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Toxin–antitoxin systems are ubiquitous and have been implicated
in persistence, the multidrug tolerance of bacteria, biofilms, and,
by extension, most chronic infections. However, their purpose,
apparent redundancy, and coordination remain topics of debate.
Our model relates molecular mechanisms to population dynamics
for a large class of toxin–antitoxin systems and suggests answers
to several of the open questions. The generic architecture of toxin–
antitoxin systems provides the potential for bistability, and even
when the systems do not exhibit bistability alone, they can be
coupled to create a strongly bistable, hysteretic switch between
normal and toxic states. Stochastic fluctuations can spontaneously
switch the system to the toxic state, creating a heterogeneous
population of growing and nongrowing cells, or persisters, that
exist under normal conditions, rather than as an induced re-
sponse. Multiple toxin–antitoxin systems can be cooperatively
marshaled for greater effect, with the dilution determined by
growth rate serving as the coordinating signal. The model pre-
dicts and elucidates experimental results that show a character-
istic correlation between persister frequency and the number of
toxin–antitoxin systems.

Persisters were first described at the dawn of modern anti-
biotics, when Joseph Bigger demonstrated that approximately

one in a million staphylococci survived exposure to penicillin (1).
He also showed that their descendants remained susceptible and
called the survivors persisters to distinguish them from genetically
resistant mutants. Over half a century later, they have been iden-
tified as the source of multidrug tolerance in biofilms (2), which
account for 65–80% of bacterial infections (3, 4). Persisters are the
culprit in the stubborn Pseudomonas aeruginosa infections to which
most cystic fibrosis patients eventually succumb (5), as well as in the
oral Candida albicans infections common in cancer patients (6).
They may also explain the tolerance ofMycobacterium tuberculosis
infections, responsible for 1.6 million deaths each year (7).
Just as Bigger surmised, persistence is not an inherited genetic

trait. Rather, it is a result of a heterogeneous population—
modern single-cell studies have confirmed that persisters are rare,
slowly growing cells (8). Moreover, slowly growing cells are less
susceptible to antibiotics (9), although the mechanisms that pro-
vide the antibiotic tolerance are not fully understood. Persisters
appear to be formed via any one of several parallel mechanisms,
including the SOS response to DNA damage and the stringent
response to amino acid starvation or other stresses (10). However,
another path to persistence appears to be through the ubiquitous
and varied toxin–antitoxin systems. The overexpression of toxin
can slow growth (11–17) and confer multidrug tolerance (16, 18–
20). Conversely, multiple toxin–antitoxin systems are up-regu-
lated in persister-enriched samples (19, 21). In fact, the first gene
tied to persistence was hipA (22), later identified as the toxic half
of a toxin–antitoxin pair.
Toxin–antitoxin systems are found on the chromosomes and

plasmids of most bacterial species and strains—the Escherichia
coli K-12 genome boasts at least 36 (23) and the M. tuberculosis
genome contains 88, more than any other human pathogen (24).
However, despite a growing understanding of the mechanisms

underlying toxin–antitoxin systems, several important questions
remain unanswered. What are their functions and how does each
contribute to different cellular phenotypes or fates (25)? Why
are there multiple types and apparently redundant systems in
a single cell (26)? What is their coordinating signal (27)? Here,
we answer some of those questions by forming a general model
of the common type II toxin–antitoxin systems that target protein
synthesis and comparing the model behavior to existing experi-
mental results. Our analysis suggests that although the specifics
may vary, toxin–antitoxin systems are potentially bistable and can
create a hysteretic switch between normal and persistent states.
A bistable system can exhibit one of two stable behaviors under
the same conditions, and it has become apparent that bistable
genetic regulatory networks, when operating in noisy, fluctuating
environments, can lead to heterogenous populations of cells, as
seen in Bacillus subtilis genetic competence, spore formation,
and swimming or chaining, as well as in the persistent phenotype
studied here (28). Toxin–antitoxin systems that do not exhibit
bistability alone can be coupled to produce the same effect.
Furthermore, the overall number of toxin–antitoxin systems in
a cell tunes the frequency of persisters, using the growth rate as
the coordinating signal.
Few attempts have been made to model toxin–antitoxin sys-

tems. It was suggested that a bistable model of the B. subtilis sin
operon could be applied to toxin–antitoxin systems (29), but
the possibility was left unexplored. The interactions between
toxin, antitoxin, and promoter were measured and modeled for
ccdAB (30) and mazEF (31), but did not extend to a system with
regulatory feedback. Likewise, a stochastic model of hipBA under
gratuitous induction produced a bimodal population similar to
experimental results (32), but did not include genetic regulation,
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variable stress, or the impact of the growth rate—our model
suggests important connections between all three. A deterministic
model of hipBA regulation demonstrated the potential for bist-
ability (33), but required extremely high cooperativity and con-
sidered only one kind of toxin–antitoxin system, one set of possible
parameters, and three growth rates. Our system design space
provides unique insight and captures common themes or design
principles that integrate system parameters, environmental varia-
bles, and phenotypic behavior over a broad range of values (34). A
more generic model of cell growth and global protein regulation
concluded that toxins could create a bistable switch (35), but via
a different positive feedback mechanism that likely complements
our results. Finally, there are models of persistent populations (8),
and at least one model includes toxin–antitoxin systems (36), but
that model assumes a priori that the toxins induce persister for-
mation, whereas our model explains the process. While the pre-
vious models each addressed some aspect of toxin–antitoxin
systems or persister populations, our model encompasses them all,
including molecular mechanisms of regulation, stochastic fluctua-
tions, variable growth, and population dynamics, and does so over
a broad range of parameter values. As a result, we are able to fully
describe a connection between the molecular mechanisms of
toxin–antitoxin systems and the persistent phenotype. The anal-
ysis confirms and explains recent, novel genomic experiments
(27) that revealed a characteristic and important relationship
between the number of toxin–antitoxin genetic cassettes and the
frequency of persisters that survive antibiotic treatment.

