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Abstract

Purpose: The classification between different gait patterns is a frequent task in gait assessment. The base vectors were
usually found using principal component analysis (PCA) is replaced by an iterative application of the support vector
machine (SVM). The aim was to use classifyability instead of variability to build a subspace (SVM space) that contains the
information about classifiable aspects of a movement. The first discriminant of the SVM space will be compared to a
discriminant found by an independent component analysis (ICA) in the SVM space.

Methods: Eleven runners ran using shoes with different midsoles. Kinematic data, representing the movements during
stance phase when wearing the two shoes, was used as input to a PCA and SVM. The data space was decomposed by an
iterative application of the SVM into orthogonal discriminants that were able to classify the two movements. The
orthogonal discriminants spanned a subspace, the SVM space. It represents the part of the movement that allowed
classifying the two conditions. The data in the SVM space was reconstructed for a visual assessment of the movement
difference. An ICA was applied to the data in the SVM space to obtain a single discriminant. Cohen’s d effect size was used
to rank the PCA vectors that could be used to classify the data, the first SVM discriminant or the ICA discriminant.

Results: The SVM base contains all the information that discriminates the movement of the two shod conditions. It was
shown that the SVM base contains some redundancy and a single ICA discriminant was found by applying an ICA in the
SVM space.

Conclusions: A combination of PCA, SVM and ICA is best suited to extract all parts of the gait pattern that discriminates
between the two movements and to find a discriminant for the classification of dichotomous kinematic data.
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Introduction

Differences of human movements that are caused by various

gait abnormalities or footwear conditions are in general obscured

by a large amplitude of the overall movement, and by a high intra-

and inter-subject variability [1,2]. Footwear interventions intro-

duce only small changes compared with the variability due to the

movement itself [3,4].

Vector-based pattern recognition methods such as principal

component analysis (PCA) or support vector machines (SVM) and

independent component analysis (ICA) have become promising

tools for analyzing human movement [5–10]. Compared to the

traditional approach where discrete kinematic variables were pre-

selected intuitively by the researcher, pattern recognition methods

allow analyzing all of the information within a set of kinematic

data. PCA was applied to kinematic data sets in order to study

human movement with the purpose to identify movement features

that are sensitive to gender, age, speed, footwear or pathological

conditions [3,4,11–13].

A time series of length N can be represented as a vector with N

components in an N dimensional vector space. The time-base

(axes) consists of vectors where all but one component are zeros

and the component representing the time, t, is one. If multiple time

series exist, their vectors span the vector space; we call it the data

space. As an example, kinematic data sets consist of time series

indicating the positions of markers attached to the body. However,

beside the time-base, which allows us to follow the temporal

aspects of the marker positions, other bases can be computed

which allow observing specific aspects of the data. The most

widely used base for time series consists of sine and cosine waves

and the data are represented by the Fourier coefficients. The

choice of the base that allows the researcher to visualize specific

movement aspects depends on the research question and is a

crucial factor as it is sensitive to whether the base axes distribute

the data with respect to variability [14], separability, classifyability

or independence.

To study and visualize the pattern of a movement a PCA is most

useful. The PCA allows finding an appropriate base (PCA base)

since it decomposes a data set according to its variance. The PCA
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base consists of the eigenvectors (PCA vectors) sorted in

descending order of the explained variance (eigenvalues) of the

original data set. The most dominant movements are the ones

explaining the largest variance and are reflected by the first PCA

vectors. A PCA base has also been used to detect differences due to

footwear conditions [3,4]. The selection of the base or principal

modes of the PCA based on only the first few PCA base vectors

and capturing about 95% of the variance, is disputable [14]. If one

is interested in extracting differences of movements one will find

them in higher order PCA base vectors [3,4]. The dominant

movements, the ones reflected by the lower ordered PCA vectors,

account for the highest variance and are not necessarily the ones

that are sensitive to external influences to the body, such as

wearing different shoes. To investigate how a movement changes

when wearing different shoes, one should select a base that

distributes the data with respect to highest separation. The linear

SVM uses a margin maximizing discriminant analysis [15]. These

discriminants can be used repetitively to span a base with the

characteristic to optimally separate between two conditions. The

projections on the discriminant can be used to assess whether the

differences are significant by calculating the classification rate [11].

