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Abstract: Breast tumors are blindly identified using Principal (PCA) and 
Independent Component Analysis (ICA) of localized reflectance 
measurements. No assumption of a particular theoretical model for the 
reflectance needs to be made, while the resulting features are proven to have 
discriminative power of breast pathologies. Normal, benign and malignant 
breast tissue types in lumpectomy specimens were imaged ex vivo and a 
surgeon-guided calibration of the system is proposed to overcome the 
limitations of the blind analysis. A simple, fast and linear classifier has been 
proposed where no training information is required for the diagnosis. A set 
of 29 breast tissue specimens have been diagnosed with a sensitivity of 96% 
and specificity of 95% when discriminating benign from malignant 
pathologies. The proposed hybrid combination PCA-ICA enhanced 
diagnostic discrimination, providing tumor probability maps, and 
intermediate PCA parameters reflected tissue optical properties. 
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1. Introduction 

Breast cancer continues to be the most diagnosed cancer among women, comprising 23% of 
all female cancers. Non-invasive small lesions, detected at an early-stage, however, can be 
treated successfully with breast conserving therapy (BCT), which includes local tumor 
excision followed by moderate-dose radiation therapy [1]. Early invasive breast cancers (stage 
I and stage II) have, however, a high risk of reoccurrence when residual disease is left at or 
near the cut edge. In fact, BCT has been demonstrated to be equally effective as mastectomy 
only when no residual disease is left on margins [2], thereby minimizing the need for more a 
more radical therapy like mastectomy. Despite its therapeutic predictive value, most studies 
report high variability in the number of patients treated with BCT with residual disease, 
demonstrating a lack of standardization for margin delineation [3]. 

Light scattering spectroscopy has been applied broadly to identify residual disease in 
resected breast tissues by detecting changes in the scattering spectrum induced by 
morphological variations in the size and number of density of cells and the tissue extra-
cellular matrix [4]. Natural heterogeneity in light scattering from tissue morphology has been 
observed and its spatial distribution can be used to improve discrimination between tissue 
subtypes [5]. Consequently, the scanning spectroscopy system demonstrated in [6] has been 
designed to be maximally sensitive to elastic scattering, although some partial coupling with 
hemoglobin absorption has been observed. Signal localization is employed in the illumination 
and detection paths to preserve the weakly scattered spectrum. Optical properties, namely the 
reduced scattering and absorption coefficients, are traditionally parameterized according to 
theoretical models of light scattering in turbid media. These models are valid when specific, 
physical conditions are met in the data acquisition geometry [7]. The full accomplishment of 
these conditions is sometimes impossible to fulfill, yielding uncertainty in the separation of 
absorption and scattering signatures. Typically, analytical solution for the problem of diffuse 
reflectance from turbid media such as biological tissues only exists for idealized systems, like 
a point source in a semi-infinite medium [8]. Models assume light incidence on an optically 
homogenous medium, which is also only approximate for biological tissues. Furthermore, 
single-fiber reflectance measurements do not accurately recover the photon pathlength, 
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limiting absolute quantification of optical parameters [9]. Consequently, the existence of a 
model-free approach would be a great asset. 

Blind Signal Separation (BSS) is a set of signal processing techniques able to decouple 
information arising from multiple sources. Consequently, they can be employed to decouple 
the information generated by absorption and scattering in tissue for unique acquisition 
geometries. These methods have been extensively used for removing interference and noise or 
for feature extraction from optical signals [10–13]. Principal Component Analysis (PCA) 
performs a change of basis and finds new uncorrelated projections, while Independent 
Component Analysis (ICA) creates a new independent feature space, with more statistical 
separation than uncorrelation [14]. The validity of ICA has been previously demonstrated in 
diverse scenarios. It has been proven to enhance classification features from mammograms for 
breast cancer detection [15] and also for other cancer types: maps of tumor probability have 
been extracted from the ICA of RGB fluorescence images taken from the skin [16]. PCA is 
typically employed to reduce data dimensionality and to enhance performance of the 
independent ICA algorithms [17]. PCA and ICA have been effectively applied to un-mix 
distinct exogenous fluorophores in multispectral opto-acoustic tomography data [10] and also 
for removing or studying blood absorbance from NIRS signals [11,12]. Nevertheless, the 
overall outperformance of ICA over PCA is still to be proven [13]. 

