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Abstract
Genotype imputation provides imputation of untyped SNPs that are present on a reference panel
such as those from the HapMap Project. It is popular for increasing statistical power and
comparing results across studies using different platforms. Imputation for African American
populations is challenging because their LD blocks are shorter and also because no ideal reference
panel is available due to admixture. In this paper, we evaluated three imputation strategies for
African Americans. The intersection strategy used a combined panel consisting of SNPs
polymorphic in both CEU and YRI. The union strategy used a panel consisting of SNPs
polymorphic in either CEU or YRI. The merge strategy merged results from two separate
imputations, one using CEU and the other using YRI. Because recent investigators are
increasingly using the data from the 1000 Genomes (1KG) Project for genotype imputation, we
evaluated both 1KG-based imputations and HapMap-based imputations. We used 23,707 SNPs
from chromosomes 21 and 22 on Affymetrix SNP Array 6.0 genotyped for 1,075 HyperGEN
African Americans. We found that 1KG-based imputations provided a substantially larger number
of variants than HapMap-based imputations, about three times as many common variants and
eight times as many rare and low frequency variants. This higher yield is expected because the
1KG panel includes more SNPs. Accuracy rates using 1KG data were slightly lower than those
using HapMap data before filtering, but slightly higher after filtering. The union strategy provided
the highest imputation yield with next highest accuracy. The intersection strategy provided the
lowest imputation yield but the highest accuracy. The merge strategy provided the lowest
imputation accuracy. We observed that SNPs polymorphic only in CEU had much lower accuracy,
reducing the accuracy of the union strategy. Our findings suggest that 1KG-based imputations can
facilitate discovery of significant associations for SNPs across the whole MAF spectrum. Because
the 1KG Project is still underway, we expect that later versions will provide better imputation
performance.

INTRODUCTION
Genotype imputation provides imputation of untyped single nucleotide polymorphisms
(SNPs) that are present on a reference panel such as those from the HapMap Project. As
reviewed by Marchini and Howie [2010], it is popular with many genome wide association
(GWA) studies and meta-analyses for several reasons. First, imputation can boost the
statistical power for finding causal SNPs that are not directly typed in GWA studies and can
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provide a higher resolution of associated regions. Second, it enables researchers to genotype
fewer SNPs and then impute the desired untyped SNPs [Anderson et al., 2008]. Those
imputed SNPs have been commonly used for many GWA studies [Hao et al., 2009]. For
analysis of imputed SNPs, the expected allele count (also called the posterior mean or allele
dosage) is commonly used to take account of imputation uncertainties and implemented in
several programs such as BIMBAM [Servin and Stephens, 2007], MACH2DAT/
MACH2QTL [Li et al., 2010], SNPTEST [Marchini et al., 2007], PLINK [Purcell et al.,
2007] and ProbABEL [Aulchenko et al., 2010]. It was also shown to provide a good
approximation to a Bayesian approach [Guan and Stephens, 2008]. Third, when multiple
studies use different genotyping platforms, imputation using the same HapMap II reference
panels produces an identical set of imputed SNPs in all studies regardless of the platform
used. This makes comparison of results across studies readily possible [de Bakker et al.,
2008].

Genotype imputation for African populations is challenging because their linkage
disequilibrium (LD) blocks are shorter than in other populations. Phase II of the HapMap
Project provides reference panels for African, European and Asian ancestry: Yoruba ethnic
group in Africa (YRI), Utah residents with European ancestry (CEU), Han Chinese in
Beijing (CHB) and Japanese in Tokyo (JPT) [The International HapMap Consortium, 2007].
Among 29 populations in the Human Genome Diversity Project, African populations were
shown to have the worst imputation accuracy [Huang et al. 2009]. Imputation for admixed
African American populations has an additional challenge because no ideal reference panel
is available from the HapMap II project. The first strategy is to simply use the YRI reference
panel [Fridley et al., 2010] because African American genomes are mostly of African
ancestry, with their admixture proportions ranging from 77% to 93% [Parra et al., 1998].
The second strategy is the “cosmopolitan strategy” that combines the CEU and YRI panels
to better account for European ancestry [Huang et al., 2010; Shriner et al., 2010]. Huang et
al. [2009] showed that, for most populations, imputation using all four panels (CEU, YRI,
CHB and JPT) provided accuracy almost as good as imputation using a specific reference
panel. However, because their combined reference panel only included SNPs that were
polymorphic in multiple panels, there were fewer SNPs, resulting in lower imputation
yields. The third strategy is to merge imputed results from two separate imputations, once
using the CEU panel and another using the YRI panel, to achieve higher imputation yields
[Shriner et al., 2010].