One has to be aware that separability and the ability to classify

(classifyability) are not the same. Separability refers to the fact that

the data of two groups can be separated in the data space,

however, this does not guarantee that the discriminant separating

the two groups in data space can classify an unknown new data set.

Classifyability measures the ability to assign unknown data to the

correct group and is therefore more restrictive. In case multiple

discriminants are found by a repetitive application of the SVM in

the orthogonal complement to the previous SVM discriminants,

these discriminants will form a SVM base. It is, however,

unavoidable that the projections of the data onto the SVM base

vectors are correlated and are therefore not independent.

An emerging pattern recognition approach to study statistical

independence between multiple time series is the ICA [16], an

algorithm that was developed to solve the blind source separation

problem [17]. It is frequently used in neurophysiological studies

involving recordings of human brain dynamics [16,18]. So far,

ICA has been tested as a tool to identify independent movement

components in normal human gait [19], however it has not been

used to discriminate two movements caused by shoe or other

exterior interventions. It is expected that ICA applied to kinematic

data reveals insight into independent components that discrimi-

nate patterns. Because each SVM discriminant separates the same

two groups, the projections of the data onto two SVM

discriminants always reveal a correlation. This violates the

definition of independency. Therefore all SVM discriminants are

not independent. The ICA isolates one vector that discriminates

the two groups. If any of the other ICA base vectors would

discriminate the two groups they would not be independent. Thus

the ICA will yield exactly one ICA vector with the ability to

classify dichotomous data. The vectors obtained by the ICA do not

necessarily form an orthogonal base.

The basic motivation for this work was that PCA is not ideally

suited to find a base (modes) that are appropriate for the extraction

of the part of the movement that allows classification. The purpose

was to develop a method that is suited for separating movement

differences in dichotomous kinematic data. The aim was to replace

the base vectors, also called modes [3,4,14], that were usually

found using a PCA by an iterative application of the SVM. The

novelty consists in using the criterion of classifyability instead of

the criterion of variability to compute base vectors of a subspace

(SVM space) that contains the information about classifiable

aspects of a movement. Within that subspace one can search for

discriminants separating two movement patterns. One discrimi-

nant is inherently present by the first SVM discriminant. This

discriminant will be compared using the effect size [20] to a

discriminant found by an ICA applied in the SVM space. In this

manuscript we used, as an example, movements resulting from

wearing different shoes which allowed us to develop and test the

methodology. It is hypothesized that (1) the classification by most

SVM base vectors is higher than just using the PCA base vector

with the highest classification rate and (2) that there might be a

redundancy with respect to the ability to classify the data in the

SVM space. (3) The ICA will yield an ICA base whereby only one

ICA base vector, the ICA discriminant, will discriminate between

the two conditions.

Methods

Subjects and ethics statement
Eleven male, healthy, physically active, recreational athletes

with a weekly mileage of at least 25 km participated in this study

(23.8165.51 years, 176.3864.93 cm, 72.2566.18 kg,

mean6SD). Subjects had to be free from lower extremity injury

at least six months prior to the study. All subjects gave their written

informed consent in accordance with the University of Calgary’s

policy on research using human subjects. The study protocol was

approved by the Conjoint Heath Research Ethics Board at the

University of Calgary.

Experimental protocol
Two different shoe conditions with almost identical construction

were tested. The only difference between the shoes was the

midsole material in the heel part of the shoe. The first shoe had a

viscoelastic heel (stiffness: 167N/mm, maximal deformation:

31.7%, energy loss: 49.5%) and the second shoe had a fully

elastic midsole material in the heel area (stiffness: 133N/mm,

maximal deformation: 42.4%, energy loss: 26.1%).

Kinematic data were collected using 13 retro reflective markers

that were attached to the pelvis and the right lower extremity. A

motion capture system with eight infrared cameras (Motion

Analysis, CA) was used to collect kinematic data with a sampling

frequency of 240 Hz. Each subject performed running trials on a

30 m indoor runway. A force platform embedded in the running

lane was used to identify time of initial ground contact and toe off.

For each subject, twenty trials were collected in each shoe

condition with an average speed of 460.2 ms21. The testing order

of the shoes was randomized throughout the study and each

subject was given a familiarization period of ten minutes prior to

data collection as well as a five minute rest period between the two

conditions in order to avoid fatigue.

