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Abstract
Using a microscopic molecular theory, we determine the bending and saddle-splay constants of
three-component lipid bilayers. The membrane contains cholesterol, dipalmitoyl-
phophatidylcholine (DPPC), and dioleoylphosphatidylcholine (DOPC) and the predictions of the
theory have been shown to qualitatively reproduce phase diagrams of giant unilamellar vesicles
(GUVs) of the same three components. The bending and saddle-splay constants were calculated
for gel, liquid-ordered (lo), and liquid-disordered (ld) phases. By proper expansion of the free
energy, the molecular theory enables us to determine the effects of the mode of membrane
bending deformation on the value of the elastic constants for different phases. In particular, we
refer to the ability of the molecules to arrange the composition between the two monolayers upon
deformation. The bending and saddle-splay constants obtained from the free energy expansion can
be expressed in terms of moments of the local lateral pressures and their derivatives all evaluated
for a symmetric planar bilayer. The effect of blocked vs free exchange of lipids across the two
monolayers on the values of the bending constant is as high as 50 kBT in the ld phase to as high as
200 kBT in the lo phase. These results show that one must strongly consider the mode of
deformation in determining the mechanical properties of lipid bilayers. We discuss how the
different contributions to the lateral pressures affect the values of the elastic constants including
the effects of cholesterol concentration and temperature on the membrane elastic constants. We
also calculate the equilibrium binding concentrations of lipid tail anchors as a function of
membrane curvature by explicitly determining the chemical potential difference of species across
a curved bilayer. Our results are in excellent agreement with recent experimental results.

1 Introduction
The elastic properties of lipid bilayers are a key component to the understanding of many
cellular processes 1. Several examples include endocytosis, cell division, and pathogen
infection as well as many others 2. The bending modulus can be experimentally obtained by
several techniques 1,3–9, and the findings of these experimental studies show that for
phospholipid membranes the bending constant is typically on the order of ~ 10kBT.
Simulation work on determining the bending modulus by both studying undulations 10–13

and measuring tensile forces in tethers 14,15 are in agreement with experimental results.
Recently, there has been simulation work on determining the Gaussian curvature modulus of
lipid bilayers showing that the order of magnitude is also ~ −10kBT 16. On the theoretical
level, most studies on the elastic properties of surfactant mixtures have used
phenomenological models 17–19. In this work we use a molecular mean-field theory that
explicitly accounts for the physical conformational degrees of freedom of the hydrophobic
tails of the lipids 20. Previous work with this molecular theory was used to determine the
equilibrium elastic properties of lipid bilayers by expanding the free energy of a symmetric
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planar bilayer in curvature 21,22. This method has several powerful advantages over other
theoretical methods in that the molecular level detail of the lipids is properly accounted for,
and the elastic moduli can be calculated for different conditions of deformation without the
need to perform explicit calculations for each particular mode of deformation 21. Examples
of using this method of expanding the molecular theory free energy for determining the
elastic properties of surfactants are determining the stability of lipid bilayers grafted with
poly(ethylene oxide)23,24, as well as determining the elastic properties of diblock copolymer
films at liquid-liquid interfaces 25 and cylindrical micelles 26.

An extension of the molecular theory to account for the attractive energy between lipid tails
has been shown to qualitatively reproduce phase diagrams of giant unilamellar vesicles
(GUVs) of dipalmitoyl-phophatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC),
and Cholesterol 27–30 will be used in this work. As mentioned above, one of the major
advantages to using the curvature expansions of the free energy to calculate the elastic
properties of the lipid bi-layer is that it is relatively easy to compare different conditions of
deformation. We calculate the area per molecule of the planar bilayer by minimizing the free
energy with respect to area 27. This area per molecule, a(0), is taken to be the area of
the ”surface of inextension” or ”neutral surface” and this is the only surface of the film that
does not change its area upon deformation 21. In bilayer systems, the molecules have the
possibility of partitioning between the two monolayers (leaflets) in order to minimize their
free energy at different curvatures. We will consider several modes of deformation in regard
to the exchange of lipids between the two leaflets. The first is call ”blocked exchange” and
this corresponds to the case that the molecules are not allowed to rearrange. Another mode
of deformation is called ”free exchange”, and that is the case where the molecules are
allowed to flip between the two leaflets to allow the free energy for a given curvature to
reach a minimum 21. There are several other modes that are determined by constraining
either one or two of the lipid species to not be able to rearrange upon curvature deformation.
Under blocked exchange the chemical potentials of the lipid species are not equal in the two
leaflets due to the constraint of the lipids not being able to rearrange between the two
monolayers. Blocked exchange sets up a chemical potential gradient that would be the
driving force for lipids to flip when this constraint is removed. Under free exchange of
lipids, the chemical potentials of each species are equal in the two leaflets, however the
value of these chemical potentials are a function of curvature and do not have the same
value as the chemical potentials for the symmetric planar bilayer.

