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Pannexins, a class of membrane 
channels, bear significant sequence 

homology with the invertebrate gap 
junction proteins, innexins, and more 
distant similarities in their membrane 
topologies and pharmacological sensitiv-
ities with the gap junction proteins, con-
nexins. However, the functional role for 
the pannexin oligomers or pannexons, is 
different from connexin oligomers, the 
connexons. Many pannexin publications 
have used the term “hemichannels” to 
describe pannexin oligomers while oth-
ers use the term “channels” instead. This 
has led to confusion within the literature 
about the function of pannexins that 
promotes the idea that pannexons serve 
as gap junction hemichannels and thus, 
have an assembly and functional state 
as gap junctional intercellular channels. 
Here, we present the case that unlike 
the connexin gap junction intercellular 
channels, so far, pannexin oligomers 
have repeatedly been shown to be chan-
nels that are functional in single mem-
branes, but not as intercellular channels 
in appositional membranes. Hence, they 
should be referred to as channels and not 
hemichannels. Thus, we advocate that in 
the absence of firm evidence that pan-
nexins form gap junctions, the use of 
the term “hemichannel” be discontinued 
within the pannexin literature.

Pannexins are channel proteins expressed 
in virtually all tissues and abundantly 
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expressed in the vertebrate central nervous 
system.1 The human pannexin family 
consists of three members: pannexin1 
(PANX1, GenBank AAQ89382.1, 426 
amino acids, 47.6 kDa), pannexin2 
(PANX2, GenBank: AAI01024.1, 677 
amino acids, 74.4 kDa) and pannexin3 
(PANX3, GenBank: AAK95655.1, 392 
amino acids, 44.7 kDa) with a sequence 
similarity of ~50–60%. The N and C ter-
minal sequences are least conserved, with 
the latter having the highest variability. 
Based on in situ hybridization and north-
ern blot analysis in rodents, Panx1 is ubiq-
uitously expressed (e.g., brain, skeletal and 
heart muscle, testis, ovary), while Panx2 is 
expressed predominantly in the central ner-
vous system. Panx3 is expressed in several 
embryonic tissues as well as in adult bone, 
skin and cartilage,1-3 while other published 
western blots revealed weak labeling for 
a second higher molecular weight species 
present in a wide range of tissues.4

These integral membrane proteins were 
originally proposed to form gap junction-
like structures based on their sequence 
homology with the invertebrate gap 
junctions and predicted topology being 
similar to the gap junction proteins, the 
connexins (vertebrate form) and innexins 
(invertebrate form). The “connexin-like 
topology” consists of four transmembrane 
segments, two extracellular loops and a 
cytoplasmic localization of the amino 
terminus, cytoplasmic loop and car-
boxy terminus (Fig. 1). Connexins have 
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current between two cells, especially when 
compared to Cx46 channels.2,7 In contrast, 
robust currents were recorded in unpaired 
oocytes either exogenously expressing 
Panx1 channels or Cx46 hemichannels.2,7,14 
Also, the gating of Panx1 channels by 
extracellular ligands such as ATP, as deter-
mined by the effects on the macroscopic 
currents and single channel currents, fur-
ther reinforce the hypothesis that Panx1 
formed functional channels embedded in a 
single plasma membrane.15 Later, Lai et al. 
showed dye coupling in glioma cells after 
transfection with Panx1-GFP,16 however 
since glioma cells normally express low lev-
els of Cx43, it is not known if Cx43 was 
recruited into gap junctions at the apposi-
tional plasma membrane after high levels of 
exogenous Panx1 expression. Indeed, any 
claim for a gap junction channel function 
of pannexins would require unequivocal 
evidence for a channel with distinct prop-
erties from any connexin-made gap junc-
tion. Nonetheless, there is the argument 
that Panx1 mediates the release of ATP and 
possibly other signaling molecules from the 
cytoplasm to the extracellular space. This 
function is not restricted to exogenously 
expressed Panx1,14 but also is found under 

would be six, based on a greater size and 
sequence similarity to Panx1 than Panx2. 
The term “connexon” was first coined by 
Goodenough and co-workers in the late 
1970s to denote a connexin oligomer.11 
One of the earliest uses of the term “hemi-
channel” in the gap junction literature was 
in the analysis of voltage dependent gating 
of gap junction channels. Polarity rever-
sal experiments indicated that the gates 
on each side of the channel (or gates on 
each hemichannel) were not independent, 
but rather gating was contingent on the 
other gate (a hemichannel) being open.12 
Within the gap junction field, the term 
“hemichannel” is often used interchange-
ably with “connexon”, often with different 
structural and functional connotations 
dependent on the authors’ interpretation.13 
Recently, the term “pannexon” was coined 
to reflect pannexin oligomers (a hexamer 
for Panx1 and an octamer for Panx2).6,7

Early studies suggested that Panx1 had 
the capability to form functional intercellu-
lar channels. Bruzzone et al. used a paired 
Xenopus oocyte exogenous expression sys-
tem to show that Panx1 could form inter-
cellular channels.2 However long pairing 
periods were required to detect low levels of 

six conserved cysteine residues in their 
extracellular loops that form three disul-
fide intra-connexin bridges5 while pan-
nexins have four conserved extracellular 
loop cysteines resulting in the possibility 
of two intra-pannexin disulfide bonds. It 
is also notable that the pannexin sequence 
is moderately similar to the innexins but 
not to connexins.