Data preparation
Markers were identified and tracked using EVaRT Real Time

(Version 5.0.4, Motion Analysis, CA). Kinematic data were filtered

using a low pass fourth order Butterworth filter with a cutoff

frequency of 12 Hz. Kinematic data were only analyzed for the

stance phase of the right leg which was identified using the force

platform data. A level of 15 N was used as a threshold for the

vertical ground reaction force to identify the time points of initial

ground contact and toe off. Kinematic data during stance phase

were time normalized and resampled using MATLAB’s resample

function to obtain 101 equidistant time points. For the combina-

tion of different trials and subjects kinematic data were shifted to

the center of the pelvis marker in the transversal plane and to the

floor level in the vertical direction. Subsequently, the data of all

subjects were normalized to their individual height.

Subspaces in Human Gait
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Organization of kinematic data into a matrix
An input matrix M was built that contained all kinematic data

from the experiments. The matrix was organized as follows. For

every trial, the time dependent 3D coordinates of all 13 markers

were joined together in a row vector. The first 101 components of

this row vector were the x positions of marker 1, the second 101

components the y positions, the third the z positions, the fourth the

x positions of the second marker and so on. This results in a

163939 row vector per trial. All trials and conditions of all subjects

were placed in individual rows of M. Therefore M was a matrix of

size 44063939 (440 = 11 subjects 62 conditions 620 trials per

conditions; 3939 = 101 time points613 markers63 directions). In

order to reduce subject specific differences each variable was

whitened within each subject resulting in an input matrix M’:

Mj
0
(k)~

Mj(k){Ms(k)

SDfMs(k)g ð1Þ

with j being the index of the trial, s the index of the subject and k

the index of the 3939 variables. Ms(k) and SDfMs(k)g are the

mean and standard deviation over the trials and conditions within

one subject, respectively. The resulting input matrix M’ had zero

mean and standard deviation of one for every variable.

Layout of the analysis procedure
The focus of this paper will be on the classifyability and thus, the

leave one out method will be used throughout the analysis [21].

The individual steps that will be used to obtain the PCA base, the

SVM base and the ICA base are explained below. The PCA base

will be used to reproduce and compare the methods published

elsewhere [3,4]. The SVM base will be introduced as an

alternative to the PCA base. The SVM base spans a subspace of

the data space that is optimally suited to extract the multi-

dimensional part of the movement that depended on the shod

conditions. The SVM base is a set of vectors that all can classify

the two groups. In turn, the orthogonal complement of the SVM

space contains the part of the movement that is unaffected by the

shod condition and the two shod conditions cannot be classified in

this space. An attempt was made to reduce the redundancy of the

SVM space by applying an ICA within the SVM space. A flow

chart of the basic layout of the analysis is provided in (Figure 1).

PCA base computation
PCA was applied to the input matrix M’. The dimensionality, n,

of the data space was calculated as n = rank{M’}. The PCA base

vectors were calculated using a singular value decomposition [22]:

SVD M 0T :M 0� �
=N

� �
~U :

X
:W � ð2Þ

where M’T is the transpose of the matrix M’ and N is the number

of trials over all subjects and conditions. The first n vectors of U

represent the PCA base of the data in M’. The eigenvalues

representing the variance are diagonal elements of
X

.

To obtain the results from the previous approach [11],

projections of M’ onto the PCA base were performed and the

classification rate was calculated. The classification rate was

calculated with a leave one out method. One subject was removed

from the input matrix. The PCA was then performed on the

remaining data and for the subject that was removed the rate of

correctly assigned trials was calculated. This process was repeated

for all subjects and the mean classification rate was calculated.

PCA base vectors that yielded significant classification rates were

isolated and defined a subspace, the classifying PCA space. The

PCA space is therefore subdivided into the classifying PCA space

and the non-classifying PCA space. A reconstruction of the

movement based on the classifying PCA space only will show the

multi-dimensional movement that changes when wearing the two

different shoes whereas the reconstruction from the non-classifying

space will show the multi-dimensional movement that remains

unchanged when changing shod condition. The sum of the two

partial movements again represents the original movement.

SVM base computation
A support vector machine is designed to find the largest margin

between two groups. Support vectors within each group are

assigned and combined in order to classify a pattern x into one of

the two groups. The general discriminant function is given by:

f (x)~
Xl

i

yiaiK(x,xi)zb ð3Þ

where l represents the number of support vectors, yi the target

value of the support vector xi. The ai are the weight factors of the

support vector xi. The constant b is a bias and K(x,xi) is the kernel

function [21,23].