Here, a feature-extraction method is presented to discriminate benign from malignant 
pathologies in resected breast tissue and its diagnostic performance is validated according to 
histology, the diagnostic gold standard. No analytical models are performed to extracted 
diagnostic components from the scattering spectrum. Instead, PCA is used to transform 
spectral data into an uncorrelated feature space that reduces data dimensionality and 
eliminates cross talk between hemoglobin absorption and scattering signatures. Then, ICA 
optimized by PCA is used to predict the breast tissue subtype. Finally, sign ambiguities 
associated with the BSS algorithm are solved by a user-guided, soft calibration process. 

2. Materials and methods 

2.1 Optical imaging data from breast tissues and the modeling of reflectance 

Localized measures of broadband reflectance from resected breast tissues were obtained from 
previous work [18], using a custom-built, quasi-confocal acquisition geometry [6]. This 
system separates weakly scattered from multiply scattered light by spatial confinement of the 
illumination and detection spot sizes (~100µm). The system employs a broadband fiber-
coupled tungsten-halogen light source, operating in the (510 – 785 nm) spectral waveband. An 
optical-fiber, coupled to a CCD-based spectrometer, was used for confocal spectroscopic 
detection. The spectral resolution of the system provides 512 spectral images for each sample. 

Samples of freshly resected breast tissues acquired during breast conserving surgery, were 
obtained directly from the Department of Pathology at Dartmouth-Hitchcock Medical Center, 
when there was tissue in excess of that required to make a clinical diagnosis. Tissues were 1-
2cm2 with a thickness of 3-5mm. Immediately after each imaging procedure, each sample 
with formalin-fixed and paraffin embedded, then stained with Hematoxylin and Eosin (H&E) 
for pathology correlation. 29 resected tissues were imaged and, on each specimen, several 
regions of interest (ROIs) were further evaluated by a pathologist for precise co-registration 
with optical maps. In total, 48 different ROIs were identified that were not uniform in size, 
having diameters from 500 um to 0.2 cm. Tissues were characterized as benign, malignant or 
adipose, as summarized in Table 1. 
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Table 1. Regions of Interest (ROI) Diagnosed by the Pathologist on the 29 Specimens 

Tissue type ROI number Pixel number
Benign 25 36979

Malignant 14 23220
Adipose 9 7021

Total 48 67220

An analytical solution that accurate describes the diffuse reflectance arising from turbid 
media such as biological tissues has not yet been demonstrated. In spite of this, under the 
spatial constraints it is possible to model the measured backscattered reflectance with the aid 
of an empirical approximation. To compare reflectance modeling parameters and PCA-ICA 
analysis, an empirical approximation validated on previous study [18] was considered to 
contrast blindly obtained results. This model is shown in Eq. (1): 

 
( ) ( ) ( ) ( )( )2 2 2

- exp -  1-b
HbT O HbO O HbR A C f fλ λ ρ ε λ ε λ = +    (1) 

Here, A is the scattering amplitude, b is the scattering power, ρ the pathlength, HbTC  the 

concentration of hemoglobin, and 
2Of  the fraction of oxygenated hemoglobin, ( )

2HbOε λ  and 

( )Hbε λ  are the molar extinction coefficients of oxygenated and deoxygenated hemoglobin 

respectively, obtained from Oregon Medical Laser Center Database [19]. 

2.2 Multivariate linear analysis and BSS 

Principal Component Analysis (PCA) and Independent Component Analysis (ICA) are linear 
processing techniques characterized by their simplicity and low computational load. Equation 
(2) shows the linear transformation that describes both processes. 

