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Oculocutaneous albinism type III (OCA3), caused by mutations of TYRP1 gene, is an autosomal recessive disorder characterized
by reduced biosynthesis of melanin pigment in the hair, skin, and eyes. The TYRP1 gene encodes a protein called tyrosinase-
related protein-1 (Tyrp1). Tyrp1 is involved in maintaining the stability of tyrosinase protein and modulating its catalytic activity
in eumelanin synthesis. Tyrp1 is also involved in maintenance of melanosome structure and affects melanocyte proliferation and
cell death. In this work we implemented computational analysis to filter the most probable mutation that might be associated
with OCA3. We found R326H and R356Q as most deleterious and disease associated by using PolyPhen 2.0, SIFT, PANTHER,
I-mutant 3.0, PhD-SNP, SNP&GO, Pmut, and Mutpred tools. To understand the atomic arrangement in 3D space, the native and
mutant (R326H and R356Q) structures were modelled. Finally the structural analyses of native and mutant Tyrp1 proteins were
investigated using molecular dynamics simulation (MDS) approach. MDS results showedmore flexibility in native Tyrp1 structure.
Due to mutation in Tyrp1 protein, it became more rigid and might disturb the structural conformation and catalytic function of
the structure and might also play a significant role in inducing OCA3.The results obtained from this study would facilitate wet-lab
researches to develop a potent drug therapies against OCA3.

1. Introduction

Oculocutaneous albinism type 3 (OCA3) is an autosomal
recessive disorder characterized by reduced biosynthesis
of melanin pigment in the hair, skin, and eyes [MIM
203290]. This disorder is mostly caused by the genetic
mutation in TYRP1 gene. OCA3 is also known as Rufous
oculocutaneous albinism. The human TYRP1 gene consists
of 8 exons and 7 introns, spanning almost 15–18 kb of
genomic DNA in the region of 9p23 [1–4]. This gene encodes
a protein called Tyrosinase-related protein 1 (Tyrp1), has
a molecular weight of ∼75 kDa, and appears to be the
most abundant melanosomal protein of the melanocyte
[5, 6]. Tyrp1 is comprising of 537 amino acid residues
and shares 40–52% of amino acid homology to tyrosinase.

The tyrosinase-related family includes tyrosinase, tyrosinase-
related protein 1 (Tyrp1), and tyrosinase-related protein 2
(Tyrp2) involved in this enzymatic process that converts
tyrosine tomelanin pigments. Certainly, two types ofmelanin
are produced by melanocytes, which are pheomelanins (red
or yellow) and eumelanins (brown or black) [7]. The first
two steps of both eumelanin and pheomelanin production
involve tyrosinase catalysing the conversion of tyrosine to
3,4-dihydroxy-L-phenylalanine (DOPA) and of DOPA to
DOPA quinone [8, 9]. Then pheomelanogenesis seems to be
the default pathway in the absence of MC1R signalling, with
a low tyrosinase activity and a high concentration of thiolic
compounds, such as cysteine. In another way, eumelanin
synthesis requires 𝛼-MSH binding to MC1R [10, 11], which
transcriptionally activates tyrosinase and upregulates Tyrp1
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Figure 1: Flow chart of mutational analysis of OCA3.

and Tyrp2 [12–14]. In addition to their roles in pigmentation,
tyrosinase family proteins also influence the biology of
melanocyte and melanoma. There is evidence that Tyrp1 is
involved in the maintenance of melanosome structure and
affects melanocyte proliferation and cell death [15–18].

Based on its homology to tyrosinase, Tyrp1 has also been
speculated to be another tyrosinase or reveal the tyrosinase-
like activity. Tyrp1 shows tyrosine hydroxylase activity,
albeit under low substrate (L-tyrosine) concentration, but
no DOPA oxidase activity [19, 20]. Based on that human
Tyrp1 is involved in conversion of L-tyrosine to DOPA with
low turnover rates, sufficient to prime the system by the
generation of low amounts of DOPA, a necessary co-factor
for tyrosinase activity [21]. Tyrp1 has also been attributed
with various other catalytic functions including dopachrome
tautomerase (Dct), dihydroxyindole (DHI) oxidase [22] and
5,6-dihydroxyindole-2-carboxylic acid (DHICA) [23]. Muta-
genesis studies have recently confirmed that Tyrp1 is actively
involved in inactivation of the catalytic activity of tyrosinase
[24]. Observing the more number of pathological genetic
variants and their structural and functional aspects of OCA3
will aid in development of personalized medicine.

Several computational algorithms used for the accurate
prediction of OCA3 uncharacterized alleles for their dis-
ease related property. Mutations involved in OCA3 disorder
are hard to scrutinize using in vivo examinations. Hence,
an efficient experimental design specific to these diseases
are mandatory to observe the disease associated mutation
of respective SNPs. Several research articles have stated
is effectiveness in identifying the deleterious and disease-
associated mutations, thus predicting the pathogenic nsSNPs

in correlation to their functional and structural damaging
properties [25–28]. Computational studies have previously
provided an efficient platform for evaluation and analysis
of genetic mutations for their pathological consequences
and in determining their underlying molecular mechanism
[27–33]. Moreover the conformational changes in the 3D
structure of the protein account for the changes in its time
dependent physiological affinities and various biochemical
pathway alterations [34–37]. Here we used set of computa-
tional platforms that utilizes sequence-based conservation
profile, homology-based structure profile information, and
support vector algorithm used to examine the disease asso-
ciated nsSNPs. In this study we have applied a set of tools
like PolyPhen 2.0 [38], SIFT [39], I-mutant 3.0 [40], PAN-
THER [41], PhD-SNP [42], SNP&GO [43], Pmut [44], and
MutPred [45] to show greater accuracy for the prediction of
most disease-associated mutations in OCA3 gene and their
structural consequence. Further, we carried out molecular
dynamic simulations (MDS) to analyse the molecular and
structural basis of predicted disease associated nsSNPs. MDS
were applied to observe the motion trajectory and atomic
interaction of native and mutant (R326H and R356Q) Tyrp1
protein. The overall strategy implemented in this work is
shown in Figure 1.