Results
Generic Model of Toxin–Antitoxin Regulation.Despite their number
and variety, toxin–antitoxin systems are strikingly consistent in
architecture. We have created a general model for type II toxin–

antitoxin systems that target protein synthesis. Fig. 1 A and B
depicts the common species and their interactions. A and T rep-
resent the concentrations of free antitoxin and toxin, respectively.
The dynamics of the model can be described by a system of dif-
ferential algebraic equations, Eqs. 1–5, in the generalized mass
action (GMA) representation (34):

dA
dt

¼ σαY−1X−1
2 − μmaxAX

−1
1 − λAAþ ξA [1]

dT
dt

¼ αY−1X−1
2 − μmaxTX

−1
1 − λTT þ ξT [2]

X1 ¼ 1þ Tn

Kn
T1

[3]

X2 ¼ 1þ Tn

Kn
T2

[4]

Y ¼ 1þ A2

K2
P1

þ
 

2A2T
K2
P2KH

!p

þ A2T2

K2
P1K

2
H
: [5]

In short, Eqs. 1 and 2 describe the change in free antitoxin and
toxin concentrations via protein synthesis (the first term), dilu-
tion (the second term), active degradation (the third term), and
stochastic fluctuations (the fourth term). Eqs. 3 and 4 describe
the impact of the toxin on protein synthesis and dilution. Eq. 5
describes the autorepression of protein synthesis by the various
complexes. A more detailed description of the model formula-
tion is included in Methods. The model can be used to represent
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Fig. 1. General model and the system design space. (A) Toxin and antitoxin are translationally coupled, and the antitoxin binds and neutralizes the toxin. The
antitoxin dimer, alone or in complex, autorepresses transcription by binding operators in the promoter region. Bound toxin enhances the repression. Free
antitoxin is degraded by various proteases (not shown), and remaining free toxin inhibits some aspect of global translation. (B) A, antitoxin; C, antitoxin
bound to one toxin; D, antitoxin bound to two toxins; M, mRNA; T, toxin. A and T are both translated from polycistronic M, whereas A, C, and D repress the
transcription of the genes encoding M. All species are degraded or diluted by cellular growth. T inhibits its own translation, as well as global translation and
growth (not shown). (C) Regions of design space over a range of μmax and λA. The axes represent a fold change in the parameters relative to the normal
operating point (white circle). Boundaries are marked L1–L7. For μmax=μ0max ¼ 1 (dashed line), increasing λA produces new operating points at λA=λ0A ¼ 2 (black
circle), 4 (black triangle), and 8 (white triangle). (D and E) Steady-state toxin (D) and antitoxin (E) concentrations while varying λA. The dominant subsystem in
each region yields an approximate solution defined algebraically (solid line), compared with the exact solution determined numerically (dashed line).
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many well-known toxin–antitoxin systems, and in fact the 12
parameters in Eqs. 1–5 have, in some cases, been experimentally
measured. Table S1 lists the published values for six of the best-
studied toxin–antitoxin systems—kis-kid (pemIK), ccdAB, mazEF,
phd-doc, relBE, and yefM-yoeB—as well as the representative esti-
mates we use as a starting point for our analysis.

System Design Space Reveals Major Phenotypes. This generic ar-
chitecture is capable of generating a rich phenotypic repertoire,
and the distinct phenotypes can be enumerated and analyzed
within the system design space, a process that has been described
in detail (34, 37) and applied to other biological systems (38–40).
Here, and in the sections that follow, we summarize the steps
that lead to each result. First, note that Eqs. 1 and 2 each have
one positive term and multiple negative terms, whereas Eqs. 3–5
each use multiple terms to define X1, X2, and Y. Biologically,
each term represents a process. For a given set of parameter
values, one negative term or one defining term in each equation
may be larger than the others, or dominate. If the smaller terms,
or processes, are ignored, the behavior of the remaining sub-
system can be analyzed using well-known techniques (41). There
are 64 possible cases, or combinations of dominant terms, and
each case represents a potentially unique phenotype to ex-
plore. Given the estimated parameters, Fig. 1C depicts the de-
sign space over a wide range of values for λA and μmax. Within
that range, there are seven valid phenotypes: cases 3, 35, 43, 47,
59, 61, and 63. Assuming a cellular doubling time of 30 min
(μ0max ¼ 0:023 min−1) and a typical antitoxin half-life of 60 min
(λ0A ¼ 0:012 min−1) (Table S1), the normal operating point of
the model resides within case 3. In case 3, dilution is significant
in Eqs. 1 and 2 (the first negative term dominates), free toxin is
below its Km in Eqs. 3 and 4 (the first negative term dominates),
and transcription is mostly repressed by the cooperative complex
in Eq. 5 (the third negative term dominates). Under stressful
conditions, the activities of various proteases that include anti-
toxins among their targets are increased, such as Lon in response
to amino acid starvation (42) and subunits of ClpAP and ClpXP
in response to heat shock (43). The increased proteolytic deg-
radation is represented by moving to the right in Fig. 1C. Few
measurements have been taken of antitoxins under stressful
conditions, but in at least two cases, stress decreased the half-life
from over an hour (Table S1) to 15 min (11, 44). Assuming the
typical antitoxin half-life is reduced eightfold (λA=λ0A ¼ 8), the
system moves from case 3 to 63, where active degradation is the
dominant form of loss in the first two equations, free toxin is
above its Km in the third and fourth equations, and cooperative
repression still dominates the fifth equation, albeit less so. If
the half-life is reduced another fourfold, to less than 2 min, the
system moves into case 61, where transcription is completely
derepressed. Simply put, the model behaves as expected for a
toxin–antitoxin system under stressful conditions.
Although there are many phenotypic regions, we can identify

