma cells decrease OPG availability
by internalizing it through binding to glycosaminoglycan
side chains of surface syndecan-1 and degradation to lyso-
somes, thereby regulating its inhibitory effect on RANKL
[116]. Moreover, shed syndecan-1 secreted by myeloma cells
may also bind OPG [117] and block its inhibitory activity
to RANKL triggering further osteoclast differentiation and
activation. Syndecan ectodomain shedding is an important
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regulatorymechanism, because it rapidly changes cell surface
receptor dynamics and generates soluble ectodomains that
can function as paracrine or autocrine effectors or compet-
itive inhibitors. Strong evidence indicates the involvement of
several MMPs in syndecan cleavage in vitro and in vivo [118].
Matrilysin (MMP-7) cleaves syndecan-1 [119], gelatinases
MMP-2 and MMP-9 can cleave syndecans-1, -2, and -4
[120, 121], whereas the membrane-associated metallopro-
teinases MT1-MMP and MT3-MMP are known to cleave
syndecan-1 [122]. Taken together, these data suggest a critical
role of certain members of MMPs in interfering with the
RANK/RANKL signaling axis by directly and/or indirectly
regulating OPG and RANKL availability, therebymodulating
osteoclast generation and activationwithin the periprosthetic
tissue (Figure 2).

An important observation in several studies was that
specific gene responses were induced in different cell types of
the periprosthetic microenvironment by an initial and early
particulate biomaterial-cell interaction. The differential gene
expression indicated that particle-cell interactions activated
specific signaling events and transcription factors. Vermes
and coworkers have found that particles rapidly activated
protein tyrosine phosphorylation and induced the nuclear
transcription factor NF-𝜅B in osteoblasts [123]. The rapid
kinetics of the activation suggested that the particles elicited
signals before the phagocytosis process. Importantly, inhibi-
tion of NF-𝜅B function by either tyrosine kinase inhibitors
or antioxidants reversed the suppressive effect of titanium
particles on procollagen a1[I] gene expression suggesting a
functional relationship in osteoblasts between tyrosine phos-
phorylation, NF-𝜅B activation, and collagen gene expression.
Thus, particle-cell interactions before their phagocytosis
appear to initiate an intracellular tyrosine phosphorylation
cascade that targets the nuclear activation of the inducible
transcription factor NF-𝜅B.

A role for protein tyrosine kinases (PTKs) in regulation
of the activation of MMPs/TIMPs in ion-induced activation
of macrophages was suggested by Luo and coworkers [124].
In particular, cobalt (Co) and chromium (Cr) ions, two
corrosion products found in the periprosthetic environment
of metal-on-metal prostheses, were shown to upregulate
MMP-1, TIMP-1, and cytokines (such asTNF-𝛼) in cultures of
human U937 macrophages. The inhibitory effect of genistein
suggested the implication of PTKs in the induction of
MMP-1 and TIMP-1 expressions by Co2+ and Cr3+ ions in
macrophages, the most important cellular target of wear
debris. Genistein, a soy isoflavonoid that is a natural broad
spectrum PTK (such as EGFR, PDGFR, IGFR, Src) inhibitor,
has been shown to regulate the transcription of several
MMPs and their endogenous inhibitors (TIMPs) by breast
cancer cells [125, 126]. Moreover, previous in vitro studies
demonstrated that genistein downregulates the expression
of vascular endothelial growth factor (VEGF), which is a
major signaling protein that contributes to angiogenesis
[127]. VEGF is produced by multiple cell types, including
macrophages and osteoblasts [128, 129]. It exerts its biological
activity by binding to two TK receptors, VEGF receptor-1
(VEGFR-1; Flt-1) and VEGFR-2 (Flk-1/KDR) [130]. VEGF