2. Materials and Methods

2.1. Dataset. The data on human TYRP1 genes were col-
lected from OMIM [46] and Entrez gene on National
Center for Biotechnology Information (NCBI) Website.
The SNP information of TYRP1 gene was obtained from
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dbSNP (http://www.ncbi.nlm.nih.gov/snp/) [47] and Swis-
sprot databases [48–50]. The amino acid sequence of Tyrp1
protein was retrieved from theUniprot database (Uniprot ID:
P17643). In order to build the mutant structures, we induced
the point mutations in the position of 326 and 356 of Tyrp1
protein using SPDB viewer package [51]. These structures
were energetically optimized by applying the all atom OPLS
force field available in GROMACS package 4.5.3 [52].

2.2. Disease Related SNP Prediction. The single nucleotide
polymorphism occurring in the protein coding region may
lead to the deleterious consequences and might affect its
3D structure. Here we applied PolyPhen 2.0 [38], SIFT
[39], I-Mutant 3.0 [40], PANTHER [41], PhD-SNP [42],
SNP&GO [43], Pmut [44], and MutPred [45] tools in order
to examine the disease-associated nsSNP occurring in the
Tyrp1 protein coding region. PolyPhen 2.0 is based on
combination of sequence and structure based attributes and
uses naive Bayesian classifier for the identification of an
amino acid substitution and the impact of mutation. The
output levels of probably damaging and possibly damaging
were classified as functionally significant (≤0.5) and the
benign level being classified as tolerated (≥0.51) [38]. SIFT
prediction is based on the sequence homology and the
physicochemical properties of amino acidswhich are dictated
by the substituted amino acid. SIFT score ≥0.05 indicates the
amino acid substitution is intolerant or deleterious, whereas
the score ≤0.05 predicted it as tolerant [39]. I-Mutant 3.0
is a support vector machine (SVM) based tool. We used
the sequence based version of I-Mutant 3.0 that classifies
the prediction into three classes: neutral mutation (−0.5 ≤
DDG ≥ 0.5 kcal/moL), large decrease (<−0.5 kcal/moL), and
a large increase (>0.5 kcal/moL). The free energy change
(DDG) predicted by I-Mutant 3.0 is based on the difference
between unfolding Gibbs free energy change of mutant and
native protein (kcal/moL) [40]. PANTHER program is a
protein family and subfamily database which predicts the
frequency of occurrence of amino acid at a particular position
in evolutionary related protein sequences. The threshold
subPSEC score of −3 has been assigned below which the
predictions are considered as deleterious [41]. We filtered the
nsSNPs that were combinedly predicted to be deleterious and
damaging from these four servers. Further we used PhD-
SNP, SNP&GO, Pmut, and MutPred tools to examine the
disease-associated nsSNPs. PhD-SNP is SVMbased classifier,
trained over the million amino acid polymorphism datasets
using supervised training algorithm [42]. It predicts whether
the given amino acid substitution leads to disease associ-
ated or neutral along with the reliability index score [42].
SNP&GO retrieves data from protein sequence, evolutionary
information, and functions as encoded in the gene ontology
terms [43]. Pmut is a neural network based program which
is trained on large database of neutral and pathological
mutations [44]. Pmut uses 3 parameters including mutation
descriptors, solvent accessibility, and residue and sequence
properties to calculate the pathogenicity indexes of given
input mutation data ranging from 0 to 1. The mutations with
index score greater than 0.5 are predicted to be pathologically

significant [44]. MutPred is a web based tool, used to predict
the molecular changes associated with amino acid variants
[45]. It uses SIFT, PSI-BLAST, and Pfam profiles along with
some structural disorder prediction algorithms, including
TMHMM, MARCOIL, I-Mutant 2.0, B-factor prediction,
and DisProt [45]. Functional analysis includes the predic-
tion of DNA-binding site, catalytic domains, calmodulin-
binding targets, and posttranslational modification sites [45].
Combining the scores of all four servers, the accuracy of
prediction rises to a greater extent and finally we filtered the
most disease-associated mutation.

2.3.Modelling of Native andMutant TYRP1 Proteins. Accord-
ing to the annotated information available in UNIPROT
entry-P17643, the predicted deleterious mutation sites of
Tyrp1 proteinwere observed in the topological domainwhich
comprised between the regions 190–385. Hence, we modeled
Tyrp1 protein segment which consists of 196 amino acid
residues by I-TASSER server [53]. This program works by
combining the folds and secondary structure by profile-
profile alignment threading techniques for non-aligned
regions. For the submitted sequences, five 3D models were
obtained and the best model was selected based on the lowest
energy. Further the native structure was mutated with the
most deleterious substitution predicted in this study. In order
to build the mutant structures, we made a point mutation
in native Tyrp1 protein at R326H (arginine to histidine) and
R356Q (arginine to glutamine) using SPDB viewer [51]. The
native and mutant structures were energetically optimized
by applying the all atom OPLS force field available under
the GROMACS 4.5.3 package [52]. The quality of model
structures was verified using the PROCHECK [54] and
PROSA [55] programs.

