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Abstract: Intravascular optical coherence tomography (IVOCT) is rapidly 
becoming the method of choice for the in vivo investigation of coronary 
artery disease. While IVOCT visualizes atherosclerotic plaques with a 
resolution <20µm, image analysis in terms of tissue composition is currently 
performed by a time-consuming manual procedure based on the qualitative 
interpretation of image features. We illustrate an algorithm for the 
automated and systematic characterization of IVOCT atherosclerotic tissue. 
The proposed method consists in a supervised classification of image pixels 
according to textural features combined with the estimated value of the 
optical attenuation coefficient. IVOCT images of 64 plaques, from 49 in 
vivo IVOCT data sets, constituted the algorithm’s training and testing data 
sets. Validation was obtained by comparing automated analysis results to 
the manual assessment of atherosclerotic plaques. An overall pixel-wise 
accuracy of 81.5% with a classification feasibility of 76.5% and per-class 
accuracy of 89.5%, 72.1% and 79.5% for fibrotic, calcified and lipid-rich 
tissue respectively, was found. Moreover, measured optical properties were 
in agreement with previous results reported in literature. As such, an 
algorithm for automated tissue characterization was developed and validated 
using in vivo human data, suggesting that it can be applied to clinical 
IVOCT data. This might be an important step towards the integration of 
IVOCT in cardiovascular research and routine clinical practice. 

©2013 Optical Society of America 

OCIS codes: (100.0100) Image processing; (100.2960) Image analysis; (100.4995) Pattern 
recognition, metrics; (170.0170) Medical optics and biotechnology; (170.6935) Tissue 
characterization. 
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1. Introduction 

Coronary atherosclerotic plaques are mainly divided into lipid-rich, calcified and fibrous 
types, with mixed forms appearing in many cases. Plaque composition and morphology is 
strongly correlated with the clinical presentation of the patient. Calcified plaques (CP) 
predominantly occur in stable lesions while acute coronary syndromes are typically caused by 
the rupture of a so called ‘vulnerable’ plaque, the TCFA (thin-cap fibroatheroma), consisting 
of an accumulation of extracellular lipid with a thin overlying fibrous cap [1,2]. Moreover, 
specific types of coronary plaques have been shown to impact the outcome of percutaneous 
coronary intervention (PCI) procedures [3–6]. 

Detailed identification and characterization of atherosclerotic lesions in vivo and 
quantification of relative morphological, chemical and mechanical parameters contributes in 
advancing the general understanding of coronary atherosclerotic disease and facilitating the 
development of new therapies and interventions. However, most of the current available in 
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Fig. 1. Examples of atherosclerotic plaques. Left image shows a lipid-rich plaque (L); right 
image a circumferential calcification (C). Asterisk indicates guide-wire shadowing artifact. 

vivo imaging modalities, such as intravascular ultrasound (IVUS) and computed tomography 
(CT), are limited by a low spatial resolution (>100µm) [7,8]. 

Intravascular optical coherence tomography (IVOCT) is a catheter based imaging 
modality able to visualize the arterial wall from the luminal side with an axial resolution 
<20µm and a penetration depth of ~0.5-1.5 mm [9]. State-of-the art systems are able to 
acquire IVOCT images at a frame rate of 100 frames per second imaging a complete arterial 
volume with a length of ~5.4 cm in only a few seconds. 

Previous studies demonstrated the ability of IVOCT to qualitatively characterize the three 
major plaque components by correlation with histology [10,11]. Yabushita et al. [11] 
described fibrous plaques as homogeneous signal-rich regions; calcified plaques as 
heterogeneous signal-poor regions with sharply delineated borders and lipid-rich plaques as 
signal-poor regions with diffuse borders (Fig. 1). A more recent publication by Xu et al. [12] 
quantified the true backscattering coefficient µb and the attenuation coefficient µt of 
atherosclerotic tissues (Table 1), corroborating the qualitative scheme for IVOCT plaques 
assessment proposed by the former study [11]. However, the manual assessment of IVOCT 
plaque tissue components based on qualitative criteria leads to interobserver variability [13]. 
Furthermore, manual tracing and assessment of plaques in IVOCT images is a very time-
consuming and labor intensive procedure. As such, methods for automated IVOCT tissue 
characterization would be a very important step for a widespread integration of this 
technology in cardiovascular research and clinical practice. 

To overcome some of these problems, van Soest et al. [14] proposed an algorithm for the 
automatic quantification of the optical attenuation coefficient in IVOCT images. Such a 
method allows for discrimination of high attenuating plaque components (i.e. lipid core and 
macrophages infiltrations) from low attenuating components (i.e. fibrous and calcified tissue). 
Another recent publication [15] presented an algorithm for the semiautomatic segmentation of 
calcified plaques. 