is actively involved in the process of inflammation, osteo-
clastogenesis, and bone resorption [131–133] and probably
plays an important role in wear debris-induced inflamma-
tory osteolysis since the periprosthetic tissues at the bone-
implant interface show a high degree of vascularization [134].
Notably, Luo and coworkers showed a more potent effect of
herbimycin A, Src kinase-specific inhibitor, on the expression
ofMMP-1 andTIMP-1 compared to genistein [124], providing
strong evidence for a critical role of Src kinases inmodulating
the expression levels of MMP-1 and TIMP-1 in macrophages
in the presence of Co2+ and Cr3+ ions (Figure 2). Other
ions released from hip prostheses, such as titanium [135]
and nickel [136], have been shown to stimulate TNF-a in
a manner similar to Co and Cr, suggesting that other ions
may also modulate tyrosine kinase activity probably affecting
the amounts and activities of MMPs/TIMPs in periprosthetic
ECMs.

Moreover, the adhesion of macrophages to phosphor-
ylcholine-polymer coated surfaces stimulated the expression
of MMP-1 and TIMP-1, suggesting that cell adhesion induced
a remodeling of the macrophage ECM. The inhibition of
the expression of these genes by genistein and herbimycin
A suggested that PTKs were also implicated in this remod-
eling [124]. Interestingly, this kind of materials-stimulated
expression of genes implicated in ECM remodeling was also
observed in fibroblasts induced by three-dimensional colla-
gen [137, 138]. In these studies, alpha1beta1 and alpha2beta1
integrins mediated the signals inducing downregulation of
collagen gene expression and upregulation ofMMP-1, respec-
tively. Therefore, the potential impact of macrophage surface
integrins-evoked signals on the periprosthetic microenviron-
ment should be further investigated to better understand the
cellular effects of particles liberated from the articular surface
of prostheses (Figure 2).

One major part of the organism’s first line of defense
against infection is a family of pattern recognition recep-
tors (PRRs) called the Toll-like receptors (TLRs). TLRs are
transmembrane proteins found in various cells and recognize
infectious and endogenous threats, so-called danger signals,
which evoke inflammation and assist adaptive immune reac-
tions. It has been suggested that TLRs play a role in peripros-
thetic tissues and arthritic synovium. Tamaki and coworkers
found that peri-implant tissues were well equipped with
TLRs and, in aseptic loosening, monocytes/macrophages
were the main TLR-expressing cells [139]. This could lead
to production of inflammatory cytokines and MMPs after
phagocytosis of wear debris derived froman implant. Amajor
conclusion of the study was that inflammatory cells in both
aseptic and septic tissueswere equippedwithTLRs, providing
themwith responsiveness to both endogenous and exogenous
TLR ligands. In this line, the high expression of TLRs in
the periprosthetic tissues could be potentially important, as
they can reflect occurrence of subclinical biofilms on the
prosthetic surfaces. Activation of TLRs has been suggested
to modulate the expression levels of certain MMPs but not
TIMPs. In a recent study, Lisboa and coworkers showed that
activation of TLR-2 and TLR-4, two TLRmembers expressed
by a variety of human cells that participate in the recognition



BioMed Research International 9

Figure 2: Hypothetical model of the molecular mechanisms that control periprosthetic microenvironment and potential molecular targeting
with regard to the expression and activity of MMPs/TIMPs to prevent osteolysis (see text for details).

of bacterial lipoproteins and lipopolysaccharides (LPS) [140],
induced an increase in the secretion of MMPs-1, -3, and -10
by cultured periodontal fibroblasts, and this was mediated
via the p38, JNK1/2, and NF-𝜅B pathways [141]. It is likely
that there is a broad variation in the response of cells to
TLR ligands that is dependent on the type of stimulus in

the periprosthetic microenvironment. Therefore, the possi-
bility of potentiation of MMPs activation concomitant with
TLR activation in periprosthetic tissues needs to be further
investigated (Figure 2).