Throughout this work we are deforming the bilayer under a constant total number of
molecules. The chemical potential of the lipid species in both leaflets upon a curvature
deformation under free exchange is not necessarily the same as the chemical potential in the
planar bilayer. These considerations become very important when comparing our theoretical
results with experimental data. For example, we will show that if cholesterol is allowed to
flip-flop in the DPPC/DOPC/Cholesterol system and the other lipid species are blocked,
then the bending elastic constant is 20–40 kBT larger then the case where all of the lipid
species are allowed to be exchanged from leaflet to leaflet. The very large role of the mode
of deformation on the quantitative determination of the elastic constants presents an
important caveat on the value that should be attributed to bending constants when using
phenomenological approaches, particularly in systems where the time scale of the
deformation is shorter than the ability of lipids to flip-flop.

In the next section we provide a review of the molecular theory, and we show how the free
energy for the planar bilayer can be expanded in terms of curvature deformations to
determine the elastic properties of the system. In section 3 we present the results for the
saddle-splay and bending elastic constants for both a pure component DPPC bilayer at the
main-chain transition temperature of 315K and the results for the three component DPPC/
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DOPC/Cholesterol system at a lo-ld tie-line at 300K and 290K. We also include a brief
discussion of work on the binding of lipid chain anchors as a function of the curvature of a
pure component DPPC bilayer, and we directly compare these results with experimental
data. We conclude in section 4 by summarizing our findings.

2 Molecular Theory and Elastic Constants from Lateral Pressures
In this section we will give some details of the molecular theory used throughout this work
as well as a brief derivation of the elastic constants from their phenomenological definitions.
A greater detailed description of the molecular theory used in this work can be found in
Uline et al. 29.

2.1 The Model
We consider a fluid lipid bilayer of thickness 2l, that is composed of a ternary system of
cholesterol, a lipid with two saturated hydrocarbon chains of 16 carbons, such as
dipalmitoylphosphatidylcholine (DPPC), and a lipid with two mono-unsaturated
hydrocarbon chains of 18 carbons, such as dioleoylphosphatidyl-choline (DOPC). The
chains are described by Flory’s Rotational Isomeric States Model 31 in which each CH2
group is in one of three configurations: the lowest energy trans, or gauche-plus or gauche-
minus both of which are of a energy, 500 cal/mol, greater than that of the trans
configuration. There are N molecules of which a fraction, xc, is cholesterol, xs, is saturated
lipid, and xu, is unsaturated lipid. Let us denote the number of molecules of species i
attached to the external interface of the bilayer as Ni,E, and correspondingly the number of
molecules of species i attached to the internal interface as Ni,I. We will denote the fraction
of these molecules by xi,E = Ni,E/(Ni,E + Ni,I). For a symmetric planar bilayer xi,E = xi,I =
0.5, but rearrangement of the molecules upon bending could lead to deviation of the fraction
in each leaflet from one-half 21. We define the z axis to be perpendicular to the interfaces
with its origin at the midplane of the bilayer. The total area at distance z, parallel to the
midplane of the bilayer, is given by 21

(1)

where C1 and C2 are the principal curvatures defined as Ci = 1/Ri, where Ri is the radii of
curvature of the midplane of the bilayer. We use a(z) to denote the average area available
per molecule at a distance z from the midplane of the bilayer, a(z) = A(z)/N. a(0) is the
molar area of the midplane of the bilayer, the total volume of the bilayer divided by its
thickness 2l:

Here νs, νCH, and νc are the volumes of a CH2 unit, of half a –CH=CH– unit, and of each
carbon unit in cholesterol. The volume of the monomer unit CH2 is taken to be νs = 27Å3,
and that of a CH3 group is 54 Å3. Each half of the –CH=CH– segment of the cis-unsaturated
bond is assigned a volume of νCH = 0.8 νs. The number of carbons in each saturated chain
is ns = 16, while the number of carbons in each unsaturated chain is nu = 18. The number of
carbons in cholesterol is nc = 27, and the volume of the carbons is νc = 21.0Å3.