  M N M M M Ns W x× × ×=   (2) 

where x comprises the reflectance information per tissue sample measured at N locations 
(approximately 4000 pixels or observations per sample in this case) and M different spectral 
bands (being M = 512); W is the mixing matrix that represents the linear operation to be 
applied on the original data x to provide s, that contains the multivariate data result with the 
decoupled mixed signals or scores i.e., the representation of the raw data x in the new 
component space. 

This also can be described in the opposite way, i.e. the measured data as a linear mix of 
the components as indicated in Eq. (3) 

 
1   M N M M M N M M M Nx W s A s−

× × × × ×= =   (3) 

where A is the matrix of coefficients or loadings. PCA and ICA algorithms do not require any 
training, modeling, supervision or previous signal information and they are considered 
accordingly Blind Signal Separation techniques (BSS). 

2.2.1 Linear mixture of components 

PCA and ICA assume linear mixtures. If neperian logarithm is applied on empirical 
expression in Eq. (1) a linear sum of the reflectance spectra parameters can be defined and 
then compared with PCA-ICA results, as shown on Eq. (4): 

 

( ) ( )( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
2 2 2

1 1 2 2 3 3

ln

 ln -  ln  -  [ - 1- ]

 

HbT O HbO O Hb

X R

A b C f f

S S S

λ λ

λ ρ ε λ ε λ

σ λ σ λ σ λ

=

=

= + +

  (4) 
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where ( )X λ  is the logarithm of reflectance ( )R λ where the contributions to the spectra are 

linearly mixed. Interpreting the general expression, S1, S2 and S3 would be the linear weights 
that modulate the contribution of each spectral component, whereas each spectral behavior is 

represented by the ( )1σ λ , ( )2σ λ , ( )3σ λ  functions that could be directly associated with 

absorption and scattering features. The sum of all contributions would result into the initial 
reflectance spectrum ( )X λ . 

Extrapolating the analysis pixel by pixel, a mixing matrix solution of BSS can be 
associated with the feature variation across wavelength, ( )nσ λ , and according to Eqs. (3) and 

(4) the expression for the spectrum becomes as shown in Eq. (5): 

 NMMMNMMMNMMMNM sNX ×××
−

×××× ==== sAsWx 1),( σλ   (5) 

where the columns of matrix A would become directly the spectral features of the spectral 
components of tissue ( )nσ λ  and they would be related with the properties of its components; 

the sources s are the blindly extracted parameters, which might be related to the contribution 
of tissue to the scattering and absorption phenomena. 

2.2.2 PCA to uncorrelate components and compress spectral data 

Principal Component Analysis (PCA) is usually employed as a technique to reduce the 
number of variables in a data set with a minimal loss of information and to search for a more 
significant data representation. However, the physical meaning of these new variables is not 
always straightforward. 

PCA assumes a linear approximation of the problem, as the one described in 2.4.1. The 
covariance matrix C from input data x must be calculated, assuming that x is a mean-centered 
version of the initial reflectance data. Since the covariance matrix is symmetric, calculation 
can be described as in Eq. (6): 

 
   T T= =C xx EDE     (6) 

where D is a diagonal matrix containing the eigenvalues of C, E are the eigenvectors of the 
covariance matrix C. The mixing matrix in Eq. (5), W is defined as its Hermitian W = EH. 
This matrix W is the one that transforms the input data x into the uncorrelated components in 
vector s, being the components ordered according to the contribution of their eigenvalues to 
the total variance of the data set. Focusing on Eq. (4), components in vector s could represent 

the contributions to variation of spectra S1, and ( )nσ λ  would be the normalized spectral 

variation of tissue components. The first few columns of matrix W could extract those tissue 
properties, being the rest components with small associated eigenvalues related to noise. 

A criterion must then be established to decide these few number of maintained 
uncorrelated components from the initial M = 512 to L. The chosen criterion is to maintain 
L<M eigenvalues, with a joint variance above a specific threshold, as shown in Eq. (7). 

