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Abstract Motivation: A gold standard for perceptual simi-
larity in medical images is vital to content-based image
retrieval, but inter-reader variability complicates develop-
ment. Our objective was to develop a statistical model that
predicts the number of readers (N) necessary to achieve
acceptable levels of variability. Materials and Methods: We
collected 3 radiologists’ ratings of the perceptual similarity
of 171 pairs of CT images of focal liver lesions rated on a 9-
point scale. We modeled the readers’ scores as bimodal
distributions in additive Gaussian noise and estimated the
distribution parameters from the scores using an expectation
maximization algorithm. We (a) sampled 171 similarity
scores to simulate a ground truth and (b) simulated readers
by adding noise, with standard deviation between 0 and 5
for each reader. We computed the mean values of 2–50
readers’ scores and calculated the agreement (AGT) be-
tween these means and the simulated ground truth, and the
inter-reader agreement (IRA), using Cohen’s Kappa metric.
Results: IRA for the empirical data ranged from =0.41 to
0.66. For between 1.5 and 2.5, IRA between three simulated

readers was comparable to agreement in the empirical data.
For these values , AGT ranged from =0.81 to 0.91. As
expected, AGT increased with N, ranging from =0.83 to
0.92 for N = 2 to 50, respectively, with =2. Conclusion: Our
simulations demonstrated that for moderate to good IRA,
excellent AGT could nonetheless be obtained. This model
may be used to predict the required N to accurately evaluate
similarity in arbitrary size datasets.

Keywords Content-based image retrieval . Decision
support . Image perception . Observer variation . Observer
performance . Simulation . Inter-observer variation . Liver
tumor

Introduction

Radiological diagnosis from imaging data remains today a
largely unassisted process, whereby medical experts will
often rely on recalling similar cases for diagnosis and may
occasionally consult colleagues or textbooks for support.
Liver lesion diagnosis is particularly challenging, owing to
a wide range of appearances of benign and malignant
lesions [1]. Studies have shown that medical decision sup-
port systems relying on content-based image retrieval
(CBIR) may provide improvement in efficiency and accu-
racy of diagnosis [2]. While CBIR has gained much popu-
larity in non-medical applications [3, 4], a great deal of work
remains to be done in the medical field. This is particularly
true because images judged to be similar using a quantitative
distance metric based on described and/or computed fea-
tures may not actually appear to be visually similar to
observers or be considered similar from a medical implica-
tion standpoint. The need for an accurate and appropriate
reference standard of perceptual similarity is thus critical to
the training and validation of CBIR systems [5]. Studies
have shown that presentation of perceptually similar images,
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as may be done in a CBIR system, improve radiological
decision making in some cases [6].

Research on perceptual similarity in medical images has
been conducted using mammography [7–11] and lung CT
images [12]. A variety of paradigms for creating a percep-
tual gold standard exist, including training artificial neural
networks [13], and asking readers to compare several
images at a time on a computer screen. Studies indicate that
the use of these gold standards in decision support may
improve diagnosis [14]. However, it is challenging to create
reference standards of perceptual similarity for large data-
bases using the methods presented in these works, as most
of the studies have focused on the analysis of perceptual
similarity rather than ways to acquire this data in a manner
scalable for large datasets.

In our approach, we seek to create scalable gold stand-
ards that contain numerical scores for similarity between
every pair of images in a database. Accurate development
of such a gold standard, however, is challenging for a
variety of reasons. First, the amount of perceptual input
needed to create a similarity reference standard is large, as
the number of pairs of images scales with the square of the
number of images, thus making it extremely time-
consuming. Second, experiments such as these may exhibit
moderate to high inter-reader variability; this requires a
knowledge of the distribution of responses and the aggrega-
tion of a large number of readers’ responses [15]. Further-
more, the notion of “similarity” is complex as there are a
variety of features for which the basis of similarity is
assessed, necessitating development of a robust framework
for describing and evaluating similarity.

Determining if a method for constructing a gold standard is
accurate and scalable for large databases—with input from
many readers—is difficult and costly due to the amount of
expert time required. While we must ultimately do this to
validate our approach, we would be better prepared for the
task if we first have a rough idea of the numbers of readers
required for specific database sizes. These parameters include
number of objects, inter-reader variability, and number of
readers needed to get a good estimate of the gold standard.
To this end, we have developed a statistical model based on
empirical data of perceptual similarity collected from readers’
ratings of similarity in a set of images.