Different linear and nonlinear kernels have been used in the

literature [21,23]. We used a linear kernel that allows the

calculation of a discriminant vector using equation 4.

d~
Xl

i

xiai ð4Þ

A linear kernel has the advantage that the discriminant vector is

a vector of the data space and therefore linear vector analysis can

be applied. The vector d is vertical to the plane that separates the

data points in the data space. A projection onto this vector will

show an accumulation of points on either side of the separating

plane and thus allows discriminating points that belong to one or

Figure 1. Flow chart of the methodological approach. Flow chart
of the decomposition of the input matrix. Subspace identification using
an SVM and an ICA is shown in solid black arrows. Decomposition into a
PCA space is shown in dashed black arrows and represents the
approach used previously by other researchers. For all methods the
best classifying base vector was extracted and the Cohen’s d effect size
was calculated.
doi:10.1371/journal.pone.0065063.g001
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the other group. The bioinformatics toolbox from MATLAB was

used to calculate the SVM.

To find the SVM base vectors an iterative procedure was used.

The iterations were made along the index m of the SVMm-base

vectors. The following steps were done whereby each of the 11

subjects with index s was sequentially used as the one left out.

Step 1: The SVM, was applied to the matrix M’, which in this

case represents the data from all but one subject (leave one out). A

SVM discriminant was calculated.

Step 2: The discriminant was used to assess how many of the

trials of the subject with index s were correctly assigned to the two

shod condition. If 25 out of the 40 trials were correctly assigned

then the subject’s data were deemed classifiable according to a

binomial test (p,0.05).

The percentage of subjects whose data were classifiable was

called the classification rate. If the data of 8 of the 11 subjects were

classifiable (classification rate 8/11 = 73%) a significant classifica-

tion rate was achieve based on a binominal test (p,0.05). A

discriminant was calculated for each iteration of the leave one out

method resulting in 11 discriminants. If a significant classification

rate was found the 11 discriminants point almost in the same

direction. An overall discriminant was calculated by taking the

mean of the 11 discriminants. The overall discriminant was used

as the SVMm-base vector. The orthogonal complement to the

SVM discriminant(s) was then computed in the data space.

The iteration was continued for the next index, m, using the

vectors in the orthogonal complement to form the new M’. The

iteration ended when the classification rate dropped below 73%.

At this point the SVM space has been obtained with m base

vectors.

The vectors that span the last orthogonal complement cannot

be organized with the SVM as no classifiable information

remained in the data of this subspace. Therefore, we used the

PCA to form a base according to the variance in the data. This

PCA base allows a reconstruction of that part of the movement

that is not contributing to the classification. The joint SVM base

and PCA base of the orthogonal complement, together, form an

orthogonal base of the data-space. To each one of the base vectors

one can assign a fraction of the variance of the raw data by

computing the mean of the squared projections of all data sets.

Thus one can compute the amount of variance explained by the

SVM base and the PCA base of the orthogonal complement.

If the SVM space is multi-dimensional then the data projected

on the base vectors are not independent. In that case, an ICA was

used to further transform the SVM base into a non-orthogonal

ICA base of the SVM space. From the ICA base vectors the one

was selected that discriminates between the two conditions.

ICA base computation
The runica algorithm from the open source Matlab toolbox

EEGLab was used to compute the ICA base of the SVM space

[24]. The ICA algorithm yields a number of base vectors that is

equal to the number of SVM base vectors.

It is important to note that the ICA base is not anymore an

orthogonal base but represent statistical independent vectors

which span the SVM space. For detailed information regarding

the ICA, the reader is referred to classical ICA literature [16]. The

ICA discriminant, usually the first ICA base vector, allows the

separation of the two shod conditions.