We solve the molecular theory under the constraint that the total density of the hydrophobic
region is a constant (i.e. that it be incompressible) 27–30. The constant density constraint
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implies that the average area occupied by the molecules in any layer within the hydrophobic
core must be equal to the average available area. That is,

(2)

for −l < z < l, where δ = I,E and < vi, δ (z) > is the ensemble-averaged contribution to the

volume of the hydrophobic core at z from the molecules of species i in the leaf δ.  is the

number of tails of species . The constraint is imposed by means of a
local Lagrange multiplier, p(z;c⃗), where the explicit dependence on curvature c⃗ = [C1, C2] is
explicitly included.

The molecular theory works by explicitly writing each of the contributions to the free energy
and then minimizing the free energy with respect to the free variables (for more details
please see previous work with this model 29. Through minimization we obtain the
probability of finding the chain of molecular species j in leaf δ in a particular conformation
specified by the index αj,δ, one with a total internal energy ε (αj,δ). The internal energy
arises from the gauche bonds whose energies exceed that of the trans configuration. The
probability distribution functions have the same form for all of the components:

(3)

where β = 1/kBT and q j, δ (c⃗) is the conformational part of the partition function of a single
chain of component j

(4)

The mean-fields βbi(z,c⃗) act upon the orientation of a molecule of species i at the coordinate
z and result from the average orientational interactions arising from the other molecules.
They are determined by the equations

(5)

where j runs over the three components. The fields acting on saturated or unsaturated lipids
are identical, βbs(z)dz = βbu(z)dz ≡ βbl (z)dz. < ξi,δ(z) > is the ensemble average of the
local density of bonds weighted by their relative orientation to the bilayer normal 27–30. We
take the strengths of the local interactions between bonds in lipid tails to be the same
irrespective of whether the bonds are in a saturated or unsaturated chain: Jss = Juu = Jsu = Jll,
Thus the difference in free energy between saturated and unsaturated lipids arises solely
from the fact that the configurations of these lipids differ due to the presence of the double
bond, and not to any explicit difference in interaction energies.

The strength of the interaction between lipid chain segments, Jll, is set such that the
calculated main-chain transition temperature of a lipid with two saturated tails of 16
carbons, C16:0, is equal to that of dipalmitoylphosphatidylcholine, (DPPC), T = 315K. The
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main-chain transition temperature is the point where the gel phase is in equilibrium with the
liquid-disordered (ld) phase. The conditions for phase equilibrium are that the temperature,
surface tension, and the chemical potential of each of the molecular species be the same in
both phases. Note that the surface tension of the equilibrium symmetric planer bilayer
system is zero 27–29. This determines that Jll = 3.1 × 10−3kBT*(T* = 315K) for our
calculations. The three-component bilayer system has two additional free parameters that
need to be set, Jlc and Jcc. To obtain the best qualitative fit of our phase diagram to those of
experiment, we have chosen Jlc = 0.85Jll and Jcc = 0.80Jll. For a sample three component
phase diagram and more information on the phase equilibrium calculation please see Uline
et al. 29. We will provide the explicit details of the tie-lines used in the calculations when the
results are presented below.