In this study, we propose an algorithm for the automated characterization of the three main 
plaque components: fibrotic, calcified and lipid-rich tissue. Qualitative features of 
atherosclerotic plaques described by former studies [11,16] are quantified through statistical 
texture analysis as well as information related to tissue backscattering [17]. In addition, as the 
attenuation coefficient µt is a strong discriminant between lipid and other atherosclerotic 
tissues [12,14], the local tissue attenuation is quantified by means of a novel algorithm. All 
the extracted features are then combined in a supervised classification algorithm resulting in 
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Table 1. Attenuation and Backscattering for the Main Atherosclerotic Plaque 
Components [12] 

Plaque type Backscattering Attenuation 

Fibrous High Low 

Lipid High + High 

Calcium Low Low- 

an automated characterization of atherosclerotic plaques. The classification algorithm is 
trained by a set of data visualizing atherosclerotic tissue from 24 different plaques visualized 
in vivo. The performance of the algorithm is subsequently evaluated against the manual 
assessment of a testing set composed by 40 in vivo atherosclerotic plaques by an expert 
IVOCT reader. Measured optical properties are compared to previous results reported in 
literature. 

2. OCT system 

Intracoronary images employed in this study were collected with a state-of-the-art 
commercially available Fourier-Domain OCT system (C7-XR, St. Jude Medical, St. Paul, 
Minnesota) by means of the C7 Dragonfly intravascular OCT catheter (St. Jude). The system 
is equipped with a near-infrared laser light source with a central wavelength of 1305 nm and a 
scan range of ± 80 nm. The sample arm contains an objective lens with a low numerical 
aperture (NA) of approximately 0.3. Imaging specifications, according to the manufacturer, 
consist in an axial resolution <20 µm in biological tissues and a lateral resolution of 25-60 
µm. Scan parameters are 100 frames per second, 54,000 A-scans per second, pullback speed 
of 20 mm/sec, pullback length of ~54 mm and scan-range (in contrast medium) of ~4.8 mm. 

3. Classification algorithm 

Figure 2 presents a flow chart of the entire method for atherosclerotic tissue characterization. 
After a first preprocessing step, including automatic guide-wire and lumen segmentation, the 
local attenuation coefficient µt(d) is estimated and local gray scale features and geometrical 
features quantified. Based on these locally extracted values, supervised pixel classification is 
applied. The output of the algorithm provides a color-coded image map depicting the different 
types of tissue. Image processing is applied to IVOCT data in the polar image domain. 

3.1 Preprocessing 

Guide-wire and catheter artifacts are automatically removed by applying an area constraint: 
the polar IVOCT image is converted to a binary image using the Otsu’s method [18] and 
made uniform through a morphological closing operation [15,19]. Subsequently, the guide-
wire and the imaging catheter are recognized as unconnected regions with a pixel area 
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Fig. 2. Flowchart of the image processing algorithm for tissue characterization. Output consists 
of a tissue image map. Intermediate output is given by the attenuation image-map. 

 

Fig. 3. Illustration of the fully-automated lumen segmentation procedure. Image (a) shows the 
polar domain image. Image (b) illustrates the application of the Otsu’s method and 
morphological operations and image (c) results of the area constrain. Image (d) and (e) show 
segmentation results before and after scan-conversion respectively. On image (a) the arrow is 
pointing to the OCT imaging catheter and the asterisk indicates the guide-wire shadowing 
artifact. 

smaller than a predefined threshold BWMA (black-white minimal area) (Fig. 3) and the 
lumen is automatically segmented using an algorithm previously developed and validated by 
our research group [20]. 

3.2 Feature extraction 

3.2.1 Attenuation analysis 

IVOCT systems acquire multiple OCT A-lines while retracting and rotating the catheter 
visualizing an entire portion of a vessel volume. Under the assumption that OCT only detects 
light that has been scattered once [21,22] and that the tissue is homogeneous, the intensity of 
such an A-line I(d) decreases with depth according to the Lambert-Beer law [14,23,24]: 

 )dexp(I)d(I t0 ⋅μ−⋅∝   (1) 

where d indicates the penetration depth, µt the total attenuation coefficient (comprehending 
both absorption µa and scattering µs) and I0 a scale factor equal to the locally available 
intensity I’ multiplied by the backscattering coefficient µb [14]. In addition, the OCT signal is 
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influenced by focusing effects related to the confocal properties of the OCT catheter [24–26], 
that can be described as: 
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where T(d) is the axial point spread function (PSF), x0 indicates the catheter focal point and z0 
the Rayleigh range. As such, the OCT signal can be modeled as: 

 )dexp(I)d(T)d(I t0 ⋅μ−⋅⋅∝   (3) 