Recovering and visualizing the movement
The movement component within any subspace of the

kinematic data space, one dimensional or multi-dimensional, can

be recalculated as follows:

MCi~
X

k
SM

0
i
:ekT:ek

� �
:diag SD Mif gð ÞzMi ð5Þ

with ek a base vector with unit length, M
0

i the kinematic

pattern of one trial, diag SD Mif gð Þ contains the standard

deviation across one subject for all the input dimensions and

Mi is the mean across trials of one subject. In case there was more

than one SVM base vector, the data M
0

i were projected on all

SVM base vectors ek that together formed the classifying subspace

(SVM space). The term SM
0

i
:ekT:ek gives the contribution of the

base vector k to the movement in the direction of the base vector

ek. The sum over all contributing base vectors gives the movement

component of the whitened data. To retrieve the movement in

meter each variable had to be multiplied by the standard deviation

over all trials. This is achieved by multiplying the vectorX
k
SM

0

i
:ekT:ek by the diagonal matrix diag SD Mif gð Þ . Finally

the mean value was added to move the marker positions back to

the global coordinate system by adding the mean value Mi .

To recover the movement that is different for the two conditions

the ek of the SVM base was used. The movement component was

recovered using equation 5 for both conditions and averaged over

the different trials within the conditions. A movie of the kinematic

data during the stance phase was produced, where the two

conditions (red dots representing the viscoelastic and blue dots

representing the elastic midsole) where superimposed (Video S1).

A time shot where the biggest difference was visible in the movie

was produced. The same procedure was applied using the PC base

of the orthogonal complement to the SVM space. Again, the

movement component was recovered for both conditions and

superimposed in a movie (Video S2). The video shows that the

blue and red markers moved in synchrony.

The waveforms are the time dependent changes of the marker

positions. The waveform of the marker showing the largest

changes was derived from the input matrixM
0
. The marker n in

the dimension j is located in the columns.

waveform~ n{1ð Þ:303z j{1ð Þ:101: 1:::101½ � ð6Þ

[1...101] represents the range in intervals of 1 normalized time

unit. There is one waveform per trial (rows in M
0

). These

waveforms indicate the displacement from the mean position of

one marker in one direction over the entire stance phase. The

waveforms for one or the other shod condition were averaged and

the standard deviation was computed for each normalized time

point.

Statistics
A binominal distribution with probability set to 0.5 and a set to

0.05 was used to determine how many trials and subjects were

needed to achieve a significant level of the classification. For the

leave one out method, the number of correct trials required was

based on the total number of trials for one subject, for the mean

discriminant the number of correctly classified subjects required

was based on the total number of subjects.

Histograms of the projections of the kinematic data onto the

classifying PCA base vectors, the SVM base vectors and the

classifying ICA base vector that showed the highest classification

rates were generated. The histograms were used to assess whether

the values were normally distributed (Lilliefors test [25]) for both

shoe conditions. If so, the Cohen’s d effect size was computed [20].

Subspaces in Human Gait
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Results

Classification within the PCA space
Significant classification of the projected data onto the principal

components was achieved within two principal components.

Principal component #6 and #10 allowed for a significant

classification rate of 72.7 and 81.8%, respectively (Figure 2). It

follows that principal component #10 classifies the data best and

is, thus, considered the highest classifying PCA base vector. The

explained variance for components #6, and #10 and was 3.3%,

and 1.8%, respectively. These PCA vectors form the classifying

PCA base. The effect size of PCA base vector #10, showing the

highest classification rate, was 1.4.

Classification within the SVM space
The calculation of the SVM base revealed 27 base vectors that

allowed for a significant classification (Figure 2) and span the SVM

space. In total 22 base vectors classified 100%, the mean

classification rate of the SVM space was 95.78% (SD 9.42%).

The explained variance within the SVM space was 2.73%. The

first SVM base vector, which already explained 1.65% of the

variance, is sufficient for the classification purpose. The effect size

of the first SVM base vector was 8.3. The orthogonal complement

to the SVM space contains the remaining variance, however, did

not allow for any additional classification.

The ICA discriminant
Applying the ICA to the data in the SVM space yielded a 27

dimensional, non-orthogonal ICA base of the SVM space. The

first ICA base vector, ICA discriminant, allowed separating the

two shod conditions (Figure 2). The ICA discriminant explained

0.6% of the variance and thus much less compared to the variance

explained by the first SVM base vector. The effect size of ICA

discriminant was 6.9. The rest of the ICA base vectors did not

reach any significant separation and were not further considered.

Loading of the components and visualization
Independent of the pattern recognition method chosen, the

highest loading (biggest absolute value of the discriminant vector)

on the first SVM base vector occurred at line 847 of the matrix M’.