The three equations (2), (3), and (5) comprise the set of self-consistent equations whose
solution yields the equilibrium values of the fields p(z, c⃗) and bi(z, c⃗) from which all
densities and the free energy follow. The minimized free energy of our system is

(6)

The thermal wavelength of the i’th component is denoted λi. The first term on the right-
hand side of equation 6 is the contribution of the polar head groups of the lipids interacting
with the surrounding water both at z = l and z = −l. We use the opposing force model of
Tanford 32, in which there are attractive interactions arising from the hydrocarbon-water
surface tension and repulsive terms that account, in an approximate way, for the steric
interactions between the head groups. This contribution to equation 6 is different from
previous work using this model by the inclusion of the additional repulsive interaction
accounting for the excluded volume of the phosphocholine head groups of DPPC and
DOPC 24. We take the parameter a0 to be equal to 30Å2/molecule, and the fact that
cholesterol does not share the same phosphocholine head group as the two other lipids is the
reason for the (1 − xc) term in this expression. γ0 is the bare water-oil interfacial tension
taken to be 0.12kBT/Å2. The second term in equation 6 is the contribution to the total free
energy from the translation of the lipids, and the remaining terms are the collective
contributions of the hydrophobic tails of the lipids which are described in detail in previous
work 27–30. It is important to note that the xi,δ terms and any term that is an ensemble
average, 〈…〉, in equation 6 are also explicit functions of the the curvature, c⃗.

2.2 Phenomenological Definition of the Elastic Constants
In this section we expand the free energy in terms of the principal curvatures in order to get
an expression of how the free energy changes upon elastic deformations. For a symmetric
layer, the surface of inextension (the surface where the area does not change upon
deformation) is at the midplane 21. The expansion is preformed at constant area per
molecule, and the area is that of the surface of inextension. It is convenient to use the sum,
C+ = C1 + C2, and the difference, C− = C1 − C2, curvatures as the variables for the
expansion 21. Expanding the free energy up to quadratic terms around C+ = C− = 0 (planar
configuration), we obtain
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(7)

where we take w = βW/N. The terms linear in C− in equation 7 must vanish due to
symmetry 21. We get the following expression for the expansion of the free energy

(8)

Using Helfrich’s expression for the curvature free energy per unit area 33, one can obtain the
spontaneous curvature, C0, the bending (splay) constant, k, and the saddle-splay constant, k̄,
by their relation to the curvature derivatives used in the expansion of the free energy 21:

(9)

We can take the appropriate derivatives of equation 6 to obtain the elastic constants in terms
of the curvature derivatives of π(z, c⃗), bi(z, c⃗), and xi,E. The spontaneous curvature and
saddle-splay constants are

(10)

The bending constant, k, is a more complicated expression due mostly to its dependence on
the derivative ∂xi,E/∂C+. We will call this derivative the relaxation ratio which is defined as

(11)

This definition allows us to write the bending constant in the following form 21,22

(12)

where kb, kc,i, and ks,i j denote the blocked exchange, coupling, and stretching constants,
respectively, and are given by
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(13)

where δ (i, j) is the Kronoker delta which is set to unity if i = j and zero otherwise. The
notation x[i],E means to hold the exterior mol fractions for every species fixed except i.

Now that we have the expressions for the elastic constants in terms of the derivatives of π
(z, c⃗), bi(z, c⃗), and xi,E with respect to curvature, we need to show how we calculate the
derivatives. We take the appropriate derivatives of the packing constraints, equation 2, and
the definitions of bi(z, c⃗), equation 5. The full set of equations is

(14)

3 Results and Discussion
For clarity, we have split the results and discussion section into three parts. The first is
focused only on the pure DPPC bilayer at the main-chain transition temperature T = 315K.
The second section is focused on the three component DPPC/DOPC/Cholesterol bilayer. For
the three component system we take tie-lines at T = 300K and T = 290K where the liquid-
disordered phase (ld) is in equilibrium with the liquid-ordered phase (lo). The third section
describes our results on studying the effects of varying curvature on the binding of lipid
chain anchors to curved liposomes.
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3.1 Pure DPPC
The results for a pure component DPPC lipid bilayer at the main-chain transition
temperature, T = 315K, are given in table 1. For all of the systems used in this study, the
spontaneous curvature is zero due to the symmetry of the planar bilayer around which the
expansion of the free energy is made. To start, we are going to first focus on the ld phase.