 

( )1

1

( , )
Kept variance 100 % threshold

( , )

L

q

M

q

D q q

D q q

=

=

= ≥



  (7) 

where D(q,q) is the qth eigenvalue of the covariance matrix C. 

2.2.3 ICA to identify independent latent factors 

Independent Component Analysis (ICA) is also a multivariate linear blind separator that uses 
higher order statistics, instead of covariance, to extract the new set of linearly unmixed 
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components. Since statistical independence is a stronger condition than uncorrelation, more 
accurate maps of diagnosis can be obtained. This work assumes that exist malignancy tissue 
properties that are statistically independent from other tissue types such as normal or adipose. 
This hypothesis is based on the differences in absorbance and scattering generated by each 
tissue condition. 

All measures of spectral reflectance could be used to discriminate between tissue types, 
but this is frequently not optimal and always computationally demanding [20]. Here, PCA is 
proposed to reduce the data dimensionality [21]. Consequently, the data arising from this pre-
processing step can be analyzed with ICA. This is the reason why ICA results cannot be 
spectrally interpreted as in Eq. (4): the dimension of data now is not the spectral 512 
components but the very few PCA pre-processed components. In fact, a similar situation as in 
Eq. (3) is faced, but now x, i.e. the detectors, are the uncorrelated components maintained 
after the PCA analysis, and s, i.e. the sources, will be the IC components, which are supposed 
to be more diagnostically discriminating. 

Figure 1 summarizes the whole analysis procedure to obtain the maps of tumor 
probability: PCA is first applied to the logarithm of the initial reflectance data set, containing 
512 images, one per wavelength Fig. 1(a). Then, a few uncorrelated components are 
maintained Fig. 1(b) and are input into the ICA algorithm. A tumor map probability Fig. 1(c) 
is computed from the resulting independent components, which, because of the more stronger 
condition mentioned above, are expected to be more diagnostically relevant and unmixed than 
the principal components attained in the immediate prior analysis stage. To obtain the 
independent components, a FastICA algorithm was employed that is based on maximization 
of the fourth statistical moment, i.e. kurtosis. It is computationally simple, fast and requires 
little memory space [21]. 

 

Fig. 1. ICA-PCA analysis process on the reflectance images. 

2.2.4 Solving ambiguity problems from PCA and ICA 

The two linear analyses, PCA and ICA, jointly described as in Eq. (3), have another point in 
common that needs to be emphasized: sign ambiguity. The resulting component s could be 
multiplied by −1 and the solution of Eq. (3) would be identical and correct. Moreover, ICA 
has another ambiguity on the order of result components. 

PCA analysis is based on the extraction of the singular value decomposition matrix (SVD) 
and there is mathematically no way to avoid this sign ambiguity arising from a multiplicative 
term such as the pair of singular vectors [21]. In ICA, the variance of the independent 
components cannot be determined [20], so the magnitudes of the independent components 
may be fixed, but this still leaves the ambiguity of the sign. Several strategies have been tested 
to deal with the ambiguity problems of BSS analysis. The sign ambiguity of PCA can be 
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solved with the spectral interpretation of the unmixed signals, ( )nσ λ . However, ICA in this 

case does not permit a spectral interpretation. Concerning order ambiguity, while PCA 
components are ordered by variance, the intrinsic order ambiguity of ICA impedes a 
discriminating rank of independent components [20]. 

FastICA is a recursive algorithm that starts with an initial guess. If this initial guess is not 
fixed, the algorithm begins with a random matrix resulting in different signs and orders of the 
output signals, even if it initiates from the same set of measurements. The W matrix resulting 
from PCA, i.e. the uncorrelated coefficients, is proposed as the initial seed to limit this 
ambiguity effect. Additionally, surgeon-guidance is proposed to compensate for this 
ambiguity. Visual inspection of results reveals that one significant independent component is 
sufficient to distinguish benign from malignant pathologies. The surgeon could guide 
selection of the significant component or alternatively, the significant component could be 
identified by cross-correlating a digital photograph of the sample with its spectrally-derived 
ICA parameters, mimicking the surgeon’s viewpoint. Even though sign ambiguities in the 
magnitude of the selected independent component still would induce an error in the tissue 
category assignment. To this end, a calibration method is employed in which the user, 
ultimately the surgeon, specifies a set of known pixels, i.e. obviously malignant tissue at the 
center of the lesion. Informed with this initial information, ICA then provides a map of tumor 
extent. 