Materials and Methods

Experimental Overview We first collected image similarity
ratings from expert readers viewing pairs of images on a
monitor, which we will refer to as the empirical data. To
build the statistical model, we calculated the distribution
parameters of the empirical data and modeled the similarity
scores with the functional form and parameters of this

distribution. We assumed that the mean of the readers’
scores would provide a more accurate estimate of the true
similarity ratings than any individual reader’s score. We
modeled variation in the readers’ scores as additive noise
and determined the magnitude of this additive noise that
provided inter-reader agreement similar to that observed in
the empirical data. Finally, we computed the means of the
simulated scores and calculated agreement between these
and the simulated similarity ground truth. Each of these
steps is explained in more detail below.

Analysis of the Empirical Observer Data Institutional Re-
view Board approval was obtained for this project. We used a
dataset of 19 CT images of focal liver lesions with 12 different
diagnoses (Table 1), each containing a manually drawn region
of interest (ROI). The patient population consisted of 9 male
and 10 female patients, with ages ranging from 26–80 years
(median064). The patients were chosen from a cohort of
patients scanned with a multidetector CT scanner with slice
thicknesses in the range of 2.5 to 5 mm, 140 kVp, 140–
400 mAs. We asked 3 body imaging radiologists to rate
perceived similarity between the liver lesions on a 9-point
scale in all 171 pair-wise combinations of the 19 images, with
a score of 1 given if the image pair was extremely similar.

As a baseline training stage, we provided the readers with
example images, both on-screen and printed, that provided
them with example ratings of the spectrum of appearances
expected for each image feature (Fig. 1). In collecting the
empirical observer data, we presented pairs of images on a
computerized interface developed in Matlab (R2011b,
Natick, MA) (Fig. 2). To avoid any effects resulting from
image ordering, we randomized the order of images for each
reader. The readers had the option of viewing the images

Table 1 List of diagnoses in the 19 CT focal liver lesions

Diagnosis Number of lesions
with diagnosis

Hepatocellular carcinoma 3

Hemangioma 2

Cholangiocarcinoma 2

Neuroendocrine neoplasm 2

Focal nodular hyperplasia 2

Metastasis 2

Gastrointestinal stromal tumor 1

Abcess 1

Lymphoma 1

Fibrosis 1

Cyst 1

Infection 1

Total 19
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Fig. 1 Rating guide provided
to readers during the study

Fig. 2 GUI used to collect data
for pairs of lesions. Each image
contained a rectangular region
of interest that could be turned
on or off. Readers were
instructed to ignore lesion size
and to concentrate on specific
image features or overall lesion
similarity, regardless of size
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with or without the ROI visible. We asked the readers
not to change their ratings for previously viewed pairs of
images, which combined with the example images, was
intended to promote independence of the ratings. The
images were presented with a 400/40 HU window/level.
All of the readers viewed the images on a Dell Ultra-
Sharp 2007FP screen with resolution of 1,600 by 1,200
and a monitor diagonal measurement of 20.1 in.

Using the readers’ similarity ratings, we first calculated
inter-reader agreement for each of the attributes and overall
similarity ratings using Cohen’s Kappa metric, which is used
to compare variability between data pairs, with 0 being no
agreement and 1 being perfect agreement [16–18]. We used
quadratic weighting in which the agreement score is penalized
as a function of the square of the point differences in scores.

Parameter Estimation Based on the bimodally distributed
appearance of the perceptual observer data (Fig. 3), we
assumed each distribution to be a mixture of two Gaussian
distributions and approximated a maximum-likelihood esti-
mate of the parameters using a Matlab implementation of an
expectation maximization (EM) algorithm.

Model Development and Evaluation We used the empirical
data as a basis for our statistical model. We assumed that the
readers’ ratings contained additive Gaussian noise that could
be reduced by averaging the value of readers’ ratings. Using
the R computing language, we created a statistical model
whose parameters may be varied to simulate larger datasets.
We designed the model to allow arbitrary (a) numbers of
readers, (b) numbers of image pairs being evaluated, and (c)
additive noise amplitude. The model itself consisted of two
parts: (1) a simulation of a noise-free “ground truth” and (2)
additive noise in readers’ ratings. For (1), we used a bimodal
mixture of Gaussians, as per the appearance of the data.

For (2), we generated zero-mean Gaussian noise, which we
added to the simulated ground truth. After adding the noise,
we converted the simulated scores to a 9-point categorical
scale by first thresholding them to fall between 1 and 9, and
then discretizing them to integer values. Since the amount of
noise present in the scores was not clear from a dataset of 3
readers, we tried a variety of values (0.2 and 0.5 to 5 in 0.5-
point steps) for noise standard deviation. After combining (1)
and (2), we computed the inter-reader agreement resulting
from the simulated values and sought to determine the
value(s) of the noise standard deviation for which the

inter-reader agreement was similar to that of the collected
data. Next, we estimated the simulated ground truth from
the noisy data, using the mean of the raters’ scores as an
estimator. We computed the agreement of these mean
scores with the simulated ground truth using Cohen’s
Kappa metric. For each noise standard deviation, we ran
1,000 iterations of the simulation. Our final estimate of the
agreement was the mean value of the Kappa metric result-
ing from the iterations at each noise level.