This corresponds to the third marker (attached to the shoe) in

vertical direction at time point 39 (39% of the stance phase). At

this time point static images of the marker positions were

visualized in the sagittal (Figure 3 a,d,g) and frontal plane

(Figure 3 b,e,h) for different subspaces. When plotting the

corresponding waveforms and their standard deviation for the

classifying PCA base and the SVM base, the results show that

waveform differences were larger for the SVM base than for the

classifying PCA base. Thus, the SVM base leads to a more distinct

separation compared to classifying PCA base (Figure 3 c and f).

Furthermore, the orthogonal complement to the SVM space does

not contain any visible differences anymore (Figure 3 i).

Discussion

The discrimination of aspects of the human movement and the

classification is of central importance to biomechanical studies.

The SVM decomposition method is focused on revealing

movement difference and represents an alternative to a PCA

method that focuses on finding principal movements. The first

principal movements may not be the ones that differ when

applying external interventions. To our knowledge, there is no

similar approach that we could compare our method to. The

method has to be seen as an expansion of the methods previously

used [3,4,11–13]. The results show that if one stops after the first

SVM discriminant is found one might be able to assign a

movement to one or the other group but parts of the movement

that differs between the shod conditions remains undetected. To

visualize the difference caused to the movement by the shod

conditions it is important not to stop the analysis before all SVM

base vectors are available and thus the subspaces, the one

containing the discriminatory information (SVM space) and the

one who accounts for the remaining variance (orthogonal

complement to SVM space) of the data, are known. However, it

Figure 2. Classification rate of different methods. Classification rate of all base vectors using a PCA (top), a SVM (middle) and an ICA (bottom).
Base vectors that allowed for significant classification are shown as gray bars and those that do not classify are shown as black bars.
doi:10.1371/journal.pone.0065063.g002
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is obvious that the different bases are not identical, each one is

worth considering and the base vectors have to be interpreted and

used according to the question of interest.

The PCA base is very important if one wants to analyze the

main features of a movement. It is common practice to use only

the first few PCA base vectors and one can then reproduce the

movement and regain most (95% or more) of the variance. Thus,

this corresponds to a de-noising process and to a process reducing

the dimensionality. In addition, the first PCA base vectors were

viewed as descriptors of principal movements representing body

segments moving in a correlated way. This dissection into

principal movements [3,4,13] is important for the visualization

and assessment of different aspects of the movement e.g.

discriminating the leg movement from the movement of the

center of mass. However, as seen in Figure 2, the information

about differences between two conditions is only available in

higher order PCA base vectors. One is never sure whether one has

ideally separated the PCA base vectors into those that do contain

all the information that can be used for classification purposes. In

light of the current method, the PCA approach for separating

kinematic data [3,11] can be significantly improved using the

SVM and ICA methods, confirming our first hypothesis. However,

the SVM base shows that there were 27 SVM base vectors. All of

them were able to differentiate the two shod conditions. In the

PCA decomposition (Figure 2), the classifying PCA base vectors

that are able to classify occurred in an unordered sequence and

had to be searched for after the PCA was done. In contrast, the

SVM decomposition of the data space yielded all SVM base

vectors in an ordered manner, ranking them in accordance to the

variance. The SVM decomposition is therefore much more

efficient. From the classification point of view, one has achieved

the goal with the first SVM base vector which yields the best

classification based on maximizing the margin between the data of

the two conditions. That is where SVM analysis normally ends

[11]. However, this does not tell us whether there are multiple

vectors with different loadings that are equally able to classify the

data. It can be seen in figure 2 that there is a multitude of SVM

base vectors which also allow 100% correct classification,

indicating that the SVM does not identify one unique discrimi-

nant. This redundancy in the SVM space confirms our second

hypothesis. Nevertheless, the first SVM base vector is not sufficient

to describe the discriminating movement. We used the SVM space

to reconstruct (visualize) the whole aspect of the movement that

contains the effect of shoe differences on the movement and we

used the orthogonal complement to reconstruct the part of the

movement that did not change when wearing different shoes.

Using this technique one can visualize aspects of the movement

that represent only a few percent (2.73% in the present case) of the

variance of the movement but reveal the differences that occur

when wearing different shoes and allow the classification.

Watching the attached video allows the user to visually get a

better understanding of how the movement changes when wearing

different shoes.