2.3 Well-known point’s strategy 

The requirement for the sign ambiguity in ICA to be corrected and the approach to implement 
this correction vary among applications [20], although a majority of them are based on the 
employment of supervised classifiers after the ICA process. In the present tissue diagnosis 
application, different pairs of tissue regions (adipose-benign, adipose-malignant, benign-
malignant) become well separated by the PCA-ICA combination but the sign ambiguity 
introduces a constraint in the tissue category assignment to perform an absolutely blind 
selection. In the validation against the pathologist-based diagnosis, it is precisely the sign of 
the magnitude of the selected independent component the one that differentiates between 
tissue diagnoses. A pair of two possibilities of diagnosis can be considered corresponding to 
positive sign and negative sign regions. However, the same sign is not always associated to 
the same pathology for different patients. 

The proposed procedure however needs some a priori knowledge about the sign that is 
associated per tissue type, since this information is required to specify the associated tissue 
category (malignant or non-malignant) in the final guidance map. Taking advance of both 
their experience and the information provided by pre-interventional techniques, surgeons are 
able to clearly identify the tumor center and healthy tissue. The main difficulty they face is the 
accurate delineation of the malignant area far from the center. This is the point where the 
proposed guidance map would be of great interest. Once surgeons are asked to locate 
malignant and non-malignant centers, these points will work as calibration points for the 
algorithm identifying the actual sign for malignancy regions. In order to emulate this surgeon 
selection, 25 pixels on each ROI have been selected as “well-known”, contrasted points to be 
certainly diagnosed. Then a detection mask can be easily created. This process is summarized 
in Fig. 2. 
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Fig. 2. ICA discriminant results with approximate scale bar: (a) and (b) are both correct 
solutions due to sign ambiguity, where the magenta (strongest tone) are values with positive 
signs. When surgeon selects some points of the image where the pathology is sure (circles on 
(c)) the region of malignancy (striped ROI) can be defined as a positive (magenta) region, 
avoiding the sign ambiguity. 

3. Results and discussion 

The goal of this paper is to design a blind data analysis, i.e. without model fitting, to segment 
tumor from normal tissues in lumpectomy specimens using localized, measured broadband 
reflectance. This blind analysis is designed to discriminate between areas in a single tissue 
sample and not between samples. This is acceptable for margin detection because the success 
of BCT is measured by accurate tumor delineation within each patient. Results will compare 
the performance obtained by PCA, PCA-ICA and the extraction of optical parameters 
according to an empirical approximation to Mie theory [18]. The metrics considered to 
address the performance are the probability of detection and false alarm (sensitivity and 
specificity) of PCA-ICA and PCA itself. 

3.1 PCA results: uncorrelation has less strong diagnostic ability than independency 

For blind signal separation, PCA is applied to reduce the dimensionality of broadband 
reflectance data, to estimate the number of components used to inform a diagnosis, and to 
analyze if their diagnostic relevance. 

Kept variance presents different slopes depending on each tissue sample. A dynamic 
threshold based on the derivative of the kept variance curve has been empirically selected. To 
this end, the L maintained components will be those whose kept variance varies more than 
0.2% from the previous set of L-1. The resulting number of maintained uncorrelated 
components varies from 2 to 7 in the data set, being usually 3. Figure 3 shows two different 
cumulative variance plots corresponding to two different samples: normal-adipose and 
malignant-adipose. The first few components correspond to the large eigenvalues, while the 
components on the right part of the graph have small eigenvalues and are presumed to be 
related to noise. The reflectance spectral map of sample 1 (normal-adipose) is more uniform 
than the one of sample 2 (malignant-adipose) due to their different tissue composition. This 
spectral fact makes that the proposed dynamic criteria would select 5 components for sample 
1 (black) instead of the 3 components of sample 2 (red) to account for significant reflectance 
content. 