Genetic variation may determine individual responses in
terms of susceptibility to osteolysis and recovery. Expression
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levels of the MMPs at both the mRNA and protein levels
can be affected by the introduction or loss of transcription
binding sites by single nucleotide polymorphisms (SNPs).
SNPs are the most common sequence variation in the
human genome and can affect coding sequences, splicing,
or transcription regulation. In a case control, it was shown
that a single-nucleotide polymorphism (SNP) of MMP-1 was
highly associated with total hip replacement aseptic failure
[142]. This SNP existed within a promoter region of the gene
and as such may have a direct effect on the amount of gene
expression (Figure 2). However, the mechanisms of MMP
gene regulation are still not fully delineated, and it is likely
that many more functionally important elements in their
promoter regions are yet to be identified [143–145].Moreover,
investigation of SNPs in the TIMP geneswould be a necessary
complement for any study of MMP SNPs, given the evidence
that the MMP-to-TIMP ratio plays a role in defining overall
MMP activity.

In another line of research, Ortiz-Lazareno and cowork-
ers found that the proteasome inhibitor MG-132 significantly
diminished proinflammatory cytokines (TNF-𝛼, IL-1𝛽, IL-6)
release by U937 macrophages, whereas, induced a decrease
in the membrane receptors TNF-R1 and IL-1R1 and an
increase in the soluble receptors sTNF-R1 and sIL-1R1.
However, MG-132 increased the IL-6R and decreased sIL-
6R [146]. In another report, Mao and coworkers investi-
gated the effects of Ti particles and the specific proteasome
inhibitor bortezomib on the secretory profile of inflammatory
cytokines, chemokines, and inflammatory enzymes in a
murine macrophage cell line [147]. It was shown that Ti
particles increased the production of TNF-𝛼, IL-1𝛽, IL-6, IL-
10, MCP-1, MIP-1𝛼, iNOS, and COX-2 in this cell line, while
bortezomib inhibited the expression of all factors, except
IL-10, in a time-dependent manner. Bortezomib, a potent,
reversible and selective inhibitor of the chymotryptic activity
of the proteasome, prevents the degradation of I𝜅B proteins,
which mask the nuclear localization sequence of NF-𝜅B,
therefore inhibiting the translocation of NF-𝜅B into the
nucleus and further inhibiting the transcription and secretion
of inflammatory mediators. It is known that NF-𝜅B regulates
the transcription of a variety of genes of inflammatory
cytokines (TNF-𝛼, IL-1𝛽, IL-2, IL-6, and GM-CSF (granu-
locytemacrophage colony-stimulating factor)), chemokines
(IL-8, MCP-1, and MIP-1𝛼), and inflammatory enzymes
(iNOS and COX-2) [148]. Therefore, bortezomib may inhibit
the proinflammatory factors mentioned earlier through inhi-
bition of NF-𝜅B activity. Moreover, proteasome inhibition
with bortezomib alters the binding of other transcription
factors to the promoter region of several molecular effectors,
thus modulating their expression levels [149]. The anti-infla-
mmatory cytokine IL-10 induced by bortezomib inhibits
TNF-𝛼 gene expression via inhibiting NF-𝜅B activity or by
directly inhibiting TNF-𝛼 itself [150, 151]. It should be noted
that bortezomib (as well as other proteasome inhibitors)
exhibits beneficial effect on bone metabolism as it inhibits
osteoclastic function and promotes osteoblastic activity by
inhibiting NF-𝜅B activation induced by the RANK-RANKL
signaling axis, which is the master regulator of differentiation
and activation of osteoclasts [152–155].

