
Quantitative Imaging Biomarker Ontology (QIBO) for Knowledge
Representation of Biomedical Imaging Biomarkers

Andrew J. Buckler & M. Ouellette & J. Danagoulian &

G. Wernsing & Tiffany Ting Liu & Erica Savig &

Baris E. Suzek & Daniel L. Rubin & David Paik

Published online: 16 April 2013
# Society for Imaging Informatics in Medicine 2013

Abstract A widening array of novel imaging biomarkers
is being developed using ever more powerful clinical
and preclinical imaging modalities. These biomarkers
have demonstrated effectiveness in quantifying biologi-
cal processes as they occur in vivo and in the early
prediction of therapeutic outcomes. However, quantita-
tive imaging biomarker data and knowledge are not
standardized, representing a critical barrier to accumu-
lating medical knowledge based on quantitative imaging
data. We use an ontology to represent, integrate, and
harmonize heterogeneous knowledge across the domain
of imaging biomarkers. This advances the goal of de-
veloping applications to (1) improve precision and recall
of storage and retrieval of quantitative imaging-related

data using standardized terminology; (2) streamline the
discovery and development of novel imaging biomarkers
by normalizing knowledge across heterogeneous re-
sources; (3) effectively annotate imaging experiments
thus aiding comprehension, re-use, and reproducibility;
and (4) provide validation frameworks through rigorous
specification as a basis for testable hypotheses and
compliance tests. We have developed the Quantitative
Imaging Biomarker Ontology (QIBO), which currently
consists of 488 terms spanning the following upper
classes: experimental subject, biological intervention,
imaging agent, imaging instrument, image post-
processing algorithm, biological target, indicated biolo-
gy, and biomarker application. We have demonstrated
that QIBO can be used to annotate imaging experiments
with standardized terms in the ontology and to generate
hypotheses for novel imaging biomarker–disease associa-
tions. Our results established the utility of QIBO in enabling
integrated analysis of quantitative imaging data.
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Quantitative imaging

Introduction

Imaging, by CT and MR, has been ranked by physicians as
the single most important medical innovation [1]. In addi-
tion to common clinical imaging modalities, biomedical
research studies use many other rich and diverse types of
imaging data, including high-resolution microscopy images,
fluorescence imaging, and recently developed nanoparticle
imaging. The biological significance of these imaging stud-
ies often involves identifying imaging biomarkers that are
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indicators of the underlying biology. Currently, quantitative
imaging suffers from the lack of a standardized representa-
tion of quantitative image features and content [2–5].

As one resource that depends on this, the concept of
“image biobanking” as an analog to tissue biobanking has
great promise [6, 7]. Tools have become available for han-
dling the complexity of genotype [8–12], and similar ad-
vancements are needed to describe phenotype, especially as
derived from imaging [4, 13–20]. Publicly accessible re-
sources that support large image archives support file shar-
ing and have so far not yet merged into a framework that
supports the collaborative work needed to meet the potential
of quantitative image analysis. With the availability of tools
for automatic ontology-based annotation of datasets with
terms from biomedical ontologies, coupled with image ar-
chives and the means for batch selection and processing of
image and clinical data, imaging will go through a similar
increase in capability analogous to what advanced sequenc-
ing techniques have gone through in molecular biology.

Quantitative imaging biomarkers, which are the focus of
this work, provide a numerical characterization of the un-
derlying biology or pathology as opposed to using textual or
categorical descriptions of an observer’s subjective visual
interpretation. Accelerated by advances in imaging tech-
niques, a wide array of novel quantitative imaging bio-
markers have been developed and have demonstrated
effectiveness in quantifying biological processes and in
clinical use. For example, imaging biomarkers, such as
change in tumor uptake measured by the standardized
uptake value (SUV) of [18F]-FDG positron emission to-
mography (PET), can be used in monitoring disease
progression, prediction of response to treatment, as well
as drug development [21].

Fully describing a quantitative imaging biomarker and
how it is used involves specifying a series of heterogeneous
concepts that span the fields of imaging physics, contrast
agent or probe chemistry, biology, and quantitation tech-
niques. Interpretation of data used in the development and
validation of quantitative imaging biomarkers requires these
disparate concepts to be related together with scientifically
rigorous epistemology. We posit that this motivates an im-
mediate need for an ontology to represent the complex and
heterogeneous imaging biomarker data and knowledge with
sufficient coverage of these fields [22]. In this endeavor, we
developed an ontology that represents the knowledge do-
main of quantitative imaging biomarkers and we have ex-
plored applications enabled by it.