#187362 - $15.00 USD Received 27 Mar 2013; revised 10 May 2013; accepted 21 May 2013; published 12 Jun 2013
(C) 2013 OSA 1 July 2013 | Vol. 4,  No. 7 | DOI:10.1364/BOE.4.001104 | BIOMEDICAL OPTICS EXPRESS  1111



 

Fig. 3. Example of kept variance for different tissue samples: sample 1 (black) consists of 
normal-adipose tissue combination; sample 2 (red) consists of malignant-adipose tissue. 

When the A matrix of PCA coefficients of Eq. (3) is qualitatively observed, the first 
principal coefficient displays a constant spectral tendency while the second shows exponential 
or negative logarithm behavior. Figure 4 represents the mean of the first three principal 
coefficients along the 29 samples. The optical system is optimized not to detect absorption, 
but just scattering [18]. Nonetheless the third principal coefficient exhibits high correlation 
with absorption by hemoglobin. 

Considering the Mie linear approximation of reflectance as noted in Eq. (4), the similarity 
with PCA results is found as stated by Eq. (8): 

 ( )( ) ( ) ( )1 2 2ln  -  ln  -  R pc pc pc Kλ λ λ=  (8) 

Being ( )K λ  the exponent of hemoglobin absorbance on the model and pcn would be the 

PCA scores, as defined in Eq. (4). 
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Fig. 4. Mean spectral variations of PC1, PC2 and PC3 coefficients on matrix (A) for the whole 
number of breast samples, where “prop.” means proportional. 

If this supposition of likeness was right, similarity between PCA scores and model-based 
parameters should be found. Table 2 shows the correlation between the mean PCA scores and 
optical parameters extracted from the empirical approximation fitting given by Eq. (1), to 
assess the contribution of scattering power and hemoglobin absorption to each score. 

Table 2. Correlation Study To Determine the Hemoglobin Presence on Each Principal 
Component* 

Principal Component Mean correlation with 
scattering from Mie Fitting 

Mean correlation with 
oxyhemoglobin 

Mean correlation with 
desoxyhemoglobin 

First 0.2403 0.1394 0.1362 
Second 0.7924 0.3439 0.3226 
Third 0.2959 0.4850 0.5049 

*As described, they are ordered by its contribution to variance (eigenvalues). 

Although a high correlation with Mie power scattering is found on PC2 (Fig. 4), and 
hemoglobin absorption is usually collected on PC3 (Fig. 4), this relationship does not 
necessarily define PC2 and PC3 as scattering power and hemoglobin, like in a conventional 
model fitting extraction. However, some similarities are found on the behavior of the 
statistical features (PCA scores) and the optical features (scattering and absorption from 
model) which may suggest that BSS analysis accounts for physical variation of parameters of 
the tissue. Figure 5 shows the maps of the PC2 scores (Fig. 5(a)) for a specific tissue sample 
when compared with the scattering power map (Fig. 5(b)) obtained from Eq. (1). High 
correlation between both maps can be observed that is shown also in the associated scatter 
plot (Fig. 5(c)). Figure 6 represents the influence of the hemoglobin in the scores of PC3. In 
the digital photograph of the sample (Fig. 6(a)) some blood pools can be observed. The 
spectral variation of PC3 (Fig. 6(b)) shows similarities with the hemoglobin spectrum and the 
map of scores of the PC3 exhibits high values in the areas where the blood pools are located 
(Fig. 6(c)). 
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Fig. 5. Blind analysis and physical properties of scattering with an approximation of the scale 
bar: (a) scattering power map from model fitting; (b) score of PC2; (c) scatter plot showing 
their correlation. 

 

Fig. 6. Blind analysis and physical properties of absorption: (a) digital photograph with blood 
points in black circles and approximate scale bars, (b) Coefficient, (eigenvector) of the 3th 
principal component, with its spectral variation, (c) PC3 score. 