2.4. Molecular Dynamics Simulation. Molecular dynamics
simulation was performed by using gromacs 4.5.3 package
[52] running on a single Intel Core2Duo machine with 3GB
RAM and running Ubuntu 11.10 Linux package. Structure of
native andmutant Tyrp1 proteinwas used as starting point for
MD simulations. Systems were solvated in a cubic box with
simple point charge (SPC) water molecules at 10 Å marginal
radius. At physiological pH the structures were found to be
negatively charged; thus in order to make the simulation sys-
tem electrically neutral, we added 10 sodium ions (Na+) to the
simulation box using the “genion” tool that accompanies with
gromacs package. Initially the solvent molecules were relaxed
while all the solute atoms were harmonically restrained to
their original positions with a force constant of 100 kcal/moL
for 5000 steps. After this, whole molecular system was
subjected to energy minimization for 5000 iterations by
steepest descent algorithm implementing GROMOS96 43a1
force field. Berendsen temperature couplingmethod [56] was
used to regulate the temperature inside the box. Electrostatic
interactions were computed using the Particle Mesh Ewald
method [57]. The ionization states of the residues were set
appropriate to pH 7 with all histidines assumed neutral. The
pressure was maintained at 1 atm with the allowed compress-
ibility range of 4.5e − 5 atm. SHAKE algorithm was used to
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constrain bond lengths involving hydrogen, permitting a time
step of 2 fs. Van der Waals and coulomb interactions were
truncated at 1.0 nm. The nonbonded pair list was updated
every 10 steps and conformations were stored every 0.5 ps.
Position restraint simulation for 500 ps was implemented
to allow solvent molecules to enter the cavity region of
structure. Finally, systems were subjected to MD simulation
for 20 ns. We then computed the comparative analysis of
structural deviations in native and mutant structure. RMSD,
RMSF, SASA, Rg,DSSP, and density plot analysis were carried
out by using g rms, g rmsf, g sas, g gyrate, do dssp, and
g density tool, respectively. Number of distinct hydrogen
bonds formed by specific residues to other amino acids
within the protein during the simulation (NH bond) was
calculated using g hbond. NH bond determined on the basis
of donor-acceptor distance smaller than 0.35 nm and of
donor-hydrogen-acceptor. All the graphs were plotted using
XMGRACE [58] program.

2.5. Principal Component Analysis. The calculation of the
eigenvectors and eigenvalues, and their projection along the
first two principal components, was carried out using essen-
tial dynamics (ED)method according to protocol [59] within
the GROMACS software package. The principle component
analysis or ED is a technique that reduces the complexity of
the data and extracts the concerted motion in simulations
that are essentially correlated and presumably meaningful
for biological function [59]. In the ED analysis, a vari-
ance/covariancematrix was constructed from the trajectories
after removal of the rotational and translational movements.
A set of eigenvectors and eigenvalues was identified by
diagonalizing the matrix. The eigenvalues represents the
amplitude of the eigenvector along the multidimensional
space, and the displacement of atoms along each eigenvector
shows the concerted motions of protein along each direction.
The movements of structures in the essential subspace were
identified by projecting the Cartesian trajectory coordinates
along the most important eigenvectors from the analysis.
Backbone C-alpha bonds trajectories were obtained using
g covar and g anaeig of gromacs utilities.

3. Results and Discussion

To determine the deleterious nonsynonymous single
nucleotide polymorphisms (nsSNPs), which might be in-
volved in inducing disease associated phenomena, is now
among the most important field of computational genomic
research. The disease associated mutations can be identified
with the help of genome sequencing and its analysis.
The advanced method in computational biology has now
enabled us to determine the deleterious nsSNPs in the target
candidate genes. Computational methods were applied
to study the protein structural and functional effect on
point mutation at molecular level. In this investigation we
implemented multiple computational methods to identify
the most likely pathogenic mutations in TYRP1 gene. Our
results also revealed that implementations of different
algorithms often serve as powerful tools for prioritizing

candidate functional nsSNPs. Here we used SIFT, PolyPhen,
I-Mutant 3.0, PANTHER, PhD-SNP, SNP&GO, Pmut, and
MutPred tools to examine the most deleterious and disease
associated nsSNPs from the SNP dataset. The combination
of methods based on evolutionary information and protein
structure and/or functional parameters were used in order
to increase the prediction accuracy.

3.1. Screening of Deleterious nsSNPs by PolyPhen 2.0, SIFT,
I-Mutant 3.0, and PANTHER Program. Out of 63 input
polymorphic dataset, 42 nsSNPs were found to be “dam-
aging” (0.5 to 1.000) to protein structure and function and
the remaining 21 nsSNPs were characterized as benign by
PolyPhen 2.0. Among these 42 deleterious nsSNPs, 15 SNPs
G63S,W249G, C303G, Y522C, G300E, A380S, V189L, R153C,
N132I, N435H, R374G, D343V, T262M, R326H, and R356Q
were reported to be highly deleterious with PolyPhen score of
1.000 (Table 1). In SIFT, 34 mutations (G63S, M266T, R146W,
W249G, A486T, R73W, T366M, C303G, Y522C, A380S,
S305R, G309E, V189L, A409V, L7P, D123V, A31G, N132I,
F383L, N96Y, N435H, R114C, G309R, R471W, D343V, G174L,
A24T, T262M, R93H, R505C, V319G, R326H, R93C, and
R356Q) were predicted to be deleterious with tolerance index
≥0.05 (Table 1). Among these, 17 mutations G63S, M266T,
W249G, C303G, G309E, V189L, N132I, N96Y, N435H, R114C,
G309R, R471W, D343V, G174L, T262M, R326H, and R356Q
were reported to be highly deleterious with SIFT score of
0.00 (Table 1). Furthermore, 29 mutations were identified as
deleterious and damaging in SIFT and PolyPhen 2.0 server
(Table 1) which also shows a strong correlation between the
prediction methodologies implemented by these two servers.
SIFT and PolyPhen were shown to have better performance
in identifying functional nsSNPs among other in silico tools
[60]. The accuracy of SIFT and PolyPhen was further val-
idated through our results, which makes these tools more
suitable for the prediction [61]. All the nsSNPs submitted to
PolyPhen 2.0 and SIFT were also submitted as input to the I-
Mutant 3.0 server. 45 mutations were predicted to affect the
stability of the protein structure by I-Mutant 3.0. Remaining
out of 18 mutations, 16 mutations showed the neutral effect
on protein structure and 2 mutations showed increased
stability of the structure. To further validate these results we
implemented HMM based statistical prediction method to
identify the functionally significant point mutations using
PANTHER server. The mutations with subPSEC score less
than −3 have been reported to be probably deleterious. 39
mutations with subPSEC score less than or equal to −3 were
characterized to be deleterious. We filtered 19 mutations
(M266T, R146W, W249G, C303G, Y522C, G309E, V189L,
A409V, F383L, N435H, G309R, D343V, G174L, T262M,
R93H, V319G, R326H, R93C, and R356Q) which were com-
monly predicted to be deleterious and damaging by SIFT,
PolyPhen 2.0, I-Mutant 3.0, and PANTHER servers (Table 1).