After determining a range of noise parameters that resulted
in inter-reader agreement comparable to the observer data, we
used these parameters to predict how many readers would be
necessary to produce an inter-reader agreement score of 0.8
(excellent according to Landis and Koch [16]). We did this by
running our simulation with these noise parameters while
varying the number of readers, over a range of 2–50 readers.
We also computed inter-reader agreement for these values;
since Cohen’s Kappa can only be applied to pairs of readers,
our final value for inter-reader agreement was the mean value
of all of the inter-reader agreement scores between all pairs of
readers. To test for significance, we used Fisher’s method [19]
to combine p values from the 1,000 iterations.

Results

Analysis of the Empirical Observer Data The similarity data
appeared to follow a bimodal trend (Fig. 3). Inter-reader
agreement for overall similarity in the empirical data, which
we later used to compare to the simulations, ranged between
0.41 and 0.66, a range which is considered moderate to good.
Linear regression resulted in R2 values of 0.56 (95 %CI [0.46,
0.66]), 0.48 (95 % CI [0.37, 0.59]), and 0.42 (95 % CI [0.31,
0.53]) for readers 1, 2, and 3, respectively. When the readers’
ratings were averaged before computing the regression, linear
regression yielded a correlation coefficient of 0.65 (95 % CI
[0.57, 0.73]). Table 2 shows the weighting of each of the
attribute ratings in the regressions; the average density attri-
bute consistently had the highest weighting.

Parameter Estimation Using a bimodal Gaussian assump-
tion, we calculated the means and standard deviations for
the two peaks in the readers’ ratings of overall similarity
(Fig. 4). For the first peak, the mean values for the 3 raters
were 2.9, 3.6, and 3.8; and the corresponding standard
deviations were 0.5, 1.2, and 1.2, respectively, for the 9-

Fig. 3 Histograms of the
empirical observer data for
ratings of overall similarity

J Digit Imaging (2013) 26:714–720 717



point rating scheme. For the second peak, the mean values
were at 8.2, 7.7, and 7.5, and the corresponding standard
deviations were 0.7, 1.0, and 0.7, respectively, again with a
9-point rating scheme. The proportions of the scores in the
first peak were 0.26, 0.34, and 0.51, respectively; the
corresponding proportions in the second peak were 0.74,
0.66, and 0.49, respectively.

Model Development and Evaluation In our model, we set the
first and second peaks of the Gaussians to be at 3.4 and 7.8, and
standard deviations of 1 and 0.8, respectively; these parameters
were chosen as the mean values of the respective parameters
from the radiologists’ observer data. We implemented equal
proportions of scores in the two peaks, as the wide variation in
the mixing proportions of the 3 readers’ scores made it difficult
to determine accurate proportions. When we varied the noise
standard deviation from 0.2 to 5 to search for values of noise
standard deviation that resulted in similar inter-reader agree-
ment to what was found in the emprical data, we found similar
values in the simulations when the noise standard deviation
ranged from 1.5 to 2.5 (Fig. 5), when the simulated inter-reader
agreement ranged from 0.44 to 0.69. The values for Cohen’s
Kappa were statistically significant (p<0.05) only when the
noise standard deviation was 3.5 or less.

To determine how many readers were needed for suffi-
cient agreement of the mean overall similarity scores with
the simulated ground truth, we calculated agreement for a
range of 1 to 50 readers for each of the noise standard
deviations of 1.5, 2, and 2.5 (Fig. 6). The respective mean

values of inter-reader agreement for these values of noise
standard deviations were 0.68, 0.55, and 0.44; as expected,
these mean values stayed constant when the number of readers
were varied. Agreement with the simulated ground truth with
three readers was 0.91, 0.87, and 0.81, respectively. For three
or more readers, using these values of the noise standard
deviations, all of the values of agreement with the simulated
ground truth were above the desired level of 0.8. All of these
differences were statistically significant (p<0.05).

Discussion

In this study, we have collected empirical observer data for
perceptual image similarity such as what we would use to
train and validate a content-based image retrieval system.
We have analyzed the data to establish an understanding of
the amount of variability in the observer data, since low
inter-observer variability is crucial for a viable reference
standard. The statistical model we have developed from this
analysis is essential in predicting the feasibility of creating a
similarity reference standard for large databases.