ICA was then applied to the three most significant PCA components, determined by kept 
variance, to extract the independent maps of each sample, for improved discrimination. These 
independent features were used to classify the tissues, and results were compared with the 
uncorrelated features to check if the independency stronger statistical condition translates into 
better classification accuracy. 

3.2 ICA for the extraction of independent maps 

While PCA ambiguity is easy to solve through a correlation with the spectral signatures of 
tissue chromophores, FastICA is an iterative algorithm that causes two types of ambiguities 
and such a study is not so straightforward. Because of this, and as mentioned above, PCA 
matrix (coefficients) is used as the initial seed for the ICA algorithm. Even under this premise, 
it was not possible to deal with these ambiguities analytically. 

By visual inspection it seems easy to determine which component is most discriminating, 
but automation of this analysis is desirable. The digital photograph of each tissue sample also 
provides useful information as it mimics surgeons vision. Correlation with the digital 
photograph is proposed as a fast solution to determine which ICA score is more interesting for 
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diagnostic purposes. This procedure could emulate the surgeon behavior. Figure 7 shows one 
of the tissue samples and the probability of detection (Pd) and degree of correlation (R) when 
compared with the digital photograph of the tissue (Fig. 7(a)) in case of selection of the last IC 
(Fig. 7(b)) or the penultimate IC (Fig. 7(c)). The H&E section is also shown (Fig. 7(d)) for 
visualization purposes. In this sample, the last IC exhibits the highest correlation with the 
digital photograph and also achieves the highest probability of detection when results are 
validated against the ROI’s information provided by the pathologist. 

 

Fig. 7. IC selection based on correlation with the digital photograph of a malignant sample. 
Circles correspond to the areas identified as malignant by the pathologist, scale bars are 
approximated. (a) Digital photograph of the breast specimen; (b) last IC with its correlation and 
probability of detection; (c) penultimate IC with its correlation and probability of detection; (d) 
H&E section of the sample. 

As explained in the previous section, after choosing the most appropriate independent 
score, the “well-known points” calibration is performed to solve the sign ambiguity. The 
selected ICA score is expected to be the best for classification purposes and it is also supposed 
to be more related with single scattering feature, as interferences from absorption and other 
attenuation contributions are supposed to be minimized by the optical set-up and then is 
expected to be associated with the discarded independent component maps. Table 3 shows the 
mean discrimination and standard deviation of each cluster of PCA scores when compared 
with the attained with the ICA. Figure 8 shows the maps of probability of tumor for different 
samples compared with the digital photograph, the H&E section and the pathologist diagnosis. 
The PCA-ICA process provides the highest separation between the different pathologies with 
very similar standard deviation, achieving a high degree of accuracy with the pathologist 
decision. This makes easier to implement a linear classifier, which is fast and computationally 
simple. 
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Table 3. Separation Between Normalized Mean Data from Different Pathologies 
Depending on the Score Chosen for the Diagnosis 

 PC1 PC2 PC3 IC 
Mean pathologies separation 0.15 0.17 

 
0.05 

 
0.44 

 
Pathology cluster standard deviation 0.002 0.005 

 
0.002 0.009 

Then, after the best ICA score for classification purposes is selected, and according with to 
the values in the ICA space, a probability of tumor can be calculated. Figure 8 shows the 
results for 4 different samples with diverse pathologies malignant (purple), non-malignant 
(white) and adipose (cyan). The last column shows the images of the map for tumor 
probability and good agreement can be found by visual inspection when compared with the 
H&E section and the pathologist ROIs. For a more quantitative assessment, Table 4 shows 
sensitivity and specificity outcomes detecting malignant points and a comparison of strategies 
to fix and select the diagnostic map. The best results depend on the chosen ICA score, being 
better when it becomes fixed by visual inspection. The correlation with the digital photograph 
of the specimen helps in the determination of the best score but its performance is a bit lower 
than the provided by PCA first score. 