Most genotype imputations have used the reference panels from the HapMap II Project.
However, recent investigators are increasingly using the reference panels from the 1000
Genomes (1KG) Project for genotype imputation, detecting stronger associations with SNPs
that are not available in the HapMap data [see Sanna et al., 2010, and Ellinghaus et al., 2010,
using MACH; Liu et al., 2010, and Padmanabhan et al., 2010, using IMPUTE]. The major
advantage of imputations based on the 1KG data, instead of the HapMap data, is the ability
to impute a much larger number of variants. The 1KG Project aims to discover most low
frequency and common variants across the genome and most rare variants in gene regions
[The 1000 Genomes Project Consortium, 2010]. Therefore, 1KG-based imputations should
provide many more variants that are rare and low frequency than HapMap-based
imputations. However, there are concerns about 1KG-based imputations. The HapMap data
were based on direct genotyping of previously discovered SNPs and have been thoroughly
scrutinized, whereas currently available 1KG data were based on low-depth whole-genome
sequencing data and, hence, are expected to be of lower quality. Furthermore, there have not
been many evaluations of 1KG-based imputations [Fridley et al., 2010; The 1000 Genomes
Project Consortium, 2010; Li et al., 2011].
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In this paper, we had two main objectives. The first objective was to evaluate three
imputation strategies that have been used for African Americans. The second objective was
to evaluate both 1KG-based imputations and HapMap-based imputations. In particular, we
investigated whether the 1KG data provided imputation of a much larger number of rare and
low frequency variants. We used 23,707 SNPs from chromosomes 21 and 22 on Affymetrix
SNP Array 6.0. Because Affymetrix SNP Array 6.0 contained a relatively small number of
rare variants, all rare variants were masked to evaluate imputation performance of rare
variants.

MATERIALS AND METHODS
STUDY SAMPLE

In this paper, we used 23,707 SNPs from chromosomes 21 and 22 genotyped for 1,083
African Americans in the Hypertension Genetic Epidemiology Network (HyperGEN). The
study recruited African American and Caucasian participants at five field centers to
investigate the genetic causes of hypertension and related conditions [Williams et al., 2000].
Study participants were one of three types: 1) individuals in a hypertensive sibship with at
least two siblings diagnosed with hypertension; 2) random subjects, who were age-matched
with hypertensive sibs; or 3) unmedicated adult offspring of one of the hypertensive
siblings. The study obtained informed consent from participants and approval from the
appropriate institutional review boards. Most of the African Americans were genotyped on
Affymetrix SNP Array 6.0; about 10% were genotyped on Affymetrix SNP Array 5.0. In
this paper, we used only those genotyped on Affymetrix SNP Array 6.0. We removed
control samples, corrected sample mix-ups and pedigree errors. We removed monomorphic
SNPs and SNPs with missing rate >5% or Hardy-Weinberg p-value <10−6 and removed any
genotypes with a non-Mendelian pattern of inheritance.