Collection of the Empirical Observer Data The main limi-
tation in developing a statistical model is the small number
of readers that participated in the study; ideally we would
use several more expert readers’ ratings as a basis for a
statistical model. However, this is a circular process in the
sense that we need to first develop a statistical model from

Table 2 Linear regression
weights for regressions per-
formed for reader 1, reader 2,
reader 3, and mean value of the
readers’ ratings

Attribute Reader 1 Reader 2 Reader 3 Mean value of readers

Number of separate compartments 0.2015 0.1186 0.1494 0.2170

Number of discrete densities 0.0899 0.1943 0.2803 0.2489

Average density relative to liver 0.4719 0.4240 0.2117 0.4060

Margin definition 0.0358 0.1557 0.2324 0.0770

Margin contour 0.0368 0.1399 0.1104 0.1067

Rim density 0.1371 0.0308 –0.0220 0.0897

Constant term 1.4276 1.4796 0.8445 0.5439
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Fig. 4 Histograms for overall perceptual similarity for the three readers with a bimodal Gaussian model fit for reader 1, reader 2, and reader 3
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empirical data, use the model to design more experiments,
use the empirical data to improve the model, and so forth.
Thus, we hope that our model will provide a starting point
for future studies in perceptual similarity of medical images
that in turn can be used to validate and improve our current
model. Including more readers in the future will also have
other benefits such as more accurate prediction of inter-
reader agreement between pairs of readers.

When collecting the observer data, we requested that
readers do not change their answers to previous questions,
as we had other measures for consistency such as the use of
a guide showing sample images and ratings. We hoped that
readers would rate according to this guide rather than any
unspecified model, as this would be likely to be prone to
variability. Second, given the design of the GUI, it would be
unreasonable to expect readers to change large numbers of
previous ratings if their model changed. Last, if we told
readers that they are free to go back and change their

answers, then some readers may and some may not, which
may create another inconsistency. However, one limitation
of this study design is that this may invite inconsistency in
readers whose method of rating the images changed over the
course of the study as they viewed more images.

Analysis of the Empirical Observer Data The bimodality of
the data collected from the raters indicates that most raters
perceived that the image pairs were either generally similar
or generally dissimilar. Thus, in addition to modeling point-
wise scores for the readers, our model may also be applica-
ble for creating a model for classification of images as either
similar or dissimilar; for example, for selecting primarily
“similar” pairs of images for further reader studies for
CBIR.

Model Development and Evaluation In general, the model
appeared to behave as expected, with inter-reader variability
and variability between the simulated ground truth and
estimated scores decreasing with an increase in noise.
Inter-reader agreement ranged from excellent at lower val-
ues of noise to poor at higher values of noise. The method of
combining readers by taking the mean score seemed to work
well in the simulations. However, it is not clear that this
would work as well when combining empirically collected
data, as the means and standard deviations may have higher
variation.

A limitation in validation of our model is that in experi-
ments with readers, an intrinsic ground truth of perception
of similarity is not directly measurable, and it may not be the
case that only one ground truth exists. Including more read-
ers in future studies will allow us to determine if readers’
ratings fall into different groups instead of being derived
from a single ground truth. Another limitation is that we
cannot predict based on these studies of liver lesions that
analogous modeling would apply to other types of medical
images such as for lung nodules or breast masses.

Agreement between the simulated ground truth and esti-
mated results was excellent at low values of noise. Unlike
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inter-reader agreement, which decreased rapidly with noise,
this value remained high with increasing values of noise. In
the range of noise levels that produced similar inter-reader
agreement as the empirical data, the agreement between the
simulated ground truth and estimate was excellent. Thus,
our simulations showed that in the presence of only moder-
ate inter-reader agreement, it is nonetheless possible to
obtain an estimate that has excellent agreement with the
intrinsic similarity ground truth. It is thus indicated that in
the empirical data, low inter-reader agreement values may
nonetheless correspond to a reasonably good estimate. Fi-
nally, we demonstrated that the inter-reader agreement val-
ues of overall similarity seemed to plateau as more readers
were added to the simulated study. This indicates that after
including some number of readers, adding more readers to
the study may result in only marginal improvement of the
estimated ground truth score.

Conclusions

We have created a model for perceptual similarity in CT
liver lesions based on data collected from expert readers and
have gained some insights from this model. We have deter-
mined that we can obtain an excellent estimate of a simu-
lated ground truth similarity score with a relatively small
number of readers’ ratings that exhibit moderate to good
inter-reader agreement. Future work includes validating this
model with more readers and correspondingly larger data-
bases and using it to design other observer studies.
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