Imaging biomarker research

The Biomarkers Definitions Working Group at National
Institutes of Health defines biomarkers as characteristics
that are objectively measured as indicators of normal

biological processes, pathological changes, or pharmaco-
logic responses to a therapeutic intervention [2, 23]. For
example, the measurement of the serum concentration of the
glycoprotein CA125 assayed by ELISA can be used to
monitor therapy during treatment for ovarian cancer. When
biomarkers are obtained from biomedical images, they are
referred to as imaging biomarkers. While the term imaging
biomarker is sometimes used to refer directly to the exoge-
nous imaging agent or its molecular target, we use the term
here in a broader context to represent the measurement of
the characteristic obtained through imaging. There is much
research interest in imaging biomarkers, and several related
efforts have been initiated in imaging biomarker research in
the scientific community.

The Radiological Society of North America has formed
the Quantitative Imaging Biomarker Alliance (QIBA) to
advance quantitative imaging in clinical care and facilitating
imaging as a biomarker in clinical trials [24, 25]. While
engaging many stakeholders across academia, government,
and industry, the effort is limited to the most mature bio-
markers. Also, they are not addressing biomarkers from a
knowledge engineering perspective and have only limited
activity associated with formal verification activities.

The Center for Biomarkers in Imaging at the Massachu-
setts General Hospital has developed a large imaging bio-
marker catalog with about 350 imaging biomarkers [26].
Although extensive, this cataloging effort is not focused
on a structured and standardized representation of quantita-
tive imaging biomarkers.

Biomedical Imaging Research

Imaging techniques allow non-invasive interrogation of the
biology. This has fundamental utility in characterizing tis-
sues and biological processes in the context of a living
organism. The non-invasive nature also allows studies to
be carried out serially, and thus enables characterization of
biological changes over time.

Recently, molecular imaging has attracted considerable
interest among researchers in the imaging sciences because
it enables quantification of biological activities at the cellu-
lar and molecular levels [27]. For example, changes in
activities of the receptor tyrosine kinase EGFR can be
visualized and quantified through the optical imaging of
reconstituted luciferase [8]. PET enables detection and quan-
tification of molecular processes such as glucose metabo-
lism, angiogenesis, apoptosis, and necrosis [28, 29].
Radiolabeled annexin V uptake by apoptotic and necrotic
cells is used to measure apoptosis, necrosis, and other dis-
ease processes using PET [30, 31]. Chelated gadolinium
attached to small peptides recognizes cell receptors and
quantify receptor activities using magnetic imaging tech-
niques. Similarly, microbubbles and nanobubbles attached
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to antibodies such as anti-P-selectin may be used to image
targeted molecules associated with inflammation, angiogen-
esis, intravascular thrombus, and tumors [32].

Despite the obvious advantages of imaging, there are
many obstacles to the integration of biomedical images from
different studies to conduct integrative analyses. First, there
is significant heterogeneity and variability in imaging-based
measurements. Unlike DNA sequence analysis or gene ex-
pression analysis whose data alphabets and fold change
measurements are readily standardized, imaging is often
viewed as being both a fundamentally subjective medium
and significantly more complex due to the assay methods
used. In particular, postprocessing, analysis, and interpre-
tation are generally highly idiosyncratic to the particular
study. Even apparently simple steps can have significant
variations.

For example, imaging experts identify lesions and draw
regions of interests (ROIs) around the lesions using image
processing software. Previous studies have shown that there
is significant variability across experts as well as across
image processing algorithms implemented in different plat-
forms [3, 4, 33]. There are many approaches to extract
measurements from ROIs. For example, the SUV used in
PET measures relative cellular uptake of an imaging probe.
The most commonly used PET imaging probe in cancer
diagnosis is [18F]-FDG that is used to measure glucose
metabolisms. This single parameter has several variations:
max SUV (SUVmax), mean SUV (SUVmean), and relative
SUVs. SUVmax and SUVmean are absolute values whereas
rSUV is a ratio of the SUV value of one anatomical region to
that of another. The multiple ways of quantifying lesion
SUV make it difficult to compare analyses across different
studies [5].

As another motivating example, the rich data in biomed-
ical images are not reused. The integration of imaging data
from various experiments in order to promote new knowl-
edge has not been effectively achieved. The biomedical
imaging community requires a bioinformatics infrastructure
that would enable researchers to search, access, and analyze
this large amount of imaging data. One of the main chal-
lenges may be that the complexity and diversity of imaging
data far exceeds genomic and proteomic data.