As biological tissues in general, the vessel wall is a heterogeneous structure. The healthy 
vessel wall is composed of different tissues (i.e. intima, media, adventitia and perivascular 
tissue). Similarly, atherosclerotic tissue is composed by multiple layers (e.g. fibrotic cap and 
calcified/lipidic tissue beneath). As such, an IVOCT A-line typically samples at least two or 
more tissue types. Previous studies from van der Meer et al. demonstrated that optical 
parameters can be fitted to different tissue layers through individual fitting [24,27]. This 
supports the fact that the diseased vessel wall can be considered a multi-layered structure and 
that Eq. (3) can be fitted through the different tissue layers. To automatically fit the proposed 
model to the different layers, we propose to model the signal I(d) as: 

 ∏ −⋅⋅μ−⋅⋅∝
=

)dd()dexp(I)d(T)d(I i

k

1i
i,ti,0   (4) 

where i is the layer number and П(d–di) a rectangular window in depth of variable length: 
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where di is the i-layer starting position, t a constant value taking into account the transition 
between different layers and I0,i defined as: 

 )td(II ii,0i,0 +=   (6) 

This signal model is iteratively fitted to the OCT A-lines for different values of k (i.e. number 
of layers) and for different positions (di) of the individual layers solving an optimization 
problem. This procedure is illustrated in Fig. 4. At every step k, all the possible fits are 
computed varying П(d-di) and the optimal solution at a step k, is computed as the fit 
presenting the minimum sum-of-square error (SSE) difference in respect to the OCT A-line. 
At the end of the procedure, the number of layers k best describing the signal is selected 
through the use of a threshold SSEmin: a higher number of layers k is considered to better fit 
the signal when the relative improvement over the fit k-1 is larger than SSEmin. Please note 
that this model thus not take the roll-off of the OCT system into account. 

This attenuation analysis results in an automatic estimation of µt(d) for every pixel along 
each A-line (Fig. 5). The aim of this method is a robust identification of homogeneous 
portions of the signal, correctly dealing with the presence of sudden changes in intensity at 
different tissue interfaces as a result of differences in the backscattering coefficient µb. 

3.2.2 Texture analysis 

Spatial gray-level dependence matrices (SGLDMs), or co-occurrence matrices, are a well-
known method for texture analysis [28,29]. SGLDMs represent the conditional joint 
probabilities of all pair-wise combinations of gray levels given two parameters: inter pixel 
distance (d) and orientation (θ). According to the literature [28,30], it is possible to extract 22 
statistical features from SGLDMs for the description of textural properties of a kernel K of the 
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analyzed image quantized on G gray-levels. In this study, we identified a reduced set of 7 
features that can best distinguish between the different types of tissue components based on an 
analysis detailed in the Appendix. In addition, mean pixel intensity (first order statistic) was 
also quantified within the same kernel K and used as a classification feature as well as the 
distance of pixels of interest to the imaging catheter accounting for distance effect in the 
image features (e.g. due to system roll-off). Mathematical definitions of all the statistical 
features considered in this study are reported in Table 2. 

 

Fig. 4. A schematic representation of the iterative fitting procedure. From this image it is 
possible to appreciate how the algorithm tests all the possible solutions for every value of k 
varying П(di). 

 

Fig. 5. Attenuation imaging examples. Image (a) contains a lipid-rich plaque (L) and peri-
vascular tissue (PV). Image (b) contains a mixed atherosclerotic plaque containing both lipid-
rich (L) and calcific (C) tissue; image (c) shows an example of intimal thickening (fibrotic 
tissue). Automatic analysis correctly depicts lipid-rich tissue with a higher attenuation 
coefficient. Attenuation images µt(d) are displayed on a color scale from 0 (dark blue) to 12 
mm−1 (dark red). Asterisks indicate the guide-wire shadowing artifact. 
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Table 2. Definitions for the First and Second Order Statistical Features Used in This 
Study 

Mean (1st order stat.) 
1

1 N

ki
I

N =  
where N is the number of pixels in a 
given region and Ik the int. value of a 
pixel

Co-occurrence 
probability (2nd 
order stat.)  =

=
G

1j,i j,i

j,i
ij

P

P
C  where Pi,j represents the number of 

occurrences of gray levels i and j for a 
certain (d, θ) pair in a given region 

Contrast 2( )ijC i j−    = =
= G

1i

G

1j
 

Cluster shade 3( )ij i jC i j μ μ+ − −  
=μ iji iC  

j ijjCμ =  

Energy  2
ijC  

Entropy* log( )ij ijC C eps− +   

Homogeneity  −+ ji1

C ij   

Information 
measures of 
correlation* 

1/ 2
2(1 exp[ 2( )])ij ijh h− − −  

hij = entropy

2 log( )ij i j i jh p p p p eps= − +  

=
i iji Cp and j ijj

p C=  

Inverse difference 
moment  −+ 2

ij

)ji(1

C   

*eps is an arbitrarily small constant chosen to be 2−52 (floating point accuracy). 