IMPUTATION STRATEGIES
To impute untyped markers in African Americans, we considered three strategies. The first
strategy, denoted by INT for intersection, used a combined panel consisting of SNPs
polymorphic in both CEU and YRI. The second strategy, denoted by UNI for union, used a
combined panel consisting of SNPs polymorphic in either CEU or YRI. The third strategy,
denoted by MER for merge, used results from two separate imputations, one using CEU and
the other using YRI. Our MER strategy used YRI-based imputations for SNPs polymorphic
in YRI and otherwise used CEU-based imputations, because the HyperGEN African
Americans had 80.7% African ancestry on average [Zhu et al., 2005]. Therefore, the MER
strategy corresponded to adding imputed results of CEU-specific SNPs (that were
polymorphic only in CEU) to imputed results using YRI.

To evaluate imputation performance using HapMap and 1KG data, we used haplotypes for
CEU and YRI populations from phase II of the HapMap Project (release 22, build 36) and
pilot 1 of the 1KG Project (released in June 2010). The CEU panel consisted of 120
haplotypes of the same 60 individuals in both HapMap and 1KG data. The YRI panel
consisted of 120 haplotypes in the HapMap data and 118 haplotypes in the 1KG data. The
UNI strategy used the combined panel consisting of 240 and 238 haplotypes in the HapMap
and 1KG data, respectively. The INT strategy used the same number of haplotypes as in the
UNI strategy with a smaller number of SNPs (shown in Table I).

Figure 1 shows Venn diagrams of SNPs from chromosomes 21 and 22 in CEU and YRI for
both projects. In the HapMap data, 67% of SNPs were in both CEU and YRI, whereas only
39% of SNPs were in CEU and YRI in the 1KG data. This made a larger difference in the
number of SNPs in the INT and UNI strategies for the 1KG data (Table I). In the HapMap
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data, some SNPs were polymorphic in either CEU or YRI but not genotyped in the other
panel, and these were excluded from the UNI strategy. Therefore, in the HapMap data, the
MER strategy contained more SNPs than the UNI strategy (86K vs. 79K SNPs, Table I). In
the 1KG data, 234 SNPs did not have the same alleles in both panels and were excluded
from all three strategies.

The 1KG data contained a much larger number of variants than the HapMap data across the
minor allele frequency (MAF) spectrum (Figure 2). In both HapMap and 1KG data, YRI
contained a larger number of rare (MAF ≤ 0.01) and low frequency (0.01 < MAF ≤ 0.05)
variants than CEU. Table I shows the number of these rare and low frequency variants for
all strategies. There were fewer rare variants in the 1KG data. This reflects that low-depth
sequencing data may not be appropriate for detecting rare variants. It also reflects that
stronger quality controls had been applied to these data than in the HapMap data, which
were direct genotype calls of previously discovered SNPs. Histograms of MAF across the
genome were similar to histograms in Figure 2.

IMPUTATION USING MACH
Several programs are available for genotype imputations such as IMPUTE [Marchini et al.,
2007;], MACH [Scott et al., 2007; Li and Abecasis 2006; Li et al., 2010], BIMBAM [Servin
and Stephens, 2007] and BEAGE [Browning and Browning, 2007]. In this paper, we used
MACH because MACH and IMPUTE, the two leading programs, have been shown to
provide the most accurate results across various settings [Pei et al., 2008, Nothnagel et al.,
2009]. Before imputation, negative strands of GWA SNPs were flipped with PLINK
[Purcell et al., 2007] based on the most recent annotation file provided by Affymetrix.

Following the developers’ recommendation, we used a two-step procedure for running
MACH (version 1.0.16) for each reference panel. In the first step, we used 50 rounds of
iterations, 188 unrelated HyperGEN subjects and each reference panel to estimate model
parameters: crossover rates between adjacent SNPs, which control breakpoints in haplotypes
shared between HyperGEN data and the reference panel, and an error rate, which allows
discrepancies between HyperGEN data and the panel. In the second step, using these
estimated parameters, imputations were performed for all HyperGEN subjects. Imputations
were performed separately by chromosomes.