The inhibitory effects of bortezomib and MG-132 on the
secretion of inflammatory cytokines and their receptors by
macrophages suggested the potential involvement of the pro-
teasome pathway in periprosthetic loosening and osteolysis
process. The proteasome is a major cellular protease complex
that functions as the main driver of intracellular degradation
of a wide variety of cellular proteins implicated in sev-
eral physiological and pathological cellular functions [156].
Interestingly, the proteasome pathway controls via transcrip-
tional and posttranslational mechanisms the concentration
and turnover of several ECM macromolecules (including
proteoglycans/glycosaminoglycans, MMPs/TIMPs, and col-
lagens) [157]. Importantly, the proteasome provides a link
between the regulation of extracellular proteolytic events to
intracellular proteolysis by modulating MMP/TIMP expres-
sion and activity. In particular, it has been shown that
proteasome blockade by proteasome inhibitors resulted in
a marked modification of gene expression and activity of
MMPs (upregulation of MMP-1, -3 and downregulation
of MMP-2, -9) and TIMPs (downregulation of TIMP-1).
Moreover, proteasome inhibition regulated also the synthesis
and activity of other ECM constituents, such as TGF-𝛽
(downregulation), decorin (upregulation), and collagen type-
I and type-IV (downregulation) [157].Therefore, sincematrix
remodeling and degradation can be tightly regulated by
proteasome activities, its modulation may be considered as
a novel strategy to control the properties of periprosthetic
ECMs as has been recently suggested for tumor microenvi-
ronment (Figure 2).

4. Potential Therapeutic Perspectives

Much progress has recently been made in understanding
the molecular and cellular mechanisms whereby prosthetic
wear debris can ultimately cause aseptic loosening and
osteolysis. However, the complex nature of the interactions
between wear particles and periprosthetic cells as well as
the multiple intracellular signaling pathways activated by
such interactions results in the reality that development of
therapeutic approaches to the treatment of periprosthetic
osteolysis is long overdue. In the following lines, we will try
to address strong rationale for potential clinical applications
of the described molecular mechanisms for periprosthetic
loosening and osteolysis treatment.

The finding that proteasome inhibitors (i.e., bortezomib,
MG-132) altered the macrophage secretory profile of inflam-
matory cytokines, chemokines, and inflammatory enzymes
[146, 147], which play a key-role in the inflammatory response
of periprosthetic tissue to wear debris, reveals a critical role
for proteasome in the development of periprosthetic loosen-
ing and osteolysis. In a recent review, we have highlighted the
novel approach of targeting the proteasome as a mechanism
to control the synthesis and bioactivity of ECM effectors
in tumors, since the proteasome appears to be an elegant
molecular regulator of specific matrix macromolecules [157].
From the data described in the present review, proteasome
signaling pathway emerges as a promising target to selectively
regulate the synthesis and activity of inflammatory factors
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(such as TNF-𝛼, IL-1𝛽, IL-6, IL-8), theirmembrane receptors,
andmatrix degrading effectors (such as specificMMPs) in the
periprosthetic microenvironment. To this aim, a promising
agent is bortezomib, which exhibits multiple functions by
interfering also with other intracellular signaling pathways
such as the RANK-RANKL system thereby regulating new
bone formation by both inducing osteoblastic function
and inhibiting osteoclastogenesis. However, the elevated
production of reactive oxygen species (ROS) by activated
macrophages and osteoclasts in the presence of wear particles
[158] should be considered in this context, since proteasome
inhibitors have been also shown to induce ROS [159], which
further attenuate the proteasomal system activation [160].
This proteasomal inhibition would potentially result in the
accumulation of phosphorylated c-Jun and activation of AP-
1 that ultimately induce MMP-1 and MMP-3 expression
levels [160]. Therefore, proteasome inhibitors may have a
synergistic effect with wear particles on ROS production and
strongly induce the expression of specific MMPs within the
periprosthetic microenvironment although their inhibitory
effect on inflammatory cytokines and their receptors as well
as otherMMPs has been documented.Moreover,MG-132 has
been found to significantly downregulate TIMP-1 expression
in organ interface tissue cultures and primary IFT fibroblast
cultures (Aletras and coworkers, unpublished data), which is
in line with the findings of Fineschi and coworkers in dermal
fibroblasts [161], revealing the complex and questionable role
of proteasome in regulating distinct molecular effectors that
would potentially be beneficial for periprosthetic osteolysis
treatment. Therefore, the efficacy of proteasome inhibitors
(such as bortezomib) to prevent periprosthetic loosening and
osteolysis caused by implant-derived particles is an emerging
concept and needs to be further investigated.