3.3 Pixel classification 

All the previously extracted features are combined in a feature vector (FV). FV is a vector of 
dimensions n*m, with n (number of rows) equal to the number of pixels included in the 
analysis and m (number of columns) the number of features describing each pixel. This vector 
is used as input to a recently proposed supervised classification algorithm: Random Forests 
(RF) [31]. RF is an ensemble classifier that tries to achieve an accurate classification by 
combining a large number of weak classifiers (i.e. binary trees) thus presenting reduced 
computational costs. The main characteristic of RF is that the correlation between individual 
base learners is reduced by choosing the best predictors in a random subspace of the training 
data. RF combines multiple binary tree predictors where each tree is constituted by a 
randomly sampled subset of features of the training-set: each object to classify is processed by 
all the trees, every tree votes for a single class and the forest chooses the classification having 
the larger number of votes. Required parameters are ntree (number of trees to grow) and 
mrand (number of variables randomly sampled at each node). More specific details about the 
RF algorithm can be found on the original report [31] and subsequent publications [32–34]. 

Every row of FV is classified into four different classes: (1) fibrotic, (2) calcified, (3) 
lipidic tissue, (4) outliers and corresponding image pixels are subsequently color-coded. 
Hence, classification results can be displayed side-by-side to IVOCT standard images, 
resulting in a tissue color-map. 

3.4 Implementation details 

Algorithms for lumen segmentation, attenuation analysis and texture extraction were 
implemented in Matlab 7.12.0 (R2011a) (MathWorks, Natick, MA). The scan-conversion 
algorithm was implemented in C++ (Microsoft, Redmond, WA) and the Random Forests 
classification algorithm is based on the original FORTRAN (IBM, Armonk, NY) code made 
available by the RF inventors [31]. Both C++ and FORTRAN codes were executed in Matlab 
by the means of MEX libraries. 
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3.5 Attenuation algorithm implementation 

The polar OCT image is first pre-processed with a 2D low-pass Gaussian filter of dimension 
hG and standard deviation σG for speckle reduction. Then the OCT signal is compensated for 
the effect of the axial PSF T(d) and subsequently linearized through loge-compression. This 
allows for a linear least-square fitting of the model with the advantage, over non-linear 
iterative algorithms, of independence from initialization [14]. Computational time reduction is 
another advantage. The fitting starting point ds is automatically located as the deepest pixel 
with intensity <95% of the maximum A-line intensity starting from the lumen-vessel interface 
(lumen segmentation) dL. The end of the A-line dend is defined according to the maximum 
penetration depth of IVOCT dmax [9,13]. During the fitting procedure, results presenting 
‘positive’ attenuation values µt>0 are automatically set to a minimum attenuation value µt,min 
= 0 as this would be a non-physical solution. Moreover, any pixel behind an area of high 
attenuation reaching a predefined minimum signal-to-noise-ratio (SNR) is automatically 
excluded for further analysis. 

3.6 Parameter tuning 

Besides the training of the RF algorithm, training set images were used for optimal tuning of 
the algorithm parameters. The lumen segmentation parameter BWMA was empirically set to a 
fixed value of 1,500 pixels, which was kept constant for all processed images. Attenuation 
algorithm parameters were respectively set to: wmin = 255µm, tt = 25.5 µm (approximately 2 
times the axial resolution of the system), the step size di was equal to 1 pixel, k = 4 and SSEmin 
= 2.5 (i.e. the minimal sum-of-square error difference between the fitted model and the OCT 
trace). SSEmin was also determined empirically, by testing a wide range of different values 
over a large number of different A-scan lines. The value of k represents the maximum number 
of layers to be fitted. Minimum SNR was determined as the mean intensity value of image 
regions with no tissue or other objects present. According to previous studies [9,13], dmax was 
set to be equal to 1.5 mm. Attenuation preprocessing parameters hG and σG were set equal to 7 
pixels and 2.5 respectively. Nominal Dragonfly catheter parameters (St. Jude), for 
longitudinal PSF signal compensation, were characterized to be: x0≈1.5 mm (focal point) and 
z0≈2 mm (Rayleigh length). Statistical features analysis parameters were set to d = 2 pixels, θ 
= 0° and 90°, K = 11 pixels and G = 64 as detailed in the Appendix. Random Forests 
algorithm parameters were set to ntree = 120 and mrand = 10. 

4. Data collection 

4.1 IVOCT images 

The IVOCT data utilized in this study were acquired in the context of two clinical trials, 
STACCATO (NCT01065519) and SEDUCE (NCT01065532) (University Hospitals Leuven, 
Belgium). These studies comply with the declaration of Helsinki and were approved by the 
local ethic committee. All patients gave informed consent. 