Table 4. Comparison Between the Outcomes of Sensitivity and Specificity of a Classifier 
of Malignancy for the Different BSS Strategies and a Supervised Technique as KNN 

Strategy Sensitivity Specificity Advantage Disadvantages 
Best ICA score selected 

by surgeon 
0.963 

 
0.958 

 
Far best in sensitivity and 

specificity
Chosen by visual 

inspection 
Digital photograph 

correlation for selection 
of ICA score 

0.932 
 

0.810 
 

Order ambiguity solved 
automatically, better 

specificity than PCA itself

Slower 

2nd PCA score (which 
presents high correlation 

with model-based 
scattering parameter) 

0.861 0.743 
 

No need of ICA so slightly 
faster 

On average the worst 
option 

Optical parameter from 
model + KNN classifier 

[18] 

0.91 0.77  Inherent problems of 
analytical modeling and 

supervision and 
complexity of KNN 

classifier 
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Fig. 8. Tumor diagnosis results, where the pathologist evaluation is shown with different 
colored circles and the scale bar is an approximation: (a) photograph image; (b) co-registered 
H&E section; (c) probability of tumor map. 
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4. Conclusions 

The feasibility of PCA and ICA to blindly detect and localize breast tissue pathologies is 
proposed and successfully checked in this paper. To preserve the tissue properties, elastic 
scattering that requires low optical power is used. The analysis here proposed is designed to 
discriminate between tissue areas within a single sample, and not between samples, with the 
ultimate goal of surgeon guidance for Breast Conserving Therapy purposes. 

Computationally efficient BSS analysis has been directly applied to 512 optical localized 
reflectance breast measurements, instead of reflectance model fitting, to readily identify their 
corresponding cancer pathologies. Reflectance is directly obtained from endogenous tissue 
properties, mainly scattering from tissue morphology, without injection of contrast agents that 
require expensive biocompatibility studies and regulatory approval for clinical use. 

PCA reduces the dimension of the data set, from the initial 512 spectral bands to just 3-5 
uncorrelated components. The latter exhibit significant similarities with the parameters 
extracted based on an empirical model based on the Mie theory, specifically scattering power 
and the hemoglobin absorption spectrum. They can additionally be used as classification 
features by applying a linear threshold. However, the statistical feature of uncorrelation is 
softer and less significant than statistical independence so ICA has been employed to compare 
results of classification. Combined PCA-ICA analysis has provided the best significant 
diagnosis maps with probability of tumor information. Discriminating spectral information, 
sometimes lost in empirical approximations of light scattering, contributes here to a better 
tissue type separation. 

Sign ambiguities limiting discrimination by ICA have been resolved by selecting some 
“well-known” points that the surgeon can provide in a real scenario to determine a calibration 
environment. However, ambiguity arising from the order in which the scores are generated 
has been a challenge. The selected criterion to confront this ambiguity is to correlate the ICA 
results with the corresponding digital photograph of the tissue. The best sensitivity-specificity 
possible attained with ICA is 96%-95% while “photograph correlation for selection” solving 
proposal yielded 93%-81%. Therefore a loss in the classification is induced if the selection of 
best score is not optimized. However, both ICA solutions are still better choice than the 
selection of the second PCA score, which presents 86%-74%. 

Furthermore, important correlation between tumor probability and H&E maps is also 
obtained, which suggest that a future application of the system could be margin delimitation. 
The goal of this approach is not to diagnose malignancy but to map its extent. During surgery 
the tumor is already localized, so a seeding of the algorithm by the surgeon is feasible. 

To conclude, this contribution validates and optimizes the ability of PCA and ICA to 
blindly detect breast tissue pathologies. Tissue features related to elastic scattering and blood 
absorption have been extracted from label-free localized reflectance measurements, using no 
training information nor empirical models, although further contrast of this aim needs to be 
proven based on tissue simulating phantoms of known optical properties. Even though, PCA 
and ICA extract significant features to provide a map of tumor probability to be used in an 
intraoperative context. 
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