The saddle splay constant for the ld phase is −4.99kBT. So, in order for the planar bilayer to
be stable, both of the second derivatives in equation 9 have to be positive. Mathematically,
this is equivalent to saying that we need to have −2k < k̄ < 0 for the planar bilayer to be
stable 21. We see then that k must be larger than 2.5kBT for the planar layer to be the stable
geometric configuration. If the DPPC molecules are not allowed to flip from the interior
leaflet to the exterior leaflet, then the relaxation ratio is equal to zero and we are deforming
under blocked exchange. The blocked exchange bending constant is calculated to be
80.56kBT. Under blocked exchange there is a natural chemical potential gradient that is the
driving force for molecules on the inner-leaflet to flip to the outer-leaflet. The value of k as a
function of the relaxation ratio,, is given in figure 1A. The value of the bending constant has
a minimum value in, and this value of ηequil determines when the system has equal inner-
and outer-leaflet chemical potentials. The equilibrium relaxation ratio is ηequil = 0.59, and
this corresponds to an equilibrium bending elastic constant of kmin = 5.01kBT. This value of
the bending constant is in quantitative agreement with experimental results on similar
systems 34.

Table 1 also includes the values of the elastic constants for the gel phase at T = 315K. The
blocked exchanged bending constant has a value of 693.12kBT, which is a full order of
magnitude larger than the ld blocked exchange bending constant at the same temperature.
The planar area per molecule of the gel phase is 48Å2/molecule, and this is considerably
more dense compared to the planar area per molecule of the ld phase at 64Å2/molecule. This
high density is a contributing factor to the extremely high value of the blocked exchange
bending constant in the gel phase. The value of k as a function of the relaxation ratio, η, for
the gel phase is given in figure 1B. The numerical value of k drops very quickly with
increasing relaxation ratio. The equilibrium relaxation ratio is η equil = 0.65, and this
corresponds to an equilibrium bending elastic constant of kmin = −13.90kBT. The negative
value of the equilibrium bending constant means that the system will spontaneously curve if
the molecules are allowed to freely exchange (flip) between the two leaflets.

The saddle splay constant is −67.35kBT for the gel phase, so the planar geometry would be
stable if the bending constant is required to remain greater than 34kBT. This means that for
the planar geometry to be stable for this system, the relaxation ratio must be between 0 < η <
0.48 or η > 0.82. It is intriguing to consider that the very high density of the gel phase
prohibits the relaxation ratio from getting to its equilibrium value of 0.65 by keeping the
relaxation ratio below 0.48. This would mean that the planar geometry is the stable one and
that the bending constant has a value greater than or equal to 34kBT. However, further work
needs to be done before we can say anything conclusive.

3.2 DPPC/DOPC/Cholesterol
The three component bilayer has the added complexity of allowing all three species to have
their own relaxation ratio. This way we can see how the composition changes between the
two leaflets upon deformation. To our knowledge this is the first work with full molecular
level detail being used to study the elastic properties of a three component lipid bilayer
where the composition of all three components can independently vary between the two
leaflets. We will start with a tie-line at T = 300K and then focus on a tie-line at the lower
temperature of 290K. Table 2 is the elastic constant results for a three component DPPC/
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DOPC/Cholesterol lipid bilayer at T = 300K. The composition of the ld phase is xs = 0.22,
xu = 0.46, and xc = 0.32. The planar area per molecule of this ld phase is 57Å2/molecule.
The composition of the lo phase is xs = 0.26, xu = 0.22, and xc = 0.52. The planar area per
molecule of this lo phase has a smaller value compared to the ld phase and is 47Å2/
molecule. Please note that the stretching constants have an inherent symmetry: ks,i j = ks, ji.

The saddle splay constant for the ld phase is −10.78kBT. This means that k must be larger
than 5.4kBT for the planar layer to be the stable geometric configuration. The blocked
exchange bending constant is calculated to be 53.98kBT. This is a lower value compared to
the pure component DPPC bilayer in the ld phase at a higher temperature. We attribute the
lower value in the blocked exchange bending constant to the presence of unsaturated lipid
tails. Unfortunately, the high dimensionality of the parameter space makes a visual
representation of the bending constant as a function of the three relaxation ratios impossible.
We can, however, report that the three equilibrium relaxation ratios are ηs,equil = 0.35,
ηu,equil = 0.67, and ηc,equil = 0.41 and this corresponds to an equilibrium bending elastic
constant of kmin = 7.20kBT. If cholesterol were the only species allowed to exchange
between the two leaflets, then the constrained equilibrium relaxation ratio for cholesterol is

 and this corresponds to a constrained equilibrium bending elastic constant of

.