Taking under consideration these data, it should be
investigated whether an alternative strategy associated with
proteasome activation would be more beneficial in the
treatment of periprosthetic loosening. Several activators of
the proteasome, such as isoflavonoids, should be tested in
order to reverse the effects on the expression levels of specific
MMPs and TIMPs described previously, as a result of the
reduced proteasome activity in IFT. Proteasome activation
might be further induced by combined treatment with
activators of nuclear factor erythroid 2-related factor 2 (Nrf2),
such as sulforaphane [162]. Notably, Nrf2 upregulates the
transcription of multiple antioxidant enzymes providing an
effective means of reducing elevated ROS levels in IFT.

The observation that genistein and herbimycinA strongly
attenuated the expression of MMP-1 and TIMP-1 by macro-
phages implied that tyrosine kinases play also an essential
role in the signaling pathways regulating the remodeling of
macrophage ECM in the periprosthetic microenvironment
[124]. Therefore, PTKs (e.g., Src kinases) may serve as an
additional target for selective inhibition of periprosthetic
osteolysis. Importantly, proteasome is implicated in this pro-
cess since it has been reported that herbimycin A targets the
degradation of tyrosine kinases by the 20S proteasome [163].
Moreover, apart from its inhibitory action on PTKs, genistein
was found to downregulate the expression of VEGF, a major

angiogenic factor in periprosthetic microenvironment. The
interactive network of the VEGF/Flt-1 and RANKL/RANK
pathways may play important roles in the initiation, pro-
gression, and resolution of aseptic loosening. In a study
by Ren and coworkers, it was shown that VEGF may be
actively involved in the regulation of RANK/RANKL gene
expression, and that it exerted a regulatory effect on the
development of particle-induced inflammatory osteoclasto-
genesis through its unique Flt-1, rather than Flk-1, receptor
located on monocyte/macrophage cell lineages [164]. In
particular, they found that treatment with R2/Fc (a VEGF
neutralizing antibody) but not SU5416 (an Flk-1 receptor
inhibitor) resulted in the inhibition of polyethylene particle-
enhanced VEGF/Flt-1 signaling and inflammatory osteolysis
by trapping VEGF in the periprosthetic milieu (Figure 2).
Taken together, these findings provide the biological rationale
for a combined VEGF/Flt-1- and RANKL/RANK-targeted
treatment strategy, especially in the early stages of wear
debris-induced inflammatory response. The fact that the
RANK/RANKL/OPG system is of crucial importance for the
development of periprosthetic osteolysis together with the
finding thatDox inhibits RANKL-induced osteoclastogenesis
by its inhibitory effect on MMP-9 enzyme activity [110] pro-
vides a reasonable rationale for a pharmaceutical advantage
of tetracycline antibiotics against periprosthetic osteolysis.
It should be noted that this class of antibiotics, including
Dox, has been effectively utilized for the treatment of bone
resorptive diseases because of their activity to suppress
osteoclastogenesis induced by RANKL.

Given that excessive osteoclast activity represents the
cellular endpoint of osteolysis, it is not surprising that
the bisphosphonate class of osteoclast inhibitors have come
in for much discussion as possible therapeutic agents for
this disease. Again, however, despite promising results in
animal models, there is no clinical evidence supporting the
effectiveness of these drugs in the treatment of osteolysis
patients. Alendronate inhibits wear debris-induced osteolysis
in the rat loaded tibial implantmodel of osteolysis [165] and in
a similar canine model [9] and is also effective in preventing
osteolysis in the murine calvarial model [6]. A single dose of
zoledronic acid administered directly after surgery also sup-
pressed particle-induced osteolysis in mouse calvaria [166].
Bisphosphonates inhibit osteoclast formation by blocking
the mevalonate pathway of isoprenoid biosynthesis. Their
potential effect in periprosthetic osteolysis should be also
considered with regard to their ability to inhibit the enzy-
matic activity of various MMPs. Certain bisphosphonates
showed beneficial effects as a result of altering the expression
pattern of MMPs/TIMPs by inhibiting and increasing the
gene and protein expression of several MMPs and TIMPs,
respectively, in breast cancer cells. In particular, it has been
shown that zoledronic acid suppressed the expression of
metalloproteinases MMP-2, -9, the membrane type MT1-
and MT2-MMP, whereas it increased the expression of their
endogenous tissue inhibitors [167].