three major phenotypes. Assuming the growth rate is μ ¼ μmaxX
−1
1 ,

dilution dominates antitoxin loss in Eq. 1 if μ > λA. Likewise
dilution dominates toxin loss in Eq. 2 if μ > λT. Alternatively,
active degradation dominates antitoxin loss if μ < λA or toxin loss
if μ < λT. Given these conditions, the regions of design space can
be divided into three major phenotypes: normal, transitional, and
static. In cases 1–16, μ > λA > λT, implying the growth rate is
relatively high, which is expected during normal operation. In
cases 17–32, λT > μ > λA, but λA is actually greater than λT in every
well-studied toxin–antitoxin system, so those cases are ignored. In
cases 33–48, λA > μ > λT, implying growth is slower, but dilution of
the toxin is still significant, a situation we describe as transitional.
In cases 49–64, λA > λT > μ, indicating the growth rate is near zero
and described as static operation. When stress is increased, the

system switches from a region of normal operation, through regions
of transitional operation, to a final region of static operation.

Steady States Describe a Hysteretic Switch. It would be useful to
know the expected toxin concentration for any combination of
kinetic and environmental parameter values. However, as simple
as Eqs. 1–5 may appear, there is no closed-form solution for the
steady-state concentrations. Nevertheless, in design space each
phenotype is described by a dominant nonlinear subsystem that
does have a single, well-defined steady state (37). The previous
section described three cases in Fig. 1C that are visited when
λA is increased: 3, 61, and 63. In case 3, when the dominant
subsystem is solved, the concentrations of free toxin and an-
titoxin are described by the following equations in terms of the
independent parameters:

A ¼
 
Kp
HK

2p
P2ασ

pþ1

2pμmax

!1=ð3pþ1Þ
[6]

T ¼
 

Kp
HK

2p
P2α

2pσ2pμmax

!1=ð3pþ1Þ
: [7]

Although Eqs. 6 and 7 are nonlinear and relatively complicated,
they clearly indicate that the approximate steady-state concen-
trations of toxin and antitoxin are not dependent on λA. There-
fore, small deviations in λA from the normal operating point in
case 3 should not produce significant changes in toxin or anti-
toxin concentrations. In fact, for any decrease in λA, the system
remains in case 3 and therefore maintains approximately the
same toxin and antitoxin levels. However, an eightfold increase
in λA moves the system to case 63, where the steady-state con-
centrations are described by the following equations:

A ¼
 
Kp
HK

2p
P2ασ

pþnþ1Kn
T2λ

pþn
T

2pλpþnþ1
A

!1=ð3pþnþ1Þ
[8]

T ¼
 
Kp
HK

2p
P2αK

n
T2λ

2p
A

2pσ2pλ2pþ1
T

!1=ð3pþnþ1Þ
: [9]

Eqs. 8 and 9 reveal that in case 63, both toxin and antitoxin
concentrations are dependent on λA. However, if the active deg-
radation of the antitoxin is increased enough, the system moves
into case 61, where the toxin concentration is again independent
of λA, as shown by Eqs. 10 and 11.

A ¼
 
ασnþ1Kn

T2λ
n
T

λA

!1=ðnþ1Þ
[10]

T ¼
�
αKn

T2

λT

�1=ðnþ1Þ
: [11]

The steady-state concentrations for the other cases can be solved
similarly. Although the solutions for A and T are nonlinear and
relatively complicated, a closer inspection of Eqs. 1 and 2 reveals
that the ratio of antitoxin to toxin is much simpler: A/T = σ. In
fact, that ratio is the same for all cases 1–16, despite different
solutions for A and T in each case. Likewise, cases 33–40 share
the ratio A/T = σμmax/λA. Cases 49–64 share the ratio A/T = σλT/
λA, which can be found in Eqs. 8–11. The shared ratios suggest
that each group of cases may exhibit similar behavior, even if the
concentrations are not the same.
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The steady-state concentrations for each case are plotted
piecewise, as a function λA, in Fig. 1 D and E. For increased
proteolytic activity, the free toxin concentration rises over 10-
fold, after passing through a transitional region with three
steady states, the hallmark of a hysteretic switch. A numerical
solution to the original system of equations mirrors the sharp
rise in toxin concentration and the transitional region, albeit
narrower, with three steady states. In fact, any phenotypic
variable can be plotted in such a piecewise fashion over the
entire design space. The growth rate, defined as μ ¼ μmaxX

-1
1 ¼

μmaxK
n
T1=ðTn þ Kn

T1Þ, is plotted in Fig. 2 A–C. The result is even
more dramatic: The growth rate abruptly changes over two
orders of magnitude.

Local Stability Analysis Confirms Bistability. A hysteretic switch has
well-known stability properties: two stable steady states—low
and high toxin concentrations—with an unstable intermediate
steady state. In design space, the local stability of each case
can be determined using well-known techniques (41). In short,
a characteristic polynomial is derived from a linear approxima-
tion of the dominant subsystem. In this two-variable model, the
resulting quadratic equation can be solved for the eigenvalues.
Fig. 2 D–F shows the dominant eigenvalues over the entire de-
sign space. At the normal operating point in case 3, the dominant
eigenvalue has a negative real part, implying the steady state is
stable. An increase in λA forces the system through the region
of multiple steady states, where the dominant eigenvalues of
cases 43 and 47 always have a positive real part, implying their
steady states are always unstable. For high values of λA, the
system reaches a stable steady state in case 59, 61, or 63. In
short, the system has the stability characteristics of a hyster-
etic switch.