Table 2 also includes the values of the elastic constants for the lo phase. The blocked
exchanged bending constant has a value of 185.91kBT. Again, the higher density of the
ordered phase is a major contributing factor to the higher value of the blocked exchange
bending constant in the lo phase. The three equilibrium relaxation ratios are ηs,equil = 0.70,
ηu,equil = 0.16, and ηc,equil = 0.91 and this corresponds to an equilibrium bending elastic
constant of kmin = −38.34kBT. The values of the equilibrium relaxation ratios for the lo
phase show that the composition of the two leaflets may change considerably upon
deformation. If, however, cholesterol were the only species allowed to exchange between
the two leaflets, then the constrained equilibrium relaxation ratio for cholesterol is

 and this corresponds to a constrained equilibrium bending elastic constant of

. The negative value of the equilibrium bending constant means that the
system will spontaneously curve if the molecules are allowed to freely exchange (flip)
between the two leaflets.

The saddle splay constant is −26.20kBT for the lo phase, so the planar geometry would be
stable if the bending constant is required to remain greater than 13.5kBT. Similar to the gel
phase described earlier, if we again consider the fact that the lo phase has a greater density
in comparison to the ld phase, then it is possible that the relaxation ratios do not get to their
equilibrium values and that the planar geometry may be the stable one. This means that the
bending constant would have a value greater than or equal to 13.5kBT.

In order to look at the temperature dependence on the elastic constants we now focus on the
results for a tie-line at 290K. Table 3 is the elastic constant results for a three component
DPPC/DOPC/Cholesterol lipid bilayer at T = 290K. The composition of the ld phase is xs =
0.21, xu = 0.52, and xc = 0.27. The planar area per molecule of this ld phase is 59Å2/
molecule. The composition of the lo phase is xs = 0.30, xu = 0.22, and xc = 0.48. The planar
area per molecule of this lo phase is 46Å2/molecule.

The saddle splay constant for the ld phase is −11.66kBT, and the blocked exchange bending
constant is calculated to be 47.158kBT. We anticipated that a lower temperature would
increase the blocked exchange elastic constant, however we see here that this ld phase has a
lower blocked exchange elastic constant in comparison to the 300K ld phase. The
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composition is different in these two systems since we are following a tie-line, so this leads
us to speculate that the composition of the bilayer has a greater effect on the elastic
constants relative to the effect of temperature. A full study of these competing effects on the
elastic moduli of DPPC/DOPC/Cholesterol bilayers is currently underway.

The three equilibrium relaxation ratios for this ld phase at 290K are ηs,equil = 0.35, u,equil =
0.76, and ηc,equil = 0.43 and this corresponds to an equilibrium bending elastic constant of
kmin = 6.32kBT. If cholesterol were the only species allowed to exchange between the two

leaflets, then the constrained equilibrium relaxation ratio for cholesterol is  and

this corresponds to a constrained equilibrium bending elastic constant of .

Table 3 also includes the values of the elastic constants for the lo phase. The blocked
exchanged bending constant has a value of 201.94kBT. Here we see that the lower
temperature does give us a higher number for the blocked exchanged elastic constant. The
possibility that temperature plays a greater role on the values of elastic moduli for the lo
phase in comparison to the ld phase is also currently being studied. The three equilibrium
relaxation ratios are ηs,equil = 1.05, ηu,equil = 0.22, and ηc,equil = 0.71 and this corresponds to
an equilibrium bending elastic constant of kmin = −39.04kBT. The values of the equilibrium
relaxation ratios for the lo phase show that the composition of the two leaflets may change
considerably upon deformation. If, however, cholesterol were the only species allowed to
exchange between the two leaflets, then the constrained equilibrium relaxation ratio for

cholesterol is  and this corresponds to a constrained equilibrium bending elastic

constant of . The negative value of the equilibrium bending constant means
that the system will spontaneously curve if the molecules are allowed to freely exchange
(flip) between the two leaflets.