3.2. Prediction of Disease-Associated nsSNPs. We applied
PhD-SNP which is based on support vector machine tool to
further classify the predicted deleterious nsSNPs as disease
associated. Total 19 nsSNPs which were commonly predicted



BioMed Research International 5

Table 1: nsSNPs analyzed by four computational methods PolyPhen 2.0, SIFT, I-Mutant 3.0, and PANTHER in TYRP1 gene.

SNP ID Mutation PolyPhen 2.0 SIFT I-MUTANT 3.0 PANTHER
PSIC Prediction Score Prediction DDG Stability subPSEC Prediction

rs202189890 S270R 0.996 Damaging 0.18 Tolerated −0.43 Neutral −2.23829 Tolerated
rs202126779 T253M 0.996 Damaging 0.08 Tolerated −0.32 Decrease −3.02723 Deleterious
rs201899938 S8F 0.963 Damaging 0.7 Tolerated 0.20 Neutral −2.19231 Tolerated
rs201789348 E139K 0.301 Benign 0.24 Tolerated −0.97 Decrease −3.62832 Deleterious
rs201605146 S470N 0.134 Benign 0.36 Tolerated −0.48 Neutral −2.11901 Tolerated
rs201457510 G63S 1.000 Damaging 0.00 Deleterious −1.17 Neutral −4.06048 Deleterious
rs201345670 M266T 0.772 Damaging 0.00 Deleterious −1.63 Decrease −3.93879 Deleterious
rs201293896 R146W 0.975 Damaging 0.02 Deleterious −0.36 Decrease −5.75453 Deleterious
rs200882524 L487F 0.998 Damaging 0.23 Tolerated −0.98 Decrease −4.01429 Deleterious
rs200754545 W249G 1.000 Damaging 0.00 Deleterious −2.43 Decrease −7.90178 Deleterious
rs200607153 A486T 0.029 Benign 0.05 Deleterious −0.56 Decrease −2.56844 Tolerated
rs199989943 R73W 0.999 Damaging 0.02 Deleterious −0.24 Neutral −5.69984 Deleterious
rs199823942 T366M 0.014 Benign 0.01 Deleterious −0.43 Decrease −4.14092 Tolerated
rs193035382 C303G 1.000 Damaging 0.00 Deleterious −1.49 Decrease −3.02248 Deleterious
rs188236569 Y522C 1.000 Damaging 0.01 Deleterious −0.79 Decrease −4.39247 Deleterious
rs187959351 G300E 1.000 Damaging 0.86 Tolerated −0.39 Decrease −3.66042 Deleterious
rs184910238 A380S 1.000 Damaging 0.05 Deleterious −0.66 Decrease −2.88075 Tolerated
rs183546444 P476T 0.000 Benign 1.00 Tolerated −1.13 Decrease −2.05148 Tolerated
rs182508840 T275A 0.064 Benign 0.10 Tolerated −1.58 Decrease −2.92255 Tolerated
rs181755026 E524A 0.001 Benign 0.22 Tolerated −0.45 Decrease −2.15096 Tolerated
rs151091299 S305R 0.992 Damaging 0.01 Deleterious −0.22 Neutral −3.02846 Deleterious
rs150899857 R505H 0.753 Damaging 0.07 Tolerated −1.32 Decrease −3.32609 Deleterious
rs149856598 G309E 0.566 Damaging 0.00 Deleterious −0.80 Decrease −3.82367 Deleterious
rs149324507 V189L 1.000 Damaging 0.00 Deleterious −0.79 Decrease −3.93115 Deleterious
rs148777155 S498P 0.761 Damaging 0.19 Tolerated −0.27 Neutral −4.76166 Deleterious
rs148248971 A409V 0.972 Damaging 0.01 Deleterious −0.02 Decrease −3.75227 Deleterious
rs147212712 L7P 0.924 Damaging 0.01 Deleterious −1.44 Decrease NA NA
rs146962444 D123V 0.628 Damaging 0.03 Deleterious −0.34 Neutral −3.42156 Deleterious
rs146838872 V33A 0.000 Benign 0.45 Tolerated −0.86 Decrease −2.4943 Tolerated
rs146467307 V373I 0.013 Benign 0.54 Tolerated −0.61 Decrease −2.69258 Tolerated
rs146027807 R153C 1.000 Damaging 0.05 Tolerated −0.90 Decrease −5.95016 Deleterious
rs144438412 A67T 0.001 Benign 0.36 Tolerated −0.69 Decrease −2.56649 Tolerated
rs144206983 S207I 0.968 Damaging 0.24 Tolerated 0.43 Increase NA NA
rs143705229 A31G 0.159 Benign 0.02 Deleterious −1.39 Decrease −4.24808 Deleterious
rs143610120 N132I 1.000 Damaging 0.00 Deleterious 0.82 Increase −6.81596 Deleterious
rs143106698 F383L 0.999 Damaging 0.04 Deleterious −0.99 Decrease −3.52387 Deleterious
rs143004036 N96Y 0.987 Damaging 0.00 Deleterious −0.20 Neutral −4.96986 Deleterious
rs142019860 Q520K 0.067 Benign 0.05 Tolerated −0.16 Decrease −2.41741 Tolerated
rs141949653 N435H 1.000 Damaging 0.00 Deleterious −0.72 Decrease −4.94266 Deleterious
rs141834891 R23W 0.02 Benign 0.22 Tolerated 0.13 Neutral −2.04234 Tolerated
rs141196295 R114C 0.019 Benign 0.00 Deleterious −0.68 Neutral −4.80738 Deleterious
rs140233627 S506G 0.004 Benign 0.40 Tolerated −0.96 Decrease −2.00879 Tolerated
rs139946740 G309R 0.754 Damaging 0.00 Deleterious −0.56 Decrease −5.11275 Deleterious
rs139670838 R55H 0.771 Damaging 0.13 Tolerated −1.12 Decrease −3.93481 Deleterious
rs138272660 R471W 0.986 Damaging 0.00 Deleterious −0.23 Neutral −5.61942 Deleterious
rs138038972 R125K 0.000 Benign 0.21 Tolerated −1.00 Neutral −2.33412 Tolerated
rs121912778 R374G 1.000 Damaging 0.06 Tolerated −1.48 Decrease −3.98421 Deleterious
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Table 1: Continued.