IMPUTATION YIELD AND ACCURACY
To evaluate imputation performance, we used imputation yield and accuracy for each
imputed data set. We applied a filtering rule that removed monomorphic SNPs and SNPs
with MACH’s quality measure Rsq < 0.3. This follows MACH developers’ recommendation
and is current practice for numerous imputed data sets that were used in published GWAS
and meta-analyses. We defined imputation yield as the number of filtered SNPs (that
remained after filter).

We measured imputation accuracy with dosage Rsq: the squared correlation between the
true genotype and continuous-valued imputed genotype dosage for each masked SNP.
Concordance rates between true and imputed genotype calls are often very high for rare and
low frequency SNPs and it is hard to compare accuracy across SNPs with different MAFs.
However, the dosage Rsq is not confounded by MAF and can be used to compare accuracy
for rare and common SNPs. We computed imputation accuracy for each strategy using the
mean of dosage Rsq values at filtered SNPs. To evaluate the effect of the filtering rule, we
also computed accuracy using the mean dosage Rsq values at all imputed SNPs.

To evaluate imputation accuracy, we masked the genotype data of the HyperGEN GWA
study at three levels: 5%, 50% and 80%. These masked SNPs were removed and imputation
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was performed using the remaining SNPs. Then the imputed results for these masked SNPs
were compared with their actual genotype data. To evaluate accuracy of rare variants, all
rare variants (shown in Table I) were masked. In addition, the 5% masked data removed a
randomly selected 5% of the SNPs, the 50% masked data systematically removed every
other SNP and the 80% masked data also systematically removed 4 in every 5 SNPs. The
5%, 50% and 80% masked data removed 1,468 SNPs, 11,636 SNPs, and 18,430 SNPs,
respectively. The 50% masked data roughly corresponded to the coverage of Affymetrix
SNP Array 5.0. We considered 80% masking because we wanted to evaluate imputation
performance for less desirable conditions.

RESULTS
IMPUTATION YIELD

Imputations using 1KG data provided significantly higher yield (the number of filtered
SNPs) than imputations using HapMap II (HMII) data. This higher yield is expected because
the 1KG panel includes more SNPs. Table II and Figure 3 show overall yield and yields
across the MAF spectrum for all three masked data. Figure 3 also shows a total number of
imputed SNPs in gray color. For the 5% masked data, which corresponded to a typical
imputation scenario, 1KG-UNI provided the highest yield (271K SNPs), and HMII-INT
provided the lowest yield (57K SNPs). Among results using the 1KG data, UNI provided the
highest yield, MER provided next highest and INT provided the lowest yield for all masking
rates. In particular, 1KG-UNI provided twice as high yield as 1KG-INT (271K vs. 119K at
5% masking). HapMap-based imputations provided similar patterns, although difference
between highest and lowest yields were less extreme (81K using HMII-MER and 57K using
HMII-INT at 5% masking). As expected, imputation yield dropped with higher masking
rates. However, decrease in imputation yield was surprisingly small for the 50% masked
data and became significant for the 80% masked data.

Improvement of imputation yield using the 1KG data over the HMII data varied across the
MAF spectrum. For the 5% masked data, imputation using 1KG-UNI provided three times
as many common SNPs as HMII-UNI (180K vs. 64K), eight times as many low frequency
SNPs (80K vs. 10K), and seven times as many rare SNPs (11K vs. 1.6K). We expect that,
with non-masked data, an even larger number of rare and low frequency SNPs would be
successfully imputed using the 1KG data. Note that Table II shows the MAF spectrum of
imputed SNPs for the HERITAGE study, whereas Table I shows the MAF spectrum of
SNPs present in the reference panels. We observed that the number of rare and low
frequency variants in imputed results (shown in Table II) is usually larger than the number
of these variants in reference panels (shown in Table I). With higher masking rates,
imputation yield decreased more for rare and low frequency SNPs.