Though not extensively studied, other mechanisms that
should be further investigated with regard to their contribu-
tion to the remodeling of periprosthetic ECM include SNPs
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of certain MMP/TIMP genes as well as the involvement
of TLRs in periprosthetic inflammation. An SNP of MMP1
gene was highly associated with total hip replacement aseptic
failure [142]. It should be noted that MMPs do not possess
only degrading functions but they also play protective and
anti-inflammatory roles.Therefore, the association that exists
with a particular polymorphic form of MMP-1 does not
necessarily show that particular form is associated with
increased MMP-1 activity; in fact, the opposite may be true.
The possibility that SNP markers may serve as predictors
of implant survival and aid in pharmacogenomic preven-
tion of total joint replacement failure should be further
investigated. A more comprehensive analysis of MMP and
TIMP SNPs is thus required, and given the coverage by
existing genome-wide association study (GWAS) platforms, a
candidate gene approach is justified. Regarding TLRs, strong
evidence indicated that macrophages, which are the most
important cellular targets of wear debris, are the main TLR-
expressing cells in periprosthetic microenvironment. The
increased secretion of MMPs by combined TLR activation
may be an important factor that should also be considered
during treatment of periprosthetic loosening and osteolysis.

Extended information is available regarding the action
of several nonsteroidal anti-inflammatory drugs (NSAIDs)
upon significant for the loosening process effector molecules,
which though originates from in vitro studies with articular
chondrocytes and synovial or dental pulp fibroblasts [168–
173]. However, little information is available in the liter-
ature about their possible role in retarding the peripros-
thetic loosening and bone resorption process. To this aim,
we tested the effect of four widely used NSAIDS (i.e.,
aceclofenac, piroxicam, tenoxicam, and indomethacin) on
cytokine, MMP, TIMP, and prostanoid production by IFT
from patients with aseptic loosening of total arthroplasty
[174]. The results showed that all the tested drugs exerted
uniformly an inhibitory effect on IL-6 and TNF-𝛼, both
known to directly cause osteoclastic bone resorption, inde-
pendently of PGE2 [175–177]. Moreover, all of themmodified
specific MMPs (MMP-1, MMP-2, MMP-3, and MMP-9)
expression and activity, although these drugs did not have
a statistically clear effect on MMPs, which might reflect
individual responses in terms of susceptibility to osteolysis.
However, NSAIDs had a profound stimulatory effect on
TIMP-1 production. Interestingly, paracetamol, which was
used as a neutral drug, significantly decreased the synthesis of
TNF-𝛼 and gelatinases (MMP-2 and MMP-9). Considering
these observations, NSAIDs could reduce the ability of
periprosthetic membrane to cause bone resorption, which is
in line with previous reports that have shown that piroxicam,
which exhibited about the same effects as the other tested
NSAIDs, significantly decreased the IFT-induced resorptive
process [178]. Consequently, in vivo long-term clinical trials
may shed light on the possibility of a beneficial effect of
specific NSAIDs on the loosening process.