SNP ID Mutation PolyPhen 2.0 SIFT I-MUTANT 3.0 PANTHER
PSIC Prediction Score Prediction DDG Stability subPSEC Prediction

rs113146199 D343V 1.000 Damaging 0.00 Deleterious 0.14 Decrease −4.03201 Deleterious
rs78071458 G174L 0.993 Damaging 0.00 Deleterious −0.29 Decrease −4.71688 Deleterious
rs61758405 A24T 0.219 Benign 0.02 Deleterious −0.52 Decrease −3.03529 Deleterious
rs61752939 T262M 1.000 Damaging 0.00 Deleterious −0.34 Decrease −5.00198 Deleterious
rs61752937 R93H 0.998 Damaging 0.04 Deleterious −1.60 Decrease −3.09393 Deleterious
rs61752864 A70T 0.859 Damaging 0.09 Tolerated −0.66 Decrease −2.58273 Tolerated
rs41306053 D308N 0.000 Benign 0.70 Tolerated −1.12 Decrease −2.04757 Tolerated
rs41305647 Q518H 0.000 Benign 0.23 Tolerated −0.43 Decrease −2.67099 Tolerated
rs41305645 Q530R 0.029 Benign 0.43 Tolerated −0.07 Neutral −2.1177 Tolerated
rs41303653 G485A 0.000 Benign 1.00 Tolerated −0.63 Neutral −3.35217 Deleterious
rs41303651 R505C 0.861 Damaging 0.01 Deleterious −0.89 Neutral −2.64052 Tolerated
rs35197549 V319G 0.997 Damaging 0.01 Deleterious −1.86 Decrease −3.20938 Deleterious
rs16929374 R326H 1.000 Damaging 0.00 Deleterious −1.21 Decrease −4.86382 Deleterious
rs3202399 E413K 0.976 Damaging 0.18 Tolerated −1.07 Decrease −2.76125 Tolerated
VAR 068176 R93C 0.999 Damaging 0.01 Deleterious −1.24 Decrease −4.10005 Deleterious
VAR 026828 R356Q 1.000 Damaging 0.00 Deleterious −1.49 Decrease −5.86235 Deleterious
SNPs highlighted in bold are predicted to be deleterious.

in SIFT, PolyPhen 2.0, I-Mutant 3.0, and PANTHER tools
were further used in PhD-SNP server. Out of 19 mutations,
16 of them (R146W, C303G, G309E, V189L, A409V, F383L,
N435H, G309R, D343V, G174L, T262M, R93H, V319G,
R326H, R93C, and R356Q) were predicted to be disease
associated (Table 2). In SNP&GO, 19 nsSNPs were predicted
to be disease associated. To verify this prediction, we further
employed artificial neural network (ANN) based Pmut tool.
Out of 19 nsSNPs, 10 mutations showed pathogenecity and
remaining 9 nsSNP showed as neutral (Table 2). Particularly,
R326H showed higher pathogenecity level with pathogenicity
index of 0.9314 (Table 2). 8 mutations (R146W, G309E,
G309R, D343V, T262M, R93H, R326H, and R356Q) were
predicted as most disease associated by PhD-SNP, SNP&GO,
and Pmut servers. These 8 mutations were further analysed
by MutPred tool to predict the SNP disease-association
probability and probable change in themolecularmechanism
in the mutant. We found R326H to be highly deleterious
with general probability (𝑔) scores of 0.938 and was predicted
to induce the loss of stability with (𝑝) score of 0.0202,
showing confident hypothesis. R356Q was found to be highly
deleterious with general probability (𝑔) scores of 0.801 and
was predicted to induce the loss of catalytic residue at R356
with (𝑝) score of 0.0446, showing confident hypothesis. At
the end of somanymutations considered, we screenedR326H
and R356Q as the most deleterious and disease associated
mutation in TYRP1 gene (Table 3). This prediction could be
endorsed with the observed experimental data [62].