IMPUTATION ACCURACY
Table III shows these accuracy rates for filtered SNPs and Supplementary Table I for all
imputed SNPs. Figure 3 shows accuracy using all imputed SNPs (in gray) and filtered SNPs
(in color). Overall, INT provided the highest accuracy, UNI provided next highest and MER
provided the lowest. Accuracy rates from HapMap-based imputations were slightly higher
than those from 1KG-based imputation before filtering (74.2 vs. 74.0 at 5% masking; 72.4
vs. 71.4 at 50%; 51.8 vs. 50.1 at 80% using UNI) but slightly lower after filtering (78.0 vs.
78.9 at 5%; 75.1 vs. 76.4 at 50%; 62.7 vs. 67.7 at 80% using UNI). The patterns were
similar in each MAF bin.

Within each strategy, accuracy rates were the highest for common variants and the lowest
for rare variants (Figure 3 and Table III). In each MAF bin, these accuracy rates were
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reduced with higher masking rates. This pattern was more pronounced before filtering (as
shown in Supplementary Table I). For example, accuracy rates for rare variants with HMII-
UNI were 35.4%, 30.7%, and 17% at 5%, 50% and 80% masking, respectively, before
filtering. The remarkably similar rates after filtering which were 46.5%, 49.9% and 49.3%,
may seem surprising at first. However, these rates after filtering are confounded with the
number of remaining SNPs (which are necessarily of higher quality). HMII-UNI provided
imputations for 163 rare variants that were masked (as shown in Supplementary Table II).
Out of 163 rare variants, 111, 83 and 36 variants remained with MACH Rsq over 0.3 at 5%,
50% and 80% masking rates. Because accuracy rates after filtering were based on these
remaining SNPs, it is no surprise that accuracy rates based on much smaller numbers of
SNPs turned out to be higher.

Imputation accuracy highly depended on whether each strategy included imputation for
CEU-specific SNPs (polymorphic only in CEU) or not. When accuracy rates were restricted
to SNPs that were polymorphic in both CEU and YRI, the UNI strategy provided the highest
accuracy for all three masked data (Tables III). For YRI-specific SNPs (polymorphic only in
YRI), accuracy rates were a little lower than those SNPs that were in both panels. For CEU-
specific SNPs, however, accuracy rates were much lower; 57% using 1KG-UNI and 31%
using 1KG-MER for the 5% masked data (Table III). Because INT did not provide
imputations for either YRI-specific and CEU-specific SNPs, INT provided consistently
higher accuracy than UNI. For the same reason, imputation using YRI alone provided higher
accuracy than using the MER strategy.

A possible explanation of this much lower imputation performance for CEU-specific SNPs
is shown in Figure 4. The black line is where MACH Rsq values equal dosage Rsq values,
and the red line is the actual regression line. For imputations using 1KG-INT, MACH Rsq
values closely matched true dosage Rsq values. However, for imputations using 1KG-CEU,
MACH Rsq values consistently underestimated true dosage Rsq values. This happened
because of a mismatch between the reference panel and the study samples, hence it may not
be a surprise. Imputations for African American subjects are never performed using the
CEU panel only. However, this mismatch also affected imputations using 1KG-UNI, where
MACH Rsq values often underestimated dosage Rsq values for CEU-specific SNPs. In
consequence, CEU-specific SNPs had lower imputation accuracy than YRI-specific SNPs
(57% vs. 77%, in Table III).

DISCUSSION
In this paper, we evaluated imputation strategies for African Americans using data from the
HapMap II and 1000 Genomes (1KG) Projects. We used 23,707 SNPs from chromosomes
21 and 22 on the Affymetrix SNP Array 6.0 genotyped for 1,075 HyperGEN African
Americans. To impute untyped markers in African American subjects, we considered three
strategies. The intersection strategy (INT) used a combined panel consisting of SNPs
polymorphic in both CEU and YRI panels. The union strategy (UNI) used a panel consisting
of SNPs polymorphic in either CEU or YRI. The merge strategy (MER) merged results from
two separate imputations, one using CEU and the other using YRI. Our MER strategy used
YRI-based imputations for SNPs polymorphic in YRI and otherwise used CEU-based
imputations.