The way connexins and pannexins 
form structures within cells are also dif-
ferent from each other. Gap junctions are 
localized to specialized cell-cell apposi-
tional areas that contain tens to thousands 
of closely packed intercellular channels 
that span the two plasma membranes. 
These intercellular channels each consist 
of two hexamers formed by one or more 
connexins, while pannexins primarily 
form membrane channels, i.e., oligomeric 
structures embedded in a single plasma 
membrane that when open, provide a con-
duction pathway between the cytosol and 
extracellular space.6 Pannexin membrane 
channels have been shown to be formed 
by six (Panx1),7 or eight (Panx2) mono-
mers.6 The oligomeric number of a Panx3 
membrane channel8-10 has not yet been 
determined, but the expectation is that it 

Figure 1. Pannexins are predicted to be tetra-spanning membrane proteins with both the amino and carboxy termini exposed to the cytoplasm. 
Panx1 and Panx3 have N-linked glycosylation sites at N254 and N71, respectively (red circles), while Panx2 has a predicted N-linked glycosylation site 
at N86 (orange circle). Black circles denote the four conserved cysteines.
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natural conditions in cells endogenously 
expressing Panx1 such as CNS pyrami-
dal17,35 and Purkinje neurons,18 erythro-
cytes,19-21 T-cells,22 astrocytes,23 airway 
epithelial cells,24 taste cells25 and cochlear 
supporting cells.26 Functional properties 
previously attributed to connexin hemi-
channels may be valid, but may need to 
be re-addressed in light of these pannexin 
findings.

Gap junctions typically appear in 
immunolabeled cells and tissues as punc-
tate spots at cell-cell contact points. In 
polarized epithelial cells, gap junctions 
are found between basolateral membranes 
but excluded from apical membranes. In 
thin cross-sections at EM resolution, gap 
junctions have a classical pentalaminar 
appearance (if the outside layers of stain 
are differentiated, then seven layers are vis-
ible, called a septilaminar appearance). A 
standard feature of a gap junction in these 
thin section micrographs is the ~2.5  nm 
stain-filled gap region. In freeze fracture 
electron micrographs, the intercellular 
channels appear as clustered membrane 
particles with an ~10–11 nm center-to-
center distance and typically displaying a 
close packed arrangement.

In contrast, plasma membrane-local-
ized pannexin channels have a different 
appearance in comparison to gap junc-
tions. Fluorescence and EM staining of 
Panx1 and Panx3 revealed that they are 
evenly localized throughout the plasma 
membrane (Figs. 2 and 3) and in par-
ticular, at the apical membrane for polar-
ized cells (e.g., airway epithelial cells and 
MDCK cells). In addition, Panx1 has 
been shown in some cells and tissues to 
also be concentrated within intracellular 
compartments. Whether Panx2 localizes 
well to the plasma membrane remains an 
area of intense investigation27-29 as well as 
whether oligomers of different pannexin 
isoforms form and function in hetero-
typic combinations.2,6,9 Vanden Abeele 
et al. presented evidence for Panx1 form-
ing intercellular channels in HEK293 
and human prostate cancer epithelial 
LNCaP cells,30 but the Panx1 staining in 
the plasma membrane is more similar to 
the dispersed pattern observed by several 
groups than to a canonical gap junction 
appearance.4,7 In cell appositional areas 
containing Panx1, higher magnification 

views such as those afforded by electron 
microscopy do not show canonical gap 
junction views (compare Fig. 3D and E). 
Furthermore, immunocytochemistry and 
detection by light and electron microscopy 
revealed Panx1 in rodent hippocampal 
and cortical principal neurons accumulat-
ing exclusively at postsynaptic densities17 
consistent with Panx1 localizing within 
plasma membrane domains that are clearly 
separated from apposing membranes.

The evidence for Panx1 making single 
membrane channels is particularly notable 
in blood where cells classically reside and 
operate as single cells. Macrophages,31 
T cells22 and erythrocytes19 typically 
express Panx1 that further localizes to 
both intracellular and plasma membranes. 
Panx1-mediated release of ATP and UTP 
from apoptotic single Jurkat cells serves 
to recruit phagocytes.32 While immune 
cells are reported to form gap junctions 
in response to certain stimuli leading 
to “rosette” formation, erythrocytes in 
healthy vessels spend their entire life cycle 
as single cells. Another example of single 
membrane localized pannexins is at the 

apical membranes of airway epithelia 
where these plasma membranes do not 
abut neighboring cells24 (Fig. 4).