3.3. Modelling of Protein. Thehuman Tyrp1 protein (between
domain regions 190–385) wasmodelled by automated protein
structure prediction program, I-TASSER [53]. The program
used more than ten templates to model the protein. The

top most template (PDB ID: 3nm8A) has covered 86% of
the Tyrp1 protein query sequence. The best structure with
high confidence score was collected and used for further
investigations. The disease associated mutations of R326H
and R356Q can probably alter the native conformation of the
Tyrp1 protein structure. Hence we made a point mutation
in native Tyrp1 protein at the position of 326 (arginine to
histidine) and 356 (arginine to glutamine) to build themutant
structures. The quality of the modeled structure of native
and mutant Tyrp1 protein was evaluated independently by
the PROCHECK [54] and PROSA [55] programs, which
showed good stereochemical properties of the modeled
proteins. Native Tyrp1 protein showed 91.7% of residues
in most favoured and allowed region and 𝑧-score value of
−3.4. Mutant of R326H showed 92.3% of residues in most
favoured and allowed region and 𝑧-score value of −2.13.
Mutant of R356Q showed 92.3% of residues in most favoured
and allowed region and 𝑧-score value of −2.81. Native and
mutant (R326H and R356Q) Tyrp1 structures showed the
𝑔-factor in the ranges of 0.40, 0.45, and 0.46, respectively.
The overall 𝐺-factors of native and mutant Tyrp1 protein
structures (acceptable between 0 and 0.5) were produced
by PROCHECK in the range of 0.40–0.46. These scores
implicate high confidence level and hence the structures were
selected for further MD analysis.

3.4. Molecular Dynamics Simulation. To understand the
structural and functional behaviour of the prioritized disease
associated mutations, we performed molecular dynamics
simulation for native and mutant Tyrp1 proteins. The fol-
lowing seven factors, namely, tolerance index, PSIC score,
DDGvalue, subPSEC score, disease-association study, patho-
genecity index, general score (𝑔), and property score (𝑝),
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Table 2: The disease associated SNPs are predicted from PHDsnp, SNP&GO, and Pmut servers.

SNP IDs Mutation PHDsnp results SNP&GO Pmut
Score Prediction

rs201345670 M266T Neutral Disease 0.4759 Neutral
rs201293896 R146W Disease Disease 0.6728 Pathological
rs200754545 W249G Neutral Disease 0.5638 Pathological
rs193035382 C303G Disease Disease 0.2516 Neutral
rs188236569 Y522C Neutral Disease 0.6752 Pathological
rs149856598 G309E Disease Disease 0.8774 Pathological
rs149324507 V189L Disease Disease 0.4793 Neutral
rs148248971 A409V Disease Disease 0.4533 Neutral
rs143106698 F383L Disease Disease 0.3564 Neutral
rs141949653 N435H Disease Disease 0.1202 Neutral
rs139946740 G309R Disease Disease 0.6503 Pathological
rs113146199 D343V Disease Disease 0.5798 Pathological
rs78071458 G174L Disease Disease 0.3075 Neutral
rs61752939 T262M Disease Disease 0.6624 Pathological
rs61752937 R93H Disease Disease 0.6320 Pathological
rs35197549 V319G Disease Disease 0.2561 Neutral
rs16929374 R326H Disease Disease 0.9314 Pathological
VAR 068176 R93C Disease Disease 0.1465 Neutral
VAR 026828 R356Q Disease Disease 0.6210 Pathological
Disease associated SNPs are displayed in bold.

Table 3: The 𝐺 score, 𝑃 score, molecular variations, and prediction reliability calculated from MutPred server. Here the most disease
associated mutations are displayed in bold.

SNP ID Mutation MUTPred
𝐺 score 𝑃 score Molecular Variation Prediction reliability

rs201293896 R146W 0.524 0.0566 Loss of disorder No reliable Inference
rs149856598 G309E 0.563 0.0869 Loss of catalytic residue No reliable inference
rs139946740 G309R 0.611 0.0971 Gain of solvent accessibility No reliable inference
rs113146199 D343V 0.613 0.0676 Loss of disorder No reliable inference
rs61752939 T262M 0.599 0.079 Loss of helix No reliable inference
rs61752937 R93H 0.354 0.0986 Loss of disorder No reliable inference
rs16929374 R326H 0.938 0.0202 Loss of stability Confident hypothesis
VAR 026828 R356Q 0.801 0.0446 Loss of catalytic residue at R356 Confident hypothesis

which correspond to conformational changes in protein
residues due to themutation,may lead to affect the functional
behaviour of Tyrp1 protein. The results obtained from above
analysis further inspired us to study the dynamic behaviour
of native andmutant (R326H and R356Q) Tyrp1 proteins.We
studied RMSD, RMSF, Rg, SASA, and NH bond variations,
DSSP, density plot, and ED analysis between the native
and mutant (R326H and R356Q) Tyrp1 protein structures.
Further, the RMSD for all C𝛼 atoms from the initial structure
was examined to study the convergence of the protein system.
In Figure 2(a), native and both mutant (R326H and R356Q)
structures showed similar way of deviation till 3050 ps from
their starting structure, resulting in a backbone RMSD of
∼0.14 to 0.52 nm during the simulations. After this, native
structure retained the maximum deviation till the end of
the simulation resulting in the backbone RMSD of ∼0.51 to
∼0.66 nm, respectively. R326H and R356Qmutant structures

showed theminimumdeviation till the end of the simulation,
resulting in the backbone RMSD of ∼0.37 to ∼0.51 nm and
∼0.38 to ∼0.54 nm, respectively.

This magnitude of fluctuations, together with very small
difference between the average RMSD values after the relax-
ation period (∼0.52 nm), leads to produce stable trajectories
in simulation, and it provided an appropriate basis for further
analysis. The average value of RMSD during the simulation
time period both native and mutant (R326H and R356Q)
structures is signified in Table 4. Through the aim of deter-
mining RMSF we predicted whether the mutation disturbs
the dynamic behaviour of residues.TheRMSF values of native
and mutant (R325H and R356Q) structures were collected
and shown in Figure 2(b). Analysis of fluctuation score
depicted that the higher degree of flexibility was observed
in native structure than mutant (R326H and R356Q) Tyrp1
protein structures. The radius of gyration (Rg) is defined
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Figure 2: RMSD, RMSF, Rg, SASA, and NH bond of native and mutant Tyrp1 proteins versus time at 300K. Native is shown in black, mutant
(R326H) in green, and mutant (R356Q) in yellow.