Genotype imputation is commonly used to increase power of individual association studies
and to provide a uniform set of variants for meta-analysis of multiple studies. We observed
that imputation accuracy for rare variants was low before filtering which improved after
filtering. Therefore, so long as filtering is used to exclude poor quality imputations, the
primary goals for imputing in the first place do not appear to be compromised. On average,
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rare variants had lower imputation quality measures. Therefore, a large proportion of rare
variants were filtered out. Because genotype imputation uses LD across SNPs, it is no
surprise that rare variants are usually not imputed as accurately as common variants. These
are consistent with other studies [Huang et al 2009; Pei et al 2008]. In 1KG-based
imputations, a large proportion of variants were filtered out. It is unclear whether this
happened because 1KG data contained a large number of rare and low frequency variants or
because haplotypes were derived from low-depth sequencing data. Because of much higher
SNP density, however, even after filtering, 1KG-based imputations provided about three
times as many common variants and eight times as many rare and low frequency variants as
HapMap-based imputations. Our findings suggest that 1KG-based imputations can increase
the opportunity to discover significant associations for SNPs across the whole MAF
spectrum.

Our most important finding was that 1KG-based imputations provided a substantially larger
number of variants than HapMap-based imputations with nearly identical accuracy.
Accuracy rates using 1KG data were slightly lower than those using HapMap data before
filtering, but slightly higher after filtering. Our results support those from the 1000 Genomes
Project Consortium [2010] that 1KG-based imputations had lower accuracy than HapMap-
based imputations. The 1000 Genomes Project Consortium used a much larger number of
rare and low frequency variants discovered from high-depth sequencing data in their trio
project. Because we used mostly common SNPs on Affymetrix Array 6.0, our accuracy for
rare and low frequency variants may not be as precise. However, we used 1,075 African
Americans for imputations, whereas they used one CEU subject and one YRI subject. Due
to larger sample size, our accuracy could be more precise.

The UNI strategy provided the highest imputation yield with next highest accuracy. The INT
strategy provided the lowest imputation yield but the highest accuracy. The MER strategy
provided the lowest imputation accuracy. We observed that accuracy highly depends on
whether a strategy provides imputation for CEU-specific SNPs (polymorphic only in CEU).
CEU-specific SNPs had much lower accuracy. The UNI strategy had the highest accuracy at
SNPs polymorphic in both CEU and YRI. However, UNI had slightly lower overall
accuracy than INT, because UNI included CEU-specific SNPs. Furthermore, we observed
that MACH Rsq values consistently underestimated true dosage Rsq values at CEU-specific
SNPs, due to mismatch between reference panels and study samples at these SNPs.