The local stability can also be analyzed via the Routh stability
criteria (41). Table 1 shows the Routh stability criteria for the
dominant subsystem in each case. F1 and F2 are well-defined
functions of the independent parameters and are always positive
(41). The parameters n and p are the positive exponents, or ki-
netic orders, defined in Eqs. 1–5. In cases 3, 35, 59, 61, and 63, it
is apparent that the criteria are always true, implying the system
is always stable. On the other hand, the criteria in cases 43 and 47
can sometimes be false, indicating that instability is possible. It
can be shown that the first criterion is false only if the second
criterion is false, meaning the instability is always exponential,
not oscillatory. For the estimated parameter values n = 2 and
p = 2, the second criterion is false and the system, therefore, is
unstable. The Routh criteria not only confirm the stability impli-
cations of the sampled eigenvalues in Fig. 2, they also mathe-
matically describe an entire range of parameter values that can
lead to a bistable hysteretic switch.

Design Space Boundaries Indicate Parameter Sensitivity. The size
and shape of the bistable region in Fig. 1C are dictated by the
boundaries of cases 43 and 47, which are mathematically defined
by linear functions of the logarithm of the multiplicative param-
eters and rational functions of the exponential parameters (37).
Eqs. 12–18 describe the boundary equations for lines L1–L7, re-
spectively. The equations are evidently linear with respect to log
μmax and log λA, the axes in Fig. 1C.

log μmax ¼ ð3pþ 1Þ−1
�
2pnlog λA þ nlog αþ 2pnlogKP2

− 2pnlog σ− pnlog2− pnlogKH

þð3p− 2pnþ 1− nÞlog λT − ð3pnþ nÞlogKT1

�
[12]
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Fig. 2. Growth rate and stability. (A–C) Growth rate, based on the steady-state toxin concentration, for cases 3 and 35 (A); cases 43 and 47 (B); and cases 59,
61, and 63 (C). Black regions indicate cases that can be found in one of the other panels. Some regions have more than one steady state and therefore more
than one potential growth rate. Maximum growth (blue) is expected when starting at the normal operating point (white circle) and increasing λA. Minimum
growth (red) is expected when recovering from stress (white triangle) by decreasing λA. (D–F) Real part of the dominant eigenvalues for the linearized
subsystem in cases 3 and 35 (D); cases 43 and 47 (E); and cases 59, 61, and 63 (F). Positive values (yellow and red) indicate instability. Slightly negative values
(green) are stable, but imply relatively slow response times. Very negative values (blue) represent a stable and fast response. The operating points are
consistent with Fig. 1C.
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log μmax ¼ ð3pþ nþ 1Þ−1
�
2pnlog λA þ nlog αþ 2pnlogKP2

− 2pnlog σ− pnlog2− pnlogKH

þ�3p− 2pnþ 1
�
log λT −

�
3pnþ nþ n2

�
logKT1

þn2logKT2

�
[13]

log μmax ¼ ð2pþ 1Þ−1
�
2plog λA þ log αþ 2plogKP2

− 2plog σ− plog2− plogKH

− ð2pnþ nÞlogKT1 − ð3p− 2pn− nþ 1ÞlogKT2

�
[14]

log μmax ¼ log λA [15]

log μmax ¼ ð2pþ 1Þ−1
�
2plog λA þ log αþ 2plogKP2

− 2plog σ− plog2− plogKH − ð3pþ 1ÞlogKT1

�
[16]

log λA ¼ 0:5ðlog2þ logKH þ 2log σ
þ2log λT þ 3logKT2 − 2logKP2Þ
þ0:5p−1

�
log λT þ logKT2 − log α

� [17]

log λA ¼ 0:5ðlog2þ logKH þ 2log σ
þ2log λT þ 3logKT2 − 2logKP2Þ
− 1:5ðnþ 1Þ−1�log λT þ logKT2 − log α

�
: [18]

L4 is fixed with a slope of one. The slopes of L3 and L5 are
identical and less than one. The slopes of L1 and L2 are greater
than one. The crucial factor that appears to determine the width
of the bistable region is the difference between the slope ofL5 and
the slope of either L1 or L2. Therefore, increasing p increases the
size of the bistable region, but increasing n, the strength of toxic
impact, has a more dramatic effect. Indeed, Fig. S1 shows the
toxin profiles when n is increased from 2 to 2.5 or 3—the bistable
region grows significantly wider.
A more succinct method of describing the size of bistable re-

gion 43 is to poise the system at an operating point within the
region and measure the distance to the boundaries or the toler-
ance of the system to large changes in the parameter values. An
antitoxin half-life of 30 min ðλA=λ0A ¼ 0:5Þ poises the system in the
middle of the bistable region. From there, Table 2 lists the tol-
erance for each parameter. The tolerances for μmax and λA can be
visually confirmed in Fig. 1C. The infinite tolerances indicate that
any decrease in λT or increase in KP1, KT2, or n will not change
regions and will therefore not change the dominant hysteretic
behavior. The system is extremely tolerant to changes in α and
KP1, which is of interest because KP1 is one of the most widely
varying parameters between toxin–antitoxin systems (Table S1).
It also appears that the kinetic order p, or the number of oper-
ators, can be increased to 3 or 4 without altering the dominant

hysteretic behavior. On the other hand, the system is intolerant
to changes in KT1, suggesting that the kinetics of toxicity may
determine whether or not the system is hysteretic. Overall, the
measures of global parameter tolerance indicate that the bistable
phenotype is robust and exists over a broad range of param-
eter values.