As mentioned above, the SVM base contains a redundancy with

respect to the classifyability. This redundancy becomes obvious

when one looks at the projections of the kinematic data onto the

Figure 3. Visualization of movement differences. Stick figures of all markers in the sagittal plane (a,d,g) and the frontal plane (b,e,h). The
waveforms of marker three that separated both shoe conditions are shown in the third column (c,f,i). The first row (a-c) shows the result using the
classifying PCA base. The second row (d-f) shows the approach using the SVM base. The third row (g-i) shows the orthogonal complement to the SVM
base. The differences of the stick figures are visualized using a magnification factor of 5. The black and grey dots in the stick figures represent the
viscoelastic and elastic midsole, respectively. The largest changes were found at the ankle (circle). The figures in the third column show the
waveforms and their standard deviations (gray shaded area) for the two shod conditions. The dashed line represents the elastic midsole and the solid
line the viscoelastic midsole.
doi:10.1371/journal.pone.0065063.g003
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SVM base vectors. These projections are correlated because they

are separating the same dichotomous data. Thus we do not know

whether there are independent movement patterns that are still a

consequence of the shod conditions. For this reason an ICA was

applied to the data in the SVM space. The ICA is an unsupervised

pattern recognition tool, however, the ICA algorithm contains no

criterion that requires the optimal separation of the shod

conditions. Thus forming the SVM space that contains the

information about the shod conditions first is necessary before the

ICA can selects one direction in SVM space. By limiting the ICA

to the SVM space, the irrelevant aspect of the orthogonal

complement is not contributing disturbances to the ICA

algorithm.

At the end of the analysis one could select the classifying PCA

base vector (effect size 1.4), the first SVM base vector (effect size

8.3) or the ICA discriminant (effect size 6.9) for the purpose of

classifying kinematic data of new subjects. Based on the effect size,

however, we would recommend using the first SVM base vector.

The fact that the effect size of the ICA discriminant was smaller

than the one of the first SVM base vector points to remaining open

questions and limitations that require further methodological

improvements.

Currently we are still skeptical of the uniqueness of the ICA

discriminant because the effect size and the variability explained

by the ICA discriminant are both smaller than for the first SVM

base vector. One may have to introduce an additional condition

e.g. the effect size, into the ICA algorithm. We have no means to

test the uniqueness of the ICA discriminant with the leave one out

approach described in the layout of the analysis and with the

current set of data. One would have to return to a pure

separability analysis, computing a SVM base using separability

as a criterion for accepting a SVM discriminant and then testing

the ICA discriminant. While trying out alternative methods we

also used another SVM software (results not shown) and found

that the dimensionality of the SVM space depended on the

parameters and the computational procedures used in different

SVM software packages [26]. For instance, if a reduction of the

margin is accepted for the SVM computation the SVM space

alters its dimensionality and can eventually collapse to a single

dimension. A systematic investigation of all possible alternatives

was beyond the scope of the current work. In principle, one could

interpret the dimensionality of the SVM space as a measure for the

complexity of a movement. However, with the above mentioned

uncertainties in the calculation of the dimension it is at this stage

not advisable. These methodological differences do not alter the

principal insight we have obtained with respect to the differences

of the movements caused by the shod conditions, however, one has

to remain cautious when interpreting minute aspects that may

depend on the computational procedures.

Conclusion

The current work has shown that a data space of dichotomous

kinematic data can be decomposed into two subspaces by using an

iterative decomposition into discriminants obtained by a repetitive

application of a SVM. The SVM space contains all the

information that discriminates the aspects of the movement that

is used for the classification of the two shod conditions. One can

show how much of the variance of the movement can be assigned

to the movement described by the SVM base compared to the

variance explained by the orthogonal complement. It was shown

that the SVM base contains some redundancy and a single ICA

discriminant was found by applying an ICA to the kinematic data

when they are represented in the SVM space. We therefore

conclude that a combination of SVM (to subdivide the whole

space into two subspaces) and ICA is best suited to find a

discriminant, either the first SVM base vector or the ICA

discriminant, for the classification of dichotomous kinematic data.

Based on the effect size, we would favor the first SVM base vector.

One of our future projects is to improve the ICA algorithm by

including a criterion that optimizes the effect size. The

reconstruction and visualization of the data within the SVM

space represents a means to visualize the part of the movement

that allowed the classification to be done.
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