Another piece of evidence that would 
argue for pannexins functioning in single 
membrane environments is based on the 
fact that pannexins are glycosylated at a 
single asparagine residue exposed to the 
extracellular surface.4,7,9 Mutating these 
amino acids to glutamine significantly 
reduces cell surface expression. The pres-
ence of carbohydrate trees on these gly-
coproteins would act to repel adjacent 
plasma membranes from becoming closely 
apposed that would be necessary for pan-
nexon docking. In contrast, connexins are 
not glycosylated, thus allowing for con-
nexon-connexon docking.

Other findings on the regulation of 
pannexin channels set them apart from 
connexin channels or hemichannels. 
Examination of the amino acid sequence 
of the carboxy terminal domain of Panx1 
reveals two canonical caspase cleavage 
sites. This suggests that under condi-
tions in which caspases are activated, 
such as cellular stress, the Panx1 protein 

Figure 2. Subcellular localization of Panx1 varies in cells and tissues. Rat epidermal keratinocytes 
(REK) (A) overexpressing Panx1 show a similar cell surface profile to endogenous Panx1 in Madin-
Darby canine kidney cells (MDCK) (B) as revealed via immunolabeling for Panx1 (red). Panx1 
exhibits a diffused cellular phenotype in mouse epidermis (between the dashed and dotted lines) 
(C) not unlike the distribution of Panx1 in thin sections of mouse spleen (D). Nuclei are stained 
with Hoechst (blue). Bars = 10 μm.
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Figure 4. Localization of connexins 
and Panx1 in airway epithelial cells. 
These cells express the two connexins, 
Cx30 and Cx31, which yield the typical 
punctate staining of gap junctions at the 
basolateral membranes of contacting 
cells (A and B). Z-stacks (C and D) do not 
reveal staining of connexins at the apical 
membrane. In contrast, staining for Panx1 
is restricted to the apical membrane 
where ATP is released from these cells 
(E and F). No staining at the basolateral 
membrane can be detected. (A–D) are 
from Wiszniewski et al. (2007),34 with 
permission from Elsevier. (E and F) are 
adapted from Ransford et al. (2009),24 re-
printed with permission of the American 
Thoracic Society. © Copyright American 
Thoracic Society.

Figure 3. Correlative light and electron 
microscopy of tagged Panx1 in MDCK 
cells. Panx1 was tagged with a tetra-
cysteine domain, labeled with ReAsH 
and photo-oxidized after fluorescence 
imaging. ReAsH fluorescence (A) Low 
magnification EM of the same cells 
(B and C). Higher power EM of area 
denoted by an arrow in (B), showed 
staining at appositional areas between 
cells, where a clear separation of the 
two plasma membranes are observed 
(D). Photo-oxidized Cx43-tetracysteine/
ReAsH gap junction is shown for com-
parison (E). (D and E) are displayed with 
the same magnification. (Adapted from 
Boassa et al. (2007).7 © The American 
Society for Biochemistry and Molecular 
Biology).

is truncated. Cleavage by caspase 3 at 
amino acids 376-379 (DVVD) of Panx1 
in Jurkat cells under conditions of cel-
lular stress occurs, forming a constitu-
tively active channel.32 Connexins do not 
contain caspase cleavage sequences and 
are not cleaved in order to be constitu-
tively activated. Further examinations 

of domains within the Panx1 channel 
are likely to provide more information 
on other regulatory mechanisms distinct 
from connexin-based channels.7

In summary, structural, functional 
and trafficking studies in many model 
cell culture systems and in some tissues 
have indicated that pannexins readily 

form single membrane channels. Under 
some exceptional and poorly understood 
conditions it may be possible that at least 
Panx1 can form intercellular channels but 
this does not appear to occur often and 
has not been shown in vivo. However, the 
term hemichannel literally means “half 
channel” which may have some validity in 
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the understanding of connexin function 
but it serves no meaningful purpose 
in the pannexin context as it only leads 
to confusion for those not acquainted 
with the intricacies of gap junction and 
pannexin biology (see also Dahl and 
Locovei33 for additional arguments). In 
the event that at some point in the future 
pannexins are conclusively shown to have 
the capacity to function in forming inter-
cellular channels either dispersed in the 
plasma membrane or within gap junc-
tion-like structures, this would not negate 
the exclusion of referring to pannexons 
as “hemichannels” and we would instead 
suggest that the phrase “pannexin cell-
cell channels” be used. Collectively, the 
authors of the present report respectively 
recommend that the field discontinue the 
use of the word “hemichannels” in refer-
ence to pannexin channels.
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