Dynamic Simulations Confirm Hysteretic Switching. A dynamic sim-
ulation of the system, without noise, clearly exhibits hysteretic
behavior. Fig. 3A shows the results of slowly increasing the rate
constant of antitoxin degradation from λ0A to over twice the normal
rate and then repeating the change in the opposite direction. The
toxin level changes significantly at two different points on either
side of a bistable region. A similar result can be seen in Fig. 3B,
where μmax is slowly decreased from μ0max to less than half the
normal rate.
A recent assay for hysteresis (45) could serve as the basis for an

experimental test. In brief, one of the antitoxin proteases, ClpXP
for example, could be placed under the control of a gratuitous
inducer. Samples taken from an unstressed culture in steady-state
exponential growth could then be used to inoculate a graded se-
ries of cultures with different inducer concentrations, which
represent different levels of stress. Once the inoculated cultures
establish steady-state exponential growth, they could be treated
with an antibiotic and assayed for the frequency of survivors (27).
We predict the frequency will remain relatively constant but in-
crease dramatically at a particular inducer concentration. For
a hysteretic switch, the switching threshold depends on the his-
tory, or starting point, as shown in Fig. 3. To demonstrate the
alternate threshold, a complementary experiment would have to
start at the high persister frequency, conceivably by exposing the
original population to a high concentration of inducer and then
antibiotics, intentionally selecting for persisters. The population
could then be used to inoculate a similar series of cultures. After
a suitable period, the cultures could be treated with antibiotic and
assayed for the frequency of survivors. In this case, we predict the
dramatic shift in persister frequency will occur at a lower con-
centration of inducer or simulated stress.
Interestingly, the dominant eigenvalues in Fig. 2D–F imply that

the response time of the system varies by at least an order of
magnitude. Fig. S2 confirms the observation, showing the differ-
ence in the system’s response to small, instantaneous changes in
toxin concentration when the system is poised in the region of
bistability, at either the low or the high toxin concentration. Under
normal conditions, when the free toxin concentration is low, the
response time is relatively rapid, as can be seen Fig. S2C. When the

Table 1. Two critical Routh stability criteria

Case Criterion 1 Criterion 2

3 (2p + 1)F1 + (p + 1)F2 > 0 3p + 1 > 0
35 (2p + 1)F1 + (p + 1)F2 > 0 3p + 1 > 0
43 (2p + 1)F1 + (p + 1 − n)F2 > 0 3p + 1 − 2pn − n > 0
47 (2p + 1)F1 + (p + 1)F2 > 0 3p + 1 − 2pn > 0
59 (2p + 1)F1 + (np + 1)F2 > 0 3p + 1 > 0
61 F1 + (1 + n)F2 > 0 n + 1 > 0
63 (2p + 1)F1 + (p + 1 + n)F2 > 0 3p + 1 + n > 0

F1 and F2 are functions of the independent parameters and are always
positive. Kinetic orders n and p are also positive. The system is stable when
both criteria are true.

Table 2. Tolerance to a fold change in each parameter

Parameter Fold change decrease Fold change increase

μmax 2.5 1.6
λA 1.8 3.1
λT ∞ 4.7
α 10 92
σ 3.1 1.8
KH 3.2 9.6
KP1 200 ∞
KP2 1.8 3.1
KT1 1.9 1.3
KT2 2.2 ∞
p 4.1 2.6
n 1.1 ∞

Tolerance is a measure of the change required to move the system from
an initial operating point to a new region or phenotype. Here, the initial
operating point is located at the center of hysteretic region 43, where
μmax=μ0max ¼ 1 (a cellular doubling time of 30 min) and λA=λ0A ¼ 2 (an anti-
toxin half-life of 30 min).
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free toxin concentration is high, as in Fig. S2B, the response time is
at least 10 times slower. Furthermore, Fig. S2D indicates that
when the free toxin concentration is high, the system behaves al-
most linearly—the response time remains the same regardless of
the magnitude of the perturbation. On the other hand, Fig. S2E
shows that when toxin concentration is low, the system response
varies according to the perturbation—the system is slower to
return from an increase in toxin than from a decrease, an asym-
metry that becomes evident in the response to small, rapid fluc-
tuations or noise.

Spontaneous Switching Due to Stochastic Fluctuations. Stochastic
variation within the region of bistability could drive anymember of
a population toward either phenotype. To examine the effects of
stochastic fluctuations, populations were poised at either the low
or the high toxin concentration, and then each population was
simulated, with and without noise. For relatively little noise, the
mean behavior of the noisy population poised at the high toxin
level approached the expected deterministic steady state, as can be
seen in Fig. S3C. However, Fig. S3D shows that the noisy pop-
ulation poised at the low toxin level converged to a mean higher
than the deterministic steady state, due to the asymmetric, non-
linear system response observed in Fig. S2E.
For larger stochastic fluctuations, populations exhibited spon-

taneous transitions from low to high toxin concentrations, as can
be seen in Fig. 3C, and from high to low toxin concentrations, as
can be seen in Fig. 3D. The switching can also be explained by the
asymmetric system response. At the lower toxin level, the random
walk of the stochastic system is biased toward higher concen-
trations. The larger the noise perturbation is, the slower the system
responds and the greater the bias becomes. If the walk carries the
system past some toxic threshold, the dynamics shift focus to the
high toxin concentration, where the system is relatively sluggish
and unbiased. The system becomes trapped in a slow but inevitable
migration toward the highly toxic state with virtually no growth. In
the highly toxic state the system wanders more slowly, albeit over

a larger range, allowing for occasional reversions back to the low
toxin level, as shown in Fig. 3D. The relative frequency of the
switching, in either direction, can be tuned by the parameters of
the system.