5. Concluding Remarks

The elucidation and understanding of the cellular andmolec-
ular mechanisms that control the composition, turnover, and

activity of matrix macromolecules within the periprosthetic
microenvironment exposed to wear debris is highly impor-
tant for the development of novel therapeutic approaches
to the treatment of periprosthetic loosening and osteolysis.
One ultimate target would be to disrupt the vicious cycle
between the inflammatory response to wear debris particles
induced by the secreted proinflammatory and osteoclasto-
genic cytokines and the periprosthetic osteolytic cascade
governed by the uncontrolled action of MMPs. Consid-
ering the multicomplex biological mechanisms underlying
the particle-induced periprosthetic loosening and osteolysis
described in the present review, it may be crucial to develop
and use combinations of conventional therapeutic agents as
well as new approaches targeting specific extracellular, cell
surface, and intracellular molecular effectors and apply them
in clinical practice.
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[138] L. Ravanti, J. Heino, C. López-Ot́ın, and V. M. Kaharin, “Induc-
tion of collagenase-3 (MMP-13) expression in human skin
fibroblasts by three-dimensional collagen is mediated by p38
mitogen-activated protein kinase,” The Journal of Biological
Chemistry, vol. 274, pp. 2446–2455, 1999.

[139] Y. Tamaki, Y. Takakubo, K. Goto et al., “Increased expression
of toll-like receptors in aseptic loose periprosthetic tissues and
septic synovial membranes around total hip implants,” Journal
of Rheumatology, vol. 36, no. 3, pp. 598–608, 2009.

[140] J. A. Gebbia, J. L. Coleman, and J. L. Benach, “Selective
induction of matrix metalloproteinases by Borrelia burgdorferi
via Toll-like receptor 2 in monocytes,” Journal of Infectious
Diseases, vol. 189, no. 1, pp. 113–119, 2004.

[141] R. A. Lisboa, M. V. Andrade, and J. R. Cunha-Melo, “Toll-like
receptor activation and mechanical force stimulation promote
the secretion of matrix metalloproteinases 1, 3 and 10 of human
periodontal fibroblasts via p38, JNK and NF-kB,” Archives of
Oral Biology, vol. 58, no. 6, pp. 731–739, 2013.

[142] M. H. A. Malik, F. Jury, A. Bayat, W. E. R. Ollier, and P. R.
Kay, “Genetic susceptibility to total hip arthroplasty failure: a
preliminary study on the influence of matrix metalloproteinase
1, interleukin 6 polymorphisms and vitaminD receptor,”Annals
of the Rheumatic Diseases, vol. 66, no. 8, pp. 1116–1120, 2007.

[143] S. Ye, “Polymorphism in matrix metalloproteinase gene pro-
moters: implication in regulation of gene expression and sus-
ceptibility of various diseases,”Matrix Biology, vol. 19, no. 7, pp.
623–629, 2000.

[144] U. Benbow, J. L. Rutter, C. H. Lowrey, and C. E. Brinckerhoff,
“Transcriptional repression of the human collagenase-1 (MMP-
1) gene in MDA231 breast cancer cells by all-trans-retinoic
acid requires distal regions of the promoter,” British Journal of
Cancer, vol. 79, no. 2, pp. 221–228, 1999.

[145] S. R. Bramhall, A. Rosemurgy, P. D. Brown, C. Bowry, and J. A.
C. Buckles, “Marimastat as first-line therapy for patients with
unresectable pancreatic cancer: a randomized trial,” Journal of
Clinical Oncology, vol. 19, no. 15, pp. 3447–3455, 2001.

[146] P. C. Ortiz-Lazareno, G. Hernandez-Flores, J. R. Dominguez-
Rodriguez et al., “MG132 proteasome inhibitor modulates
proinflammatory cytokines production and expression of their
receptors in U937 cells: involvement of nuclear factor-𝜅B and
activator protein-1,” Immunology, vol. 124, no. 4, pp. 534–541,
2008.

[147] X.Mao, X. Pan, T. Cheng, and X. Zhang, “Inhibition of titanium
particle-induced inflammation by the proteasome inhibitor
bortezomib in murine macrophage-like RAW 264.7 cells,”
Inflammation, vol. 35, no. 4, pp. 1411–1418, 2012.

[148] T. Krakauer, “Molecular therapeutic targets in inflammation:
cyclooxygenase and NF-𝜅B,” Current Drug Targets, vol. 3, no.
3, pp. 317–324, 2004.
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