We presented the performance of Affymetrix SNP Array 6.0 for imputing both HapMap and
1KG SNPs based on chromosomes 21 and 22. Because coverage of Affymetrix SNP Array
6.0 on chromosomes 21 and 22 was shown to be similar to coverage across the genome for
both CEU and YRI [Li et al., 2008], we expect that our findings would hold for the entire
genome. The performance of Affymetrix and Illumina arrays for imputing HapMap SNPs
has been presented in several papers. SNPs on Affymetrix SNP Array 5.0 were selected
based on sequence constraints of probes and, hence, were quasi-randomly distributed across
the genome, ignoring LD. In contrast, SNPs on Illumina HumanMap300 were tag SNPs
derived from over two million common variants in the HapMap data. Affymetrix Array 5.0
was shown to provide lower coverage than the Illumina array for CEU (65% vs. 75%) but
higher coverage for YRI (41% vs. 28%) [Barrett and Cardon, 2006]. Affymetrix SNP Array
6.0 improved Affymetrix SNP Array 5.0 by adding tag SNPs [McCarroll et al., 2008].
Affymetrix SNP Array 6.0 was shown to provide lower coverage than the improved
Illumina HumanMap650Y for CEU (83% vs. 87%) but higher coverage for YRI (62% vs.
60%) [Li et al., 2008]. Our findings about performance for imputing 1KG data should
generalize to imputation using different genotype platforms.
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In this paper, we investigated imputation strategies for African Americans using both
HapMap and 1KG data. We found that the union strategy that contains SNPs that are
polymorphic either in CEU and YRI performed the best. Furthermore, using the 1KG data
had an additional advantage in imputing a large number of rare and low frequency variants.
We found similar advantages when imputing subjects with European ancestry [Sung et al,
2012]. We used the 1KG Project Pilot 1 data, released in June 2010. To better handle low-
depth sequencing data, these 1KG panels were constructed combining results from three
independently developed calling methods that used sequencing data across samples and
HapMap3 data: QCALL [Le and Durbin, 2010], Thunder [Li et al., 2011] and DePristo et al.
[2011]. The most recently available 1KG data, released in June 2011, were constructed
using the union strategy including 1,094 individuals of European, African and Asian
ancestry. Furthermore, the 1KG Project is still underway, and genotype accuracy will be
further improved due to increased sample sizes and a plan to directly genotype variants
observed in the low-depth sequencing data. We expect that later versions will provide even
better imputation performance. Hence we recommend using a newer version of the 1KG
data for imputing other African Americans.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Venn diagrams showing the number of SNPs from chromosomes 21 and 22 in the CEU and
YRI reference panels from the HapMap II (HMII) and 1000 Genomes (1KG) Projects.
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Figure 2.
Histograms of minor allele frequencies (MAF) of SNPs from chromosomes 21 and 22 in
reference panels from YRI and CEU populations in HapMap II (HMII) and 1000 Genomes
(1KG) Projects. Histogram of MAF of SNPs in HyperGEN African Americans genotyped
on Affymetrix SNP Array 6.0 is also shown for comparison. Rare and low frequency
variants are in the red bin. Histograms of MAF across the genome were similar.
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Figure 3.
Imputation yield (left) and accuracy (right) using filtered SNPs across the MAF spectrum for
all three masked data using panels from both the HapMap II (HMII) and 1000 Genomes
(1KG) Projects. Gray bars show total number of imputed SNPs (left) and accuracy rates
(right) using all imputed SNPs.
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Figure 4.
Imputation accuracy (Dosage Rsq) values vs MACH Rsq values for masked SNPs at 5%
masking rates using panels from the 1000 Genomes (1KG) Project. Plots for HapMap-based
imputations were similar. Blue points are SNPs polymorphic only in CEU, and cyan points
are SNPs polymorphic only in YRI. Black line is where MACH Rsq equals Dosage Rsq.
Red line is the regression line. Vertical dashed line is the filtering rule that we used. Note
MER equals YRI plus blue points from CEU.
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Table I

Number of SNPs from chromosomes 21 and 22 across the MAF spectrum in HyperGEN African Americans
genotyped on Affymetrix SNP Array 6.0, reference panels and three strategies from HapMap II (HMII) and
1000 Genomes (1KG) Projects. Total number of SNPs are red boldfaced.

Rare Low Freq Common Total

HyperGEN 294 2,317 21,096 23,707

HMII-YRI 2,644 9,283 64,878 76,805

HMII-CEU 2,701 7,611 57,366 67,678

HMII-INT 82 2,493 55,522 58,097

HMII-UNI 1,400 6,903 70,553 78,856

HMII-MER 3,457 11,383 71,546 86,386

1KG-YRI 571 69,744 197,352 267,667

1KG-CEU 336 41,227 149,202 190,765

1KG-INT 0 4,760 123,334 128,094

1KG-UNI 13,405 62,188 254,745 330,338

1KG-MER 830 97,159 232,349 330,338

Rare variants with MAF ≤ 0.01; Low frequency variants with 0.01 < MAF ≤ 0.05; Common variants with MAF > 0.05

INT refers the intersection strategy; UNI refers the union strategy; MER refers the merge strategy
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