Dilution by Growth Can Serve as a Coordinating Signal. Fig. 3B shows
that varying the maximum growth rate constant, μmax, even if λA
remains the same, can switch the system between phenotypes.
Such a change in μmax could be caused by an unrelated stress or
change in the environment. For example, it has been shown that
bacterial signaling via indole induces persistence, likely by in-
ducing the oxidative-stress and phage-shock pathways (46). If the
maximum rate of protein production, α, is decreased in tandem
with μmax, the results are similar; however, decreasing α alone
actually lowers the steady-state concentration of free toxin. It
appears that when growth slows, it is the decrease in dilution,
rather than the decrease in protein production, that gives rise to
hysteretic behavior and the dramatic increase in toxin.
An experimental test of the growth-rate trigger could be similar

to the test for hysteresis described above, save that the growth rate
should be varied without changing the concentration of antitoxin
protease. Samples taken from a culture in steady-state exponential
growth could be used to inoculate a graded series of cultures ca-
pable of producing different steady-state exponential growth rates
but similar patterns of cellular expression, including protease
concentration. Although there are numerous means of changing
the steady-state exponential growth rate of a culture, doing so
without a large-scale change in the cellular expression pattern is
a challenge. However, cells exposed to a temperature change
along the linear portion of the Arrhenius plot immediately as-
sumed the growth rate characteristic of the new temperature,
suggesting a minimal change in the expression pattern (47). This is
in contrast to cells undergoing a shift-up in carbon source avail-
ability, for which a significant change in the expression pattern and
several generations are required before the growth rate charac-
teristic of the new environment is achieved (48). If the challenge
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Fig. 3. Dynamic simulations of toxin concentration in a single system (n = 2.5). (A and B) Deterministic simulations without noise exhibit hysteresis. (A) λA=λ0A
was slowly increased from 1 to 2.5 (blue) and then decreased from 2.5 to 1 (red). (B) μmax=μ0max was slowly decreased from 1 to 0.4 (blue) and then increased
from 0.4 to 1 (red). (C and D) Stochastic simulations exhibit spontaneous switching. Five thousand members of a population were poised at either the low
(white triangle) or the high (black triangle) steady-state toxin concentration for μmax=μ0max ¼ 0:75. Simulations without noise remained at the low (blue) or the
high (red) steady state. Simulations with noise (d = 0.2) are shown for 500 randomly chosen members (gray), along with the population mean (green). (C)
When poised at low toxin levels, members of the population infrequently transitioned to the highly toxic state. (D) When poised at the high toxin level, most
of the population eventually transitioned to the normal, low-toxin state.
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is overcome, we predict a dramatic shift in the frequency of per-
sisters at a specific lower growth rate. Furthermore, if the antitoxin
protease is placed under the control of a gratuitous inducer, we
predict that a second series of cultures with a higher concentration
of inducer—which would be represented by points on a vertical
line to the right of the normal operating point in Fig. 1C—will
exhibit the shift in persister frequency at a higher growth rate,
demonstrating the link between λA and μmax.
The results suggest how one toxin–antitoxin system could

trigger another by decreasing the maximum growth rate constant
μmax. Indeed, there is experimental evidence that supports our
prediction: It has been shown that Doc can induce MazF activity
(49) as well as RelE activity (50), but a mechanism that accounts
for the link has not been described. The indirectly triggered toxin
would further decrease cell growth, potentially triggering other
toxin–antitoxin systems.

Multiple Toxin–Antitoxin Systems Increase the Frequency of Persisters.
The model can be extended to account for multiple toxin–antitoxin
systems, as shown in Eqs. 19–22. If each toxin affects global and
cognate protein synthesis similarly, then KT1 = KT2 = KT and the
original equations definingX1 andX2, Eqs. 3 and 4, can be reduced
to a single equation for X, Eq. 21. Furthermore, toxin–antitoxin
systems target many different aspects of the translational machinery
(51), implying that multiple toxin–antitoxin systems acting together
would have a cooperative, multiplicative effect on translation, as
shown in Eq. 21.

dAi

dt
¼ σαYi

−1X−1 − μmax AiX−1 − λAAi þ ξA [19]

dTi

dt
¼ αY−1

i X−1 − μmaxTiX−1 − λTTi þ ξT [20]

X ¼ 1þ Tm
1

Km
T

Tm
2

Km
T
⋯

Tm
N

Km
T
¼ 1þ Tn

Kn
T

[21]

Yi ¼ 1þ A2
i

K2
P1

þ
 
2A2

i Ti

K2
P2KH

!p

þ A2
i T

2
i

K2
P1K

2
H
: [22]

Assuming the parameter values are, as shown, the same for each
toxin–antitoxin system, and that the random fluctuations for each
system are correlated, then the systems behave identically, or
Ti = T, Ai = A, and Yi = Y. As such, multiple systems can be
analyzed using the original model with KT1 = KT2 and a larger
Hill number, or toxic impact, n. Increasing n is equivalent to
increasing the number of toxin–antitoxin systems in the model.
The marginal toxic impact, or the amount n increases for an

additional toxin–antitoxin system, is influenced by several fac-
tors, including the new toxin’s independent impact, all of the
toxin’s targets, and the relative toxic thresholds. Here, we simply
assume that each new toxin–antitoxin system increases the ag-
gregate toxic impact n by an average toxic impact m. Thus, if
there are N toxin–antitoxin systems, and the addition of each
system has an average toxic impact of 0.5, then the aggregate
toxic impact will be n = 0.5N. Stochastic simulations of a pop-
ulation with 18 toxin–antitoxin systems, with an aggregate toxic
impact of n = 9, are shown in Fig. 4A. Spontaneous switching
occurred from the normal to the persistent state and back again.
A histogram of μ/μmax over the course of the simulation is bi-
modal, as seen in Fig. 4B, indicating that the system switched
between near-maximal growth and near-zero growth, spending
little time in between. On the other hand, with only 4 toxin–
antitoxin systems, or n = 2, the simulations followed a unimodal
distribution about a mean growth rate, and no member of the
population entered the persistent state, defined as less than 20%
of μmax. Incrementally decreasing the number of toxin–antitoxin
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Fig. 4. Stochastic simulation of multiple toxin–antitoxin systems. A total of 106 members of a population were poised at the low steady-state toxin con-
centration, or normal growth, and simulated with stochastic noise (d = 0.2). Members that fell below 20% of μmax (dashed line) were considered persisters. (A)
For a wild-type system with 18 toxin–antitoxin systems (n = 9), simulations without noise remained at the low toxin level with high growth (blue) or the high
toxin level with low growth (red). Five hundred members of the population are shown (gray) and exhibited spontaneous switching between high- and low-
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8 (red), 6 (green), and 4 (blue). (C) Population model. kN, rate at which normal cells become persisters; kP, rate at which persisters revert to normal cells;
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stochastic simulation and measured by antibiotic survival, for the wild-type cell or deletion mutants with 1–10 of the systems removed (black circles). The
results are compared with recently published data (27), where type II toxin–antitoxin systems were incrementally deleted from E. coli and the resulting
mutants were exposed to ciprofloxacin (blue) and ampicillin (red).