The saddle splay constant is −33.13kBT for the lo phase, so the planar geometry would be
stable if the bending constant is required to remain greater than 17kBT. Our results of a
negative bending constant for the fully free exchange mode of deformation are consistent for
all of the dense phase systems (gel and lo phases) we studied. Interestingly, recent
simulations by Risselada et al. 35 predict that when a phase separated lipid vesicle is
compressed, the lo phase preferentially segregates to the highly curved edge. The connection
between these simulation results and a negative lo phase elastic constant under a free
exchange deformation are not directly obvious, but the connection between this result and
the simulations are nevertheless very intriguing. It has been shown both experimentally and
theoretically that curvature can control the lateral sorting of membrane components 35,36.
There is also evidence that the separation into different phases, which are characterized by
different partition coefficients, 29,30,37–39 can also be controlled by lateral tension and
curvature. To couple these two effects is an ongoing effort.

3.3 Binding of Lipid Tail Anchors as a Function of Membrane Curvature
We are going to end with some work on calculating the curvature dependent binding of lipid
tail anchors into lipid bilayers. We have recently published work on calculating the partition
coefficients of lipid chain anchors of various degrees of unsaturation and number of tails in
lo-ld phase separated lipid bilayer mixtures 29. Here we use a similar methodology to
determine how the binding of chain anchors to bilayers with a degree of curvature. In this
work we are only going to take spherical curvature deformations, so there is only one
principal radius of curvature to describe the geometry.

We already described earlier that when a lipid bilayer deforms that the chemical potential of
the lipids change. The change is dependent on the amount of curvature and the mode of
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deformation. If the bilayer is curved under blocked exchange, then the exterior leaflet (the
one exposed to the solution containing the chain anchors) experiences the greatest change in
chemical potential. If the bilayer is curved under free exchange (the molecules are allowed
to flip-flop between the two leaflets) then there is still a change in the chemical potential
compared to the planar limit, but the change is considerably reduced. We are going to focus
for this work on the blocked exchange mode of deformation.

When the bulk solution is in contact with the planar lipid bilayer we can determine the
amount of adsorption by equating the two chemical potentials

(15)

where ρ(0) is the areal density of lipid anchors in the lipid bilayer.  is the

chemical potential of the anchor in the exterior leaflet, and  is the single
molecule partition function of the chain anchor in the exterior leaflet. Upon deformation of
the lipid layer, the chemical potential of external leaflet of the lipid bilayer changes.
However, the chemical potential of the bulk anchors does not change. So, the required
equality of chemical potentials can now be expressed as

(16)

So now we can relate the density of bound lipid anchors in the curved bilayer to the density
of bound lipid anchors in the planar bilayer. We will call the ratio ρ(c)/ρ (c = 0),
the ”normalized maximum protein density” since we are bending the bilayer under the
blocked exchange of lipids. Note that we are excluding everything except the lipid tail
anchors from our calculation of protein binding, so we are assuming that the architecture of
lipid anchors is the dominate factor in determining binding. There is experimental evidence
to show that this is a good assumption 40. We can write the expression for the normalized
maximum protein density as

(17)

All that is needed to determine the ratio of anchors as a function of curvature is the
calculation of the single molecule partition function in each of the geometries. We did this
using the potential distribution theory 41 as outlined in Uline et al 29 for the calculation of
partition coefficients of lipid anchors into lo and ld phases. Figure 2A is taken directly from
Hatzakis et al. 40 and is a plot of experimental results of lipid anchor binding in a DOPC/
DOPG/DOPE mixture liposome in the LD phase. Figure 2B is a plot of our theoretical
results of binding into a pure DPPC liposome at a temperature of 320K to assure the
liposome is in the LD phase. The results are in excellent quantitative agreement for both a
single saturated tail with 16 carbon units and a double tail anchor with two saturated 16
carbon units.

4 Conclusions
In this work we used a microscopic molecular theory to determine the bending and saddle-
splay constants of both pure DPPC and three component DPPC/DOPC/Cholesterol lipid
bilayers under various modes of deformation. The bending and saddle-splay constants were
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calculated for gel, liquid-ordered (lo), and liquid-disordered (ld) phases by expansion of the
planar free energy in terms of curvature. The effect of blocked vs free exchange of lipids
across the two monolayers on the values of the bending constant is as high as 50 kbT in the
ld phase to as high as 200 kBT in the lo phase. These considerations become very important
when comparing our theoretical results with experimental data. For example, we show that if
cholesterol is the only species allowed to flip-flop in the DPPC/DOPC/Cholesterol system,
then the bending elastic constant is 20–40 kBT larger then the case where all of the lipid
species are allowed to be exchanged from leaflet to leaflet. The very large role of the mode
of deformation on the quantitative determination of the elastic constants presents an
important caveat on the value that should be attributed to bending constants when using
phenomenological approaches, particularly in systems where the time scale of the
deformation is shorter than the ability of lipids to flip-flop.