Overall, IVOCT images of evident atherosclerotic plaques from 49 different pullbacks 
from 49 different patients were arbitrarily selected from our database as follows: data sets 
were read by an expert and 64 different plaques were visually located. Then, for every 
selected plaque, only one single representative IVOCT image was retained in order to avoid 
redundant (i.e. correlated) information in the training- and testing- sets. This resulted in a total 
of 64 images of 64 different atherosclerotic plaques, generating an appropriate set of images 
for algorithm training and validation. 

Polar raw-image data exported from the C7 system were used for automatic image 
analysis. Images were scan-converted with an in-house developed algorithm [20,35] to 
standard IVOCT Cartesian domain for the purpose of manual analysis. 
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4.2 Manual tissue classification 

All images were analyzed by an expert IVOCT reader and atherosclerotic plaques were 
manually identified and classified using the software ImageJ [36,37] according to the 
qualitative criteria previously validated [11,12]. The normal artery wall –characterized by a 
very thin three-layered intima, media and adventitia architecture [16]– as well as the 
surrounding peri-vascular tissue were excluded from the analysis by defining a region of 
interest (ROI) within the IVOCT maximum penetration depth. Based on manual classification, 
pixels were labeled as: fibrous, calcified or lipid-rich. In addition, guide-wire shadowing, 
catheter, vessel lumen, unknown tissue and pixels exceeding the maximum IVOCT 
penetration depth were labeled as ‘outliers’. An average number >500 pixels per image was 
retained. As such, a balanced training set composed of 3,100 pixels per class (4 in total), 
corresponding to 12,400 pixels overall, was created and stored. 

5. Training and validation 

24 images from the 64 images mentioned above were selected to create the training set. This 
training set was used both to tune algorithm parameters (cf. section 3.6) and to train the 
classifier. The remaining 40 images were used as test set and the performance of the 
automated classification algorithm was evaluated on these images. In addition, adjacent 
frames of a randomly selected plaque were analyzed to test classification consistency. 

Classification accuracy was computed within the ROIs manually identified by the expert 
OCT reader to avoid bias, by comparing the ground-truth pixels (manual analysis) to the 
automated algorithm results. Accuracy was computed as the percentage of image pixels 
assigned to the correct class label [38,39]. Both per-class and global classification accuracy 
were quantified. Moreover, the percentage of pixels automatically excluded from analysis by 
the algorithm with respect to the ground truth, was quantified and reported as ‘classification 
feasibility’. In addition, measured values of the classification parameters were compared to 
literature when possible. In addition, statistical significance of parameters was tested through 
one-way ANOVA for multiple comparisons (and Bonferroni post-hoc testing when 
appropriate) and their relative importance for classification was quantified [31]. 

6. Results 

Figure 6 shows examples of the automated classification results (lowest panels) for lipid, 
calcified, fibrotic and mixed plaques, respectively, as well as manual classification (middle 
panels). Figure 7 shows the results of the classification algorithm for adjacent frames. 

An average number of ~2.6·104 pixels per image were analyzed resulting in a total of 
~1.05·106 testing pixels. The overall classification accuracy was 81.5% with a feasibility of 
76.5%. Single class accuracies of 89.5% for fibrotic tissue, 72.1% for calcium and 79.5% for 
lipid-rich plaques were found. Table 3 reports measured values (mean ± standard deviation) of 
both optical properties and textural features and statistical significance. Furthermore, 
according to RF algorithm, the two most important variables for classification were 
attenuation and mean, respectively. The third variable in order of importance was the 
information measures of correlation followed by cluster shade, homogeneity, contrast and 
entropy. The other variables showed of lower importance for classification. 

Computational time for the analysis of a sample of 104 pixels was ~30 seconds. More 
specifically, the time required by the scan-conversion algorithm was ~1 second for an output 
image of pixel dimensions 2000 by 2000. Single image lumen segmentation and attenuation 
analysis required ~0.6 and ~1.4 seconds respectively. Computation of the co-occurrence 
matrix and the textural features required a total of ~27 seconds while Random Forests 
classification took approximately 2.8 seconds. All reported computational times were 
quantified on a standard office pc, without any specific optimization. 
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Fig. 6. Classification examples. Image (a) shows an example of lipid-rich tissue (L); image (b) 
a calcified plaque (C); image (c) a fibrotic plaque (F); image (d) a mixed plaque containing 
both calcific and lipid-rich tissues (arrow). From the images it is possible to appreciate 
automated characterization of the 3 main plaque components and outliers (last row) by 
comparing to ground truth (manual analysis - middle row). Asterisks indicate guide-wire 
shadowing artifact and (†) indicates a side-branch. Color coding: yellow = lipid-rich, green = 
fibrotic, white = calcific and gray = outliers. 