Table 4: Average values of RMSD, Rg, SASA, NH-bonds, trace of
co-variance, and density value of native and mutant (R326H and
R356Q) structures.

Native Mutant (R326H) Mutant (R356Q)
RMSD 0.62 0.50 0.52
Rg 1.84 1.81 1.79
SASA 74.5 71.2 69.1
NH-bonds 84.7 93.2 92.4
Density value 41.9 52.2 52.3
Trace of Co-variance 11.56 10.74 8.16
RMSD: root-mean-square deviation; Rg: radius of gyration; SASA: solvent
accessible surface area; NH bonds: number of hydrogen bonds. The value of
RMSD, Rg and SASA, co-variance, and total helicity are given in nm,whereas
density value is given in nm−3.

as the mass-weight root-mean-square distance of collection
of atoms from their common center of mass. Therefore it
provides an insight into the overall dimension of the protein.
Radius of gyration plot for C𝛼 atoms of protein versus time
at 300K is shown in Figure 2(c).

In Figure 2(c), at the end of the simulation native struc-
tures showed greater Rg value than mutant (R326H and
R356Q) structures. The native structure showed Rg value of

∼1.76 nm at 0 ps, ∼1.82 nm at 4000 ps, ∼1.82 nm at 9500 ps,
∼1.85 nm at 11800 ps, ∼1.86 nm at 14600 ps, ∼1.86 nm at
17500 ps, and ∼1.87 nm at 20000 ps. R326H mutant struc-
ture showed Rg value of ∼1.76 nm at 0 ps, ∼1.78 nm at
4000 ps, ∼1.86 nm at 9500 ps, ∼1.84 nm at 11800 ps, ∼1.82 nm
at 14600 ps, ∼1.81 nm at 17500 ps, and ∼1.83 nm at 20000 ps.
R356Q mutant structure showed Rg value of ∼1.77 nm at
0 ps, ∼1.84 nm at 4000 ps, ∼1.79 nm at 9500 ps, ∼1.79 nm at
11800 ps, ∼1.80 nm at 14600 ps, ∼1.77 nm at 17500 ps, and
1.78 nm at 20000 ps, respectively. The average Rg value was
1.84 nm in native, whereas the mutant R326H and R356Q
structures showed average Rg value of 1.81 and 1.79 nm,
respectively, signified in Table 4. A notable change was
observed in both mutant (R326H and R356Q) structures as
compared to the native. The change of SASA for native and
mutant (R326H and R356Q) proteins with time is shown
in Figure 2(d). Solvent accessibility surface area accounts
for bimolecular surface area that is assessable to solvent
molecules. Decreased value of SASA in mutant structures
denotes its relatively shrunken nature as compared to the
native structure. The change of SASA of native and mutant
proteinswith time is shown in Figure 2(d). Native andmutant
(R326H and R356Q) structures showed similar fashion of
deviation till 12000 ps from the initial structure, but after
this native structure showed greater value of SASA than
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Figure 3: Projection of the motion of the protein in phase space along the first two principal eigenvectors at 300K. (a) Native is shown in
black, mutant (R326H) in green, and mutant (R356Q) in yellow. For clarity’s sake, each trajectory is also shown separately in (b), (c), (d).

mutant (R326H and R356Q) structures. The average SASA
value was 74.5 in native, whereas the mutant (R326H and
R356Q) structures showed average SASA value of 71.2 and
69.1, respectively, as depicted in Table 4. We also observed
notable differences in NH bond pattern during simulation,
whereas the native structure showed less participation in NH
bonds formation with other amino acid, while in mutant
(R326H and R356Q) structures there was greater number of
NH bonds (Figure 2(e)). The average value of NH bond was
signified in Table 4.

The NH bond results of native and mutant Tyrp1
structure according to the RMSD, RMSF, Rg, and SASA
plot results depicted that the mutant (R326H and R356Q)
structural conformation became rigid upon mutation which
may lead to disturb the functional behaviour of the protein.
This was further supported by the atomic density plot and
PCA analysis. The consequences of these molecular changes
were clearly observed in the atomic density distribution plot.

There was a significant change in density distribution in
mutant as compared to the native and it was depicted.
Moreover the native structure shows highest atomic
density distribution of 41.9 nm−3 but mutant (R326H and
R356Q) structures showed 52.2 and 52.3 nm−3, respectively,
(Table 4) (Figure S1a-c available online at: http://dx
.doi.org/10.1155/2013/697051). It was further indicated that
native structure has more flexibility than mutant (R326H
and R356Q) structures.

The spectrum of the corresponding eigenvalues indicated
the level of fluctuation and dynamic behaviour of protein
molecule in the system and was basically confined within
the first two eigenvectors. Both mutant (R326H and R356Q)
structures covered a small region of phase space particularly
along PC1 plane than native (Figure 3(a)). Overall flexibility
of two proteins was further examined by the trace of the
diagonalized covariance matrix of the C𝛼 atomic positional
fluctuations. We obtained the following values for native and

http://dx.doi.org/10.1155/2013/697051
http://dx.doi.org/10.1155/2013/697051
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Figure 4: Time evolution of the secondary structural elements of the native and mutant (R326H and R356Q) Tyrp1 proteins at 300K (DSSP
classification). (a) Native, (b) mutant R326H, and (c) mutant R356Q.

mutant (R326H and R356Q) structures: 11.56 nm2, 10.74 nm2,
and 8.16 nm2, respectively (Table 4), and again it was con-
firming the overall increased flexibility in native than mutant
(R326H and R356Q) structures at 300K.

We applied the DSSP algorithm [63] to monitor changes
in secondary structure during the simulations. As shown in
Figures 4(a)–4(c), a difference is observed only at the level of
Helix from the amino acid residual position of 150 to 175 and
the level of sheet from the amino acid residual position of 5
to 20. In DSSP, the most significant structural change was an
increase in helical content and absence in 𝛽-sheet, which was
observed in both mutant (R326H and R356Q) structures.