Our results also show that the bending elastic constant is negative in the lo and gel phases
under the free exchange mode of deformation. This is a surprising result that needs to be
explored further. The possibility that the very high density of both the lo and gel phases
make it impossible for the relaxation ratios to achieve their equilibrium values and therefore
resulting in a positive bending constant also needs further study. In addition to this work, we
also are undertaking efforts to incorporate the electrostatic interactions of the head
groups, 42,43 and elucidating the competition between temperature and composition on the
elastic constants. We also calculated the equilibrium binding concentrations of lipid tail
anchors as a function of membrane curvature by explicitly determining the chemical
potential difference of species across a curved bilayer, and our results are in excellent
agreement with experimental results. Future work is this area is exploring the role of
temperature, composition, and phase of the curved liposome as well as accounting for the
full molecular level architecture of various chain anchors.
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Fig. 1.
The bending elastic constant, k, as a function of the relaxation ratio, η, for a pure component
DPPC lipid bilayer at T = 315K. Figure A is the result for the liquid-disordered (ld) phase.
Figure B is the result for the gel phase.
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Fig. 2.
Adsorption of lipid chain anchors into liposomes of varying diameter normalized to the
planar limit. C16 is a single saturated tail with 16 carbon units, and DHPE is a double tail
anchor where both tails are fully saturated with 16 carbon units. Figure A is taken directly
from Hatzakis et al. 40 and is a plot of experimental results of lipid anchor binding in a
DOPC/DOPG/DOPE mixture liposome in the LD phase. Figure B is a plot of theoretical
results from this work of lipid anchor binding in a pure DPPC liposome at a temperature of
320K to assure the liposome is in the LD phase.
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Table 1

Elastic constant results for a pure component DPPC lipid bilayer at the main-chain transition temperature T =
315K.

Elastic Constants ld Phase Gel Phase

βkC0 0 0

βk ̄ −4.99 −67.35

βkb 80.56 693.12

βkc −256.15 −2167.50

βks 217.11 1661.23

βkmin 5.01 −13.90
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Table 2

Elastic constant results for a three component DPPC/DOPC/Cholesterol lipid bilayer at T = 300K. The
composition of the ld phase is xs = 0.22, xu = 0.46, and xc = 0.32. The composition of the lo phase is xs = 0.26,
xu = 0.22, and xc = 0.52. Note that ks,i j = ks, ji.

Elastic Constants ld lo

βkC0 0 0

βk̄ −10.78 −26.20

βkb 53.98 185.91

βkc,s −41.42 −186.04

βkc,u −92.71 −180.71

βkc,c −40.17 −318.88

βks,ss 15.27 49.79

βks,su 18.22 37.36

βks,sc 7.47 57.58

βks,uu 48.78 55.12

βks,uc 17.22 60.96

βks,cc 14.18 120.51

βkmin 7.20 −38.34

Faraday Discuss. Author manuscript; available in PMC 2014 January 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Uline and Szleifer Page 18

Table 3

Elastic constant results for a three component DPPC/DOPC/Cholesterol lipid bilayer at T = 290K. The
composition of the ld phase is xs = 0.21, xu = 0.52, and xc = 0.27. The composition of the lo phase is xs = 0.30,
xu = 0.22, and xc = 0.48. Note that ks,i j = ks, ji.

Elastic Constants ld lo

βkC0 0 0

βk̄ −11.66 −33.13

βkb 47.15 201.94

βkc,s −29.78 −211.93

βkc,u −79.94 −181.41

βkc,c −24.15 −311.82

βks,ss 11.25 52.28

βks,su 12.53 38.08

βks,sc 3.24 60.71

βks,uu 41.50 50.50

βks,uc 9.36 56.24

βks,cc 8.80 113.25

βkmin 6.32 −39.04
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