E2534 | www.pnas.org/cgi/doi/10.1073/pnas.1301023110 Fasani and Savageau

www.pnas.org/cgi/doi/10.1073/pnas.1301023110


systems from 18 to 4 gradually decreased the bimodality and
persister frequency. The time spent in each state was also vari-
able, as can be seen in Fig. 4A. Two members of the population
are shown that switched to the low-growth or persistent state.
One reverted to normal after about 10 h and the other after
about 60 h. The results suggest that persisters, like normal cells,
may also hedge their bets. Some members of the persistent
subpopulation could revert earlier to explore the environment—
if the stress is gone, the population recovers; if the stress re-
mains, the persistent subpopulation survives.
The simulations shown in Fig. 4A describe a population of

constant size. In reality, the population would grow over time.
Moreover, the subpopulation of persisters would grow at a fraction
of the rate of normal cells. Themodel depicted in Fig. 4C describes
such a heterogeneous, dynamic population. It has been used in the
past to model subpopulations of persisters (8), as well as other
cellular populations of interest (52). The number of cells in the
normal subpopulation,N, grows at a rate μN. Likewise, the number
of cells in the persistent subpopulation, P, grows at a rate μP.
Normal cells become persisters at a rate kN, and persisters revert at
a rate kP. The dynamics of each subpopulation can be described
by the following ordinary differential equations:

dN
dt

¼ μNN − kNN þ kPP [23]

dP
dt

¼ μPP− kPP þ kNN: [24]

It can be shown that the steady-state ratio of persisters to normal
cells, R = P/N, is the solution to a quadratic equation: 0 ¼
kPR2 þ ðμN − μp þ kP − kNÞR− kN .
During the stochastic simulations shown in Fig. 4A, the tran-

sition rates into and out of the persistent state provided a measure
for kN and kP. The mean growth rate of each subpopulation was
used as an estimate for μN and μP. For a wild type with 18 toxin–
antitoxin systems, the frequency of persisters, accounting for
growth, was about 6 in 105, or 0.006%. As the number of toxin–
antitoxin systems was decreased, the frequency of persisters, or
survivors, decreased, as shown in Fig. 4D. In particular, several
toxin–antitoxin systems had to be removed before a significant
decrease in the frequency of persisters occurred. From there on,
removing each toxin–antitoxin system significantly and incremen-
tally decreased the frequency of persisters. The results are in good
agreement with published reports that showed the incremental
deletion of type II toxin–antitoxin systems in E. coli incrementally
decreased the number of persisters, regardless of the order of
deletion (27). The same general response is evident even when the
baseline wild-type persister frequency is tuned higher or lower via
the other system parameters. An experimental test for the de-
pendence on other system parameters would be similar to the ones
we described above, with an antitoxin protease under the control
of a gratuitous inducer.We predict that repeating the incremental-
deletion experiment in higher concentrations of gratuitous inducer
will shift the curve in Fig. 4D to the left, meaning that fewer toxin–
antitoxin deletions would be required to reduce the frequency
of persisters. Conversely, the result would imply that organisms
in higher-stress environments might recruit more toxin–antitoxin
systems to hedge their bets.

Discussion
Our results indicate that the general architecture of toxin–antitoxin
systems provides the potential for a robust hysteretic switch be-
tween normal and static states. Systems that do not exhibit the
necessary bistability can be coupled to produce the hysteretic be-
havior. The static state is characterized by virtually no growth and
is reminiscent of a dormant, drug-tolerant persister, suggesting

that toxin–antitoxin systems represent one of the mechanisms that
contribute to persister formation. Similarly, bacteria may enter
a viable but nonculturable (VBNC) state, capable of withstanding
stress, tolerating antibiotics, evading detection, and reviving with
full virulence (53). Although there is safety in such dormancy, it is
reasonable to expect that a competitive, growing cell would post-
pone such a drastic change as long as possible, but once commit-
ted, act quickly and without reversion—the design principles for a
hysteretic switch. Some experimental evidence suggests that de-
leting toxin–antitoxin cassettes does not change cell competitive-
ness under extremely stressful conditions (54). Indeed, our results
suggest that the potential advantage may not be in a cell’s behavior
at the extremes, but rather in the hysteretic, all-or-nothing switch
between them.
The switch between the normal and persistent phenotypes can

be driven by the proteolysis of the antitoxin, stochastic fluctuation,
or a change in the growth rate. It should be noted that the
threshold of the effect is dependent on the other system param-
eters and may therefore vary across species, strains, and environ-
ments. Furthermore, long-term adjustments to the cell physiology
may compensate. Nevertheless, it is possible that the growth rate
serves as a coordinating signal, ensuring that all extraordinary
measures are taken in concert and cooperatively increasing the
impact of multiple toxin–antitoxin systems.
Persister frequency in a wild-type population of E. coli is typi-