Table 3. Measured Values of Optical Properties and Textural Features for the Different 
Plaque Typesa 

 Fibrous Calcified Lipid Outliers 

µt 2.3 ± 1.3 mm−1 2.0 ± 0.9 mm−1 8.8 ± 1.6 mm−1 ~ 

Mean 356 ± 135 98 ± 42 253 ± 201 16 ± 7 

Contrast 122 ± 93 11 ± 10 89 ± 118 0.6 ± 0.7 

Cluster shade 923 ± 2000 59 ± 273* 1667 ± 3312 0.5 ± 5* 

Energy 0.012 ± 0.001 0.045 ± 0.031 0.026 ± 0.020 0.328 ± 0.172 

Entropy 4.45 ± 0.09 3.52 ± 0.56 4.02 ± 0.57 1.40 ± 0.44 

Homogeneity 0.21 ± 0.05 0.44 ± 0.10 0.32 ± 0.13 0.77 ± 0.07 

Inverse difference moment 0.97 ± 0.02 0.70 ± 0.16 0.85 ± 0.16 0.18 ± 0.11 
Information measures of 
correlation 0.97 ± 0.01 0.99 ± 0.002 0.98 ± 0.02 1 ± 10−4 

aValues are reported as mean ± standard deviation. In order to report statistical significance a one-way ANOVA test 
(and Bonferroni post-hoc testing when appropriate) was applied. All groups have means significantly different from 
each other with the exception of the two groups labeled with an asterisk (*) 

7. Discussion 

In this study, we presented an algorithm for the automated characterization of atherosclerotic 
tissue on IVOCT images. The algorithm was validated by analyzing images of 40 
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atherosclerotic plaques both manually and by the proposed methodology showing good results 
for both overall and per-class accuracy. Given that the test set was extracted from 31 in vivo 
IVOCT pullbacks, i.e. showing a wide range of image quality and artifacts, this study 
indicates that the proposed algorithm provides a reliable automated atherosclerotic tissue 
analysis, able to characterize plaque components in vivo. 

7.1 Accuracy 

Overall, a classification accuracy of 81.5% was found. This accuracy was obtained in realistic 
clinical imaging conditions in which image quality may have been suboptimal and different 
kinds of artifacts can occur such as incomplete vessel flushing, eccentricity of the catheter, 
tangential signal dropout or motions artifacts [16,40]. Although the accuracy seems 
acceptable, to the authors’ best knowledge, this is the first attempt to automatically classify 
the three main plaque components by means of IVOCT in vivo implying that no comparison 
can be made to prior art. 

Analysis of adjacent frames of a randomly selected pullback showed consistent 
classification results (Fig. 7), indicating that the automated classifier produces consistent 
results as all frames were processed independently and thus no spatial continuity in the 
classification result was imposed. 

 

Fig. 7. Analysis of 3 adjacent frames. Automated tissue characterization procedure shows 
consistency through multiple images. Asterisk indicates guide-wire shadowing artifact while 
(L) indicates lipid-rich tissue. 

The accuracy and consistency of the proposed algorithm therefore indicates that IVOCT 
offers, for the first time, the ability to analyze atherosclerotic plaques in vivo with a resolution 
<20µm in an automated and therefore time efficient manner. As such, it makes processing 
entire pullbacks feasible, enabling a 3D visualization of the tissue distribution with the vessel 
wall (Fig. 8) potentially improving diagnostic and therapeutic value of these data sets. 
However, the maximum penetration depth of this imaging approach remains limited by OCT 
technology especially in case of high attenuating tissues, implying that its volume may be 
intrinsically impractical to assess. However, a circumferential quantification of fibrotic, 
calcified and lipid-rich plaques can be achieved. 

7.2 Classification parameters 

Two optical properties of the atherosclerotic tissue components were used for their 
classification: scattering and attenuation. The former was assessed through texture analysis, 
i.e. quantifying the stochastic behavior of the backscatter process within a spatially continuous 
region of interest that depends on the exact spatial distribution and properties of the individual 
scattering sites, while the latter was quantified by fitting a signal model to experimentally 
recorded data. These two optical parameters were chosen as they have been identified as 
properties that experts use to visually classify atherosclerotic tissue on IVOCT images 
[11,12,16]. According to the results of this study, attenuation and mean pixel intensity (first 
order statistics) were the parameters with higher importance for atherosclerotic tissue 
classification. The attenuation coefficient has previously been shown to be quantitatively 
different between different kinds of atherosclerotic tissue components [12,14,27]. Obviously, 
texture (i.e. scattering) characteristics further contribute in the classification of plaque 
components with similar attenuation properties (i.e. fibrotic and calcified tissues). 
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The proposed signal model used for attenuation estimation assumes the wall to consist of 
distinct, homogeneous layers in which a single scattering approximation is appropriate. 
Although more complex signal models can take the effect of multiple scattering into account 
[42], they will increase computational complexity of the fitting procedure and make the 
solution more dependent on the initialization settings of the optimization scheme. Moreover, 
the effect of multiple scattering with respect to attenuation estimation is considered to be very 
limited. As a matter of fact, single scattering theory is commonly used in literature to describe 
the OCT signal in biological tissues [14,24,27]. In addition, the signal model used in this 
study corrects for the catheter PSF but does not take into account the roll-off of the OCT 
system. Although this effect was reported to be small, adding to Eq. (3) a term for roll-off 
compensation [14] may further increase attenuation estimation accuracy. 