To examine how the structure got damaged and leads to
affect the functions upon mutation, we analysed the native
and mutant (R326H and R356Q) structures at different time
scales (Figure 5). It was clearly observed that there is contin-
uous loss of helix in native structure than mutant structures
till the end of the simulation. This was well supported by
the DSSP analysis. It indicates that both mutant (R326H and
R356Q) structures showed an increase in helical content and
total absence in 𝛽-sheet in the amino acid residual position
from 150 to 170 and 5 to 20, respectively. In general, helices
are mostly rigid, whereas spanning loop regions are mostly
flexible. [64–66]. Based on that here, both mutant structures
(R326H and R356Q) showed more helical content which

leads to more rigidity in the conformation. On the basis of
DSSP analysis, it was confirmed that due to mutation the
Tyrp1 structure became rigid.Therefore, it seems evident that
both mutations (R326H and R356Q) have cruel damaging
impact on protein structural orientation and its function.This
prediction is also endorsed with the observed experimental
data [62, 67]. This study provides an essential insight into
the underlying molecular mechanism of Tyrp1 protein upon
mutation and in future it may help to develop a personalized
medicine for OCA3.

4. Conclusion

Computational analysis has now become a roadmap to define
a standard disease specific SNP at molecular level. In this
study we screened two most disease associated mutations
(R326H and R356Q) which are related to OCA3. Molecular
dynamics simulation approaches have also been extensively
used to report the structural consequences of the deleterious
predicted point mutations. The flexibility loss is observed
in RMSD, RMSF, Rg plot which is further supported by
a decrease in SASA value in both mutant structures. This
may produce a major impact on the structural conformation
of Tyrp1 protein, which also affects the function of Tyrp1
protein. Due to mutation, the structure became more rigid
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Figure 5: Snapshots of native and mutant (R326H and R356Q) Tyrp1 protein conformation at different simulation time steps.

which is also supported by NH bond, density plot, PCA, and
DSSP analysis. Our result suggests a significant computa-
tional roadmap to detect the OCA3 associated SNPs from the
large SNP dataset and reduce the expenses in experimental
depiction of pathological nsSNPs. Further the predicted
R326H and R356Q mutations can be further studied by wet
lab scientist to investigate the evidence of Tyrp1 protein
mutation in association to OCA3 and develop a potent drug
target for OCA3.
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OCA3: Oculocutaneous albinism type3
Tyrp1: Tyrosinase-related protein-1
MDS: Molecular dynamics simulation
RMSD: Root-mean-square deviation
RMSF: Root-mean-square fluctuation
Rg: Radius of gyration
SASA: Solvent-accessible surface area
NH bonds: Number of hydrogen bonds
PCA: Principal component analysis
DSSP: Definition of secondary structure of proteins.

Acknowledgments

The authors gratefully acknowledge the management of
Vellore Institute of Technology University for providing the

facilities to carry out this work. They thank the anonymous
reviewers for their helpful comments and critical reading of
the paper.

References

[1] V. V. V. S. Murty, B. Bouchard, S. Mathew, S. Vijayasaradhi,
and A. N. Houghton, “Assignment of the human TYRP (brown)
locus to chromosome region 9p23 by nonradioactive in situ
hybridization,” Genomics, vol. 13, no. 1, pp. 227–229, 1992.

[2] S. Shibahara, H. Taguchi, R. M. Muller et al., “Structural
organization of the pigment cell-specific gene located at the
brown locus in mouse: its promoter activity and alternatively
spliced transcripts,” The Journal of Biological Chemistry, vol.
266, no. 24, pp. 15895–15901, 1991.

[3] R. A. Sturm, B. J. O’Sullivan, N. F. Box et al., “Chromosomal
structure of the humanTYRP1 and TYRP2 loci and comparison
of the tyrosinase-related protein gene family,”Genomics, vol. 29,
no. 1, pp. 24–34, 1995.

[4] N. F. Box, J. R. Wyeth, C. J. Mayne, L. E. O’Gorman, N. G. Mar-
tin, and R. A. Sturm, “Complete sequence and polymorphism
study of the human TYRP1 gene encoding tyrosinase-related
protein 1,”Mammalian Genome, vol. 9, no. 1, pp. 50–53, 1998.

[5] S. Vijayasaradhi, P. M. Doskoch, and A. N. Houghton,
“Biosynthesis and intracellular movement of the melanosomal
membrane glycoprotein gp75, the human b (Brown) locus
product,” Experimental Cell Research, vol. 196, no. 2, pp. 233–
240, 1991.

[6] R. Halaban and G. Moellmann, “Murine and human b locus
pigmentation genes encode a glycoprotein (gp75) with catalase



12 BioMed Research International

activity,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 87, no. 12, pp. 4809–4813, 1990.

[7] G. Prota, Melanins and Melanogenesis, Academic Press, New
York, NY, USA, 1992.

[8] V. J. Hearing Jr., “Mammalian monophenol monooxygenase
(tyrosinase): purification, properties, and reactions catalyzed,”
Methods in Enzymology, vol. 142, pp. 154–165, 1987.

[9] G. Prota, “Some new aspects of eumelanin chemistry,” Progress
in Clinical and Biological Research, vol. 256, pp. 101–124, 1988.

[10] S. Alonso, N. Izagirre, I. Smith-Zubiaga et al., “Complex sig-
natures of selection for the melanogenic loci TYR, TYRP1 and
DCT in humans,” BMCEvolutionary Biology, vol. 8, no. 1, article
74, 2008.

[11] S. Ito, “A chemist’s view of melanogenesis,” Pigment Cell Re-
search, vol. 16, no. 3, pp. 230–236, 2003.
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