cally between 10−6 and 10−5 (22), although it undoubtedly varies
considerably depending on the species, the strain, and the ecological
niche. For example, the frequency in a biofilm of P. aeruginosamay
be as high as 10−2 (55). Our results suggest that persister frequency
is a function of the overall number of toxin–antitoxin systems, their
average toxic impact, the size and shape of their bistable region,
and the strength of the stochastic perturbations. The size of the
bistable region can be altered most dramatically by varying the
overall number of toxin–antitoxin systems in a cell. The shape
of the bistable region is dictated by the many parameters of the
system, indicating that there are likely many ways to establish and
maintain persistence, an observation that has been made else-
where (56). Likewise, the environment can vary, and slow growth
alone is not a perfect protection—metabolic stimulation, without
increasing growth, can make persisters susceptible to antibiotics
that target the residual translational activity (57). Simply put, the
various parameters of the system can tune the frequency of per-
sisters for a variety of contexts.
Each of our conclusions can be tested experimentally, as de-

scribed in the previous sections. All of the experiments place one
of the antitoxin proteases under the control of a gratuitous inducer
and then use a stressed or an unstressed culture in steady state to
inoculate a graded series of cultures designed to vary either the
proteolytic activity or the growth rate—represented by a series of
points in Fig. 1C. In every case, we predict a dramatic rise in the
persister frequency at some threshold, a threshold that can then be
tuned by varying another parameter in the experiment.
In summary, our model describes how toxin–antitoxin systems

can give rise to a bimodal population of normal and persistent
cells. The persistent subpopulation would always be present, even
under normal conditions, as a bet-hedging strategy to survive a
catastrophic event. The frequency of persisters in the population
can be tuned for a certain niche by varying the noise strength, the
relative size and position of the bistable region, the average toxic
impact, and the overall number of toxin–antitoxin systems in
the cell.

Methods
Model Formulation. The references we used to create and support a general
toxin–antitoxin system model are cataloged in SI Text. Fig. 1 A and B depicts
the common species and their interactions. A and T represent the concen-
trations of monomeric antitoxin and monomeric toxin, respectively. In cases
where the toxin is homodimeric, if we assume that the toxin completely
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folds and dimerizes at physiological concentrations, we can redefine T as the
concentration of dimeric toxin, and the model remains the same. We assume
the kinetics of message synthesis and degradation as well as complex
formation and dissociation are relatively fast compared with the rest of
the system.

In both Eqs. 1 and 2, the first and only positive term represents protein
synthesis. The multiplicative factor σ represents the translational coupling
between toxin and antitoxin. The overall rate of synthesis is at most α and is
proportional to the fraction of unbound promoter, Y−1, and the impact of the
free toxin on translation, X2

−1. The second term represents protein loss due to
dilution, where μmax is the maximum growth rate constant. Free toxin globally
inhibits macromolecular synthesis, which slows growth and lowers the rate of
dilution via X1

−1. The toxin may affect global and cognate protein production
differently (58), which is accounted for by the similar but separate variables X1

and X2. Those variables are defined in Eqs. 3 and 4, where the toxin’s impact is
described by a Hill equation with a Hill number n and a concentration for half-
maximal activity, either KT1 or KT2. The third term in Eqs. 1 and 2 represents
protein loss due to active degradation, where λA is the rate constant of an-
titoxin degradation and λT is the rate constant of toxin degradation.

Eq. 5 describes the relative amount of bound promoter. Toxin–antitoxin
systems generally have one dominant, high-affinity operator, and in this
model, we ignore the weaker sites or, in the case of the cooperatively
binding complex, treat the sites in aggregate. The second term represents
the dimerization of the antitoxin on the surface of the promoter, with a
concentration of half-maximal binding at KP1. The third term represents the
cooperative binding of the complex C to the promoter, with Hill number p
and a dissociation constant KP2 that represents increased affinity. The
complex C forms when a toxin binds the antitoxin dimer at one of two in-
dependent sites with a dissociation constant KH. The single toxin can bind to
either site and hence binds with twice the affinity, or 2/KH. The fourth term
assumes that the complex D binds the operator with the same affinity as the
bare dimer, or KP1. The complex D forms when two toxins bind the antitoxin
dimer with overall affinity 1=K2

H. Together, Eqs. 1–5 form a tractable, generic
model of toxin–antitoxin regulation.

Over the past decade, studies have confirmed that stochastic fluctuations
in gene expression and genetic networks can have a dramatic impact (59).
Noise can be tuned to advantage for specific functions or shaped and fil-
tered by network design to minimize the negative consequences. We model
stochastic noise by adding ξA and ξT to Eqs. 1 and 2, creating stochastic
differential equations in Langevin form. ξA and ξT are uncorrelated white
noise terms with zero mean, 〈ξi(t)〉 = 0, and δ-autocorrelation, ÆξiðtÞξiðsÞæ ¼
dδðt − sÞ, where d is proportional to the strength of the perturbation.

Parameter Estimation. Apart from noise, the model described by Eqs. 1–5
contains 12 parameters, many of which have been experimentally measured.
We used the published data for six of the best-studied toxin–antitoxin sys-
tems: kis-kid (pemIK), ccdAB, mazEF, phd-doc, relBE, and yefM-yoeB, a list
that includes plasmid-borne and chromosomal toxin–antitoxin systems,
some long studied and some more recently discovered. Table S1 shows the
experimental values we found for each toxin–antitoxin system, as well as the
final estimates we use in our model. Under optimal conditions, E. coli can
double, on average, in less than 20 min (60). We assume a slightly more
conservative cellular doubling time of 30 min. We also assume the Hill
number p is equal to the number of repressor binding sites. Many of the
parameters appear to be somewhat conserved across systems, at least within
an order of magnitude.

Computational Methods. We constructed and analyzed the system design
space, using the Design Space Toolbox for MATLAB 1.0 (37). We simulated
the deterministic model with the MATLAB stiff solver, ode15s. We sim-
ulated the stochastic model with our own implementation of the Euler–
Maruyama method (61) in MATLAB. All tests were performed using MATLAB
7.8 (R2009a).
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