The absolute attenuation coefficient found by this multi-layer model resulted in 
comparable values with the former studies of van Soest et al. [14] and Xu et al. [12] indicating 
proper functioning of the proposed methodology. Of note is that occasionally ‘positive’ 
 

 

Fig. 8. 3D rendering of an entire vessel volume depicting different plaque components. 
Multiple adjacent IVOCT images are automatically analyzed and further processed with 
dedicated software (OsiriX [41]). Prior to rendering, results were visually inspected and 
manually corrected where needed. Images immediately illustrate the 3D distribution of 
atherosclerotic tissue in the analyzed vessel. The arrow points to a vessel stenosis presenting 
the IVOCT minimal lumen area. The red asterisk indicates guide-wire shadowing artifact. 
Color coding: yellow = lipid-rich, white = calcific tissue and orange-to-gray rendering of the 
vessel wall. 

attenuation values could be obtained in the fitting procedure as a result of spatial variations in 
backscatter coefficient µb, leading to a local increase of signal amplitude with depth. Given 
that this would result in a non-physical solution, the attenuation coefficient of these regions 
was set to zero, similar to what was done in previous studies [14]. An alternative solution may 
consist in the use of additional constrains in the fitting procedure such as extending the layer 
width in case ‘positive’ attenuation is found. However, this kind of solutions may limit the 
accuracy of the fitting procedure, as two different tissues may result to be partially 
incorporated within the same layer. 

7.3 Choice of the classifier 

It has been shown that, for image classification applications, RF shows comparable 
performance to other state-of-the-art methods (e.g. multi-way Support Vector Machines) 
while reducing computational costs [43,44]. As such, RF is often used in case of very large 
training data sets and a very large number of input variables (e.g. > 103-4) as it was in this 
study. Moreover, it has been shown that, when the number of trees to grow ntree is large 
enough, RF does not overfit and is very robust with respect to noise [31]. In addition, RF is 
inherently multi-class. Because of these characteristics, RF resulted to be an appropriate 
choice for the problem addressed in this study. 
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7.4 Study limitations 

Validation was performed using manual analysis of an expert image reader as the ground 
truth. Accuracy was quantified as typically done for computer vision algorithms for object 
recognition and segmentation [38] and former methods for intravascular ultrasound (IVUS) 
tissue characterization [7]. Although manual analysis of IVOCT images is prone to at least 
some inter-operator variability [13], and thus resulting in a weaker ground truth in respect to 
histology, the analysis was performed by a reader blinded to the results of the algorithm to 
avoid bias. Moreover, bias was further reduced by applying the algorithm to exactly the same 
ROIs traced during manual analysis. Anyway, only a single image reader was used as ground 
truth. Given that IVOCT manual assessment of atherosclerotic plaques is subject to some 
inter-observer variability, the use of a second image reader could have given more detailed 
information about the performance of the proposed method. However, especially for a correct 
training, the use of a third reader is always required in case of disagreement between two 
readers. As the quantification of intra- and inter-observer variability was the subject of 
previous publications, it was beyond the scope of this study. As a matter of fact, only training 
and validation using a large series of histological samples would be able to give more 
objective and detailed results. However, even if histology can provide a stronger ground truth, 
the correct registration with IVOCT images can be challenging due to histological slice 
thickness and helicoidal IVOCT data acquisition [45,46]. Moreover, given the different 
resolution between the two modalities, a pixels-wise registration cannot be achieved. In 
addition, a large amount of histological data would be required to achieve enough statistical 
power, which is not currently available. 

Besides these considerations, a possible limitation is that manual analysis typically tends 
to depict plaques as homogeneous regions of atherosclerotic tissue. This is not necessary true 
as atherosclerosis is a progressive disease and a plaque of a given type may also contain a 
limited amount of different tissues. As the classification algorithm performs individual pixel 
analysis, these inhomogeneities are taken into account by the automated procedure. Thereby, 
such difference between the two procedures may have reduced the algorithm accuracy results 
as assessed by our validation study. Nevertheless, it is important to emphasize that, although it 
is very reasonable to expect some inhomogeneities within an atherosclerotic plaque (e.g. a 
small area of lipidic tissue within a calcified plaque, Fig. 6(b)), isolated pixels (e.g. a single 
white pixel within a green area, Fig. 6(c)) should be considered ‘classification noise’ and thus 
not be interpreted as true tissue inhomogeneities. 

7.5 Further improvements 

Computational times for scan-conversion, lumen segmentation, attenuation estimation and RF 
classification algorithms are in the order of seconds (<2 sec). Longer computational times 
(~30 seconds) were found for the Matlab code for texture analysis. As such, further code 
optimization and implementation in a faster language (e.g. C/C++ or CUDA) would 
significantly reduce computational time, possibly achieving the analysis of a single OCT 
image in a time <1 seconds allowing for a fast analysis of multiple IVOCT images. 

A limitation of the proposed algorithm is that the image analysis procedure requires the 
user input for the selection of ROIs for plaque assessment. However, once the ROI is selected, 
plaque characterization runs fully-automatic. Ulterior developments of the algorithm for the 
automatic segmentation of peri-vascular tissue (e.g. texture based segmentation) and 
discrimination of normal artery wall (e.g. additional geometrical features) would allow for a 
fully automated assessment of images and thus complete IVOCT pullbacks. 

In addition, the use of 2D and 3D spatial continuity (especially for future generations of 
IVOCT systems with a higher frame aiming to reduce the longitudinal distance between 
multiple frames) may potentially improve final tissue characterization results, making areas of 
atherosclerotic tissue classified in a more homogeneous way. Although further developments 
in this direction may be particularly challenging (e.g. discrimination of what has to be 
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considered ‘classification noise’ or not), this may allow for the classification of atherosclerotic 
tissue in an even more consistent and robust manner. 

Finally, it should be noted that the presence of macrophages was not considered in this 
study. Previous publications [47] showed that macrophage measurements can be obtained 
through the use of a feature called normalized standard deviation (NSD). Although this is a 
very interesting category that can be added to the method presented in this study, it was 
indicated that NSD must be applied only in the context of fibroatheroma caps as other 
components, such as internal elastic lamina and some calcification, may also generate an 
elevated NSD value [47]. As such, this can only be applied as a post-processing step once 
lipidic plaques are correctly localized. By doing this, automatic macrophage quantification 
can also be obtained as an extension of the method illustrated in this study. Similarly, the 
quantification of fibroatheroma cap thickness can be also added as a further post-processing 
step. However, a correct validation of both macrophage and cap thickness quantification 
would require the use of histological data which are not currently available. 

7.6 Clinical implications and future prospects 

Detection and morphological assessment of superficial TCFA, fibrotic and calcified plaques 
(CP) play an important role in the understanding of atherosclerotic disease and for the 
development of new drugs and therapies. As an example, coronary plaque composition can 
have an impact on the outcome of percutaneous coronary interventions (PCI). Stents overlying 
a lipidic core have been associated with long-term adverse healing responses within the stent 
[5,15,48,49], while stents implanted over a severely calcified region tend to have a higher risk 
of underexpansion, associated with higher risk of stent failure (e.g. stent thrombosis and in-
stent restenosis) [50]. An automatic method for the characterization and quantification of the 
disease in a specific coronary artery segment (as shown in Fig. 8) could be valuable both for 
clinical research and, in a future prospect, in guiding the interventional cardiologist during 
coronary interventions. 

8. Conclusion 

We developed an algorithm for the automated atherosclerotic tissue characterization in vivo 
through IVOCT images. A validation study suggested that the main plaque components can 
be automatically classified and characterized. This will possibly contribute to the 
understanding of coronary atherosclerotic disease, aid in the assessment of the effect of new 
drugs and therapies on plaques, and, more in general, to the use of IVOCT in interventional 
cardiology research and clinical practice. 

Appendix 

Feature selection consists in the identification of a reduced set of features that can best 
distinguish between the different types of tissue. Starting from the 24 images composing the 
training-set, 22 statistical features were quantified and stored. SGLDMs were initially 
computed in a squared kernel of pixel dimension K=5-7-9-11-13 for every pixel to analyze 
with the following parameters: distance d=1-2, orientation θ=0°-45°-90°-135° and G=32-64-
128 (number of gray levels for quantization). Subsequently, best class separability was 
assessed by visual inspection of displayed features values against the type of tissue they 
belong according to previous manual analysis. First, only features presenting an overall 
acceptable visual separability were retained. Second, single values for parameters G, d, K and 
θ were arbitrarily selected looking for the minimum set of parameters presenting the best class 
separability. In addition, to further reduce the set dimensionality, features presenting a 
Pearson’s correlation index >0.85 were arbitrarily removed. At the end of this procedure, a 
total of 7 features computed with d=2, θ=0°-90°, K=11 and G=64 were retained. Selected 
features, as reported on Table 2, resulted to be: (1) contrast, (2) cluster shade, (3) energy, (4) 
entropy, (5) homogeneity, (6) information measures of correlation and (7) inverse difference 
moment. 
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