Despite these difficulties, significant efforts have been
made to build imaging resources and databases. The Na-
tional Biomedical Imaging Archive (NBIA) and The Cancer
Imaging Archive developed by National Cancer Institute are
large in vivo image repositories [34]. Images are publicly
available to researchers in the biomedical research commu-
nity for many purposes including lesion detection software
development and the quantitative imaging assessment of
drug responses [34]. Researchers are able to query and
download images from 15 major imaging modalities and
18 anatomical sites for different tumor types. Early efforts to

publish primary data along with analyzed results in the
context of peer-reviewed journals have begun as well [35].

Another imaging-related database is the Molecular Imag-
ing and Contrast Agent Database (MICAD) created by the
National Center for Biotechnology Information [20]. Instead
of images, the MICAD database focuses on molecular im-
aging agents and has 1,373 molecular imaging agents listed
as of February 2013. In addition, there are thousands more
in “pending” status. The imaging agents in MICAD encom-
pass radioactive labeled small molecules [15], nanoparticles
[16], proteins such as antibodies [36] and fluorescent tagged
proteins [18], and labeled cells such as stem cells for track-
ing homing to tumors [19]. Moreover, there are 170 diverse
biological applications corresponding to the imaging
agents, ranging from biological transporter imaging, cell
tracking, angiogenesis imaging to drug resistance and
disease detection [20].

Because the emphasis of the MICAD database is on
molecular imaging, many imaging agents have specific
molecular targets. In total, there are unique 350 molecular
targets, including mRNA, integrins, growth factors, insulin
receptor, stem cells, etc. There are redundancies in these
target annotations as a target can be used to annotate else-
where using its synonyms. However, there is no formalized
knowledge framework for this rich database that is publicly
available.

Ontologies and their applications in biomedical research

An ontology is a framework that represents knowledge
entities in a specific domain as well as relationships between
entities [22]. The ontological structure is an ideal framework
due to its ability to integrate heterogeneous and complex
knowledge. It can be used to discover underlying associa-
tions in a knowledge domain.

It consists of three main components: terms/classes,
properties/attributes, and instances. Terms describe impor-
tant entities in a knowledge domain. Classes are structured
in an IS-A hierarchy where each subclass is a more specific
type of its superclass. Properties (or attributes) of each term
describe the characteristics of classes. Instances are specific
examples of terms in the ontology.

Also, by formally defining terms and synonyms of terms
in a domain, an ontology facilitates the elimination of ter-
minology variation and ambiguity, and thus can be used to
link data and knowledge from different sources. For exam-
ple, Gene Ontology is a major bioinformatics initiative that
provides a controlled vocabulary for annotations of gene
products [37]. It covers three areas: cellular component,
molecular function, and biological process. Gene ontology
(GO) is now widely used in annotations of gene expression
[37]. For example, in microarray analysis, up- and
downregulated genes are annotated using GO to represent
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common molecular functions or biological processes to
identify the common theme among differentially regulated
genes [38]. For example, enrichment of differentially
expressed genes in a tumor reveals growth factor activity.
In an area where data mining is tedious, ontologies allows
for intelligent data mining.

Ontologies are reusable and can be linked with other
ontologies for specific applications [39]. For example, the
Foundational Model of Anatomy (FMA) is a domain ontol-
ogy for correlating different views of anatomy. Washington
et al. integrated FMA and other ontologies to associate
human diseases with animal models [40].

Other widely used biomedical ontologies include NCI
thesaurus (NCIt) and medical subject headings (MeSH)
[41]. NCI thesaurus is a controlled terminology developed
by the National Cancer Institute in collaboration with many
partners, focusing on enabling the communication of infor-
mation in cancer research. MeSH is the National Library of
Medicine-controlled vocabulary thesaurus used for indexing
articles in PubMed. Because of its comprehensiveness, it is
used as a reference terminology in other applications [42].

Informatics in Imaging Biomarker Research

RadLex (https://www.rsna.org/RadLex.aspx) is a unified lan-
guage of radiology terms for standardized indexing and re-
trieval of radiology information resources [43]. With more
than 30,000 terms, RadLex satisfies the needs of software
developers, system vendors, and radiology users by adopting
the best features of existing terminology systems while pro-
ducing new terms to fill critical gaps. For example, researchers
and clinicians can use the RadLex terminology to annotate
radiological images [44]. It unifies and supplements other
lexicons and standards, such as SNOMED-CT and DICOM.

Annotation and Image Markup (AIM) is an information
model focused on clinical imaging that provides human
observers with the ability to record explanatory or descrip-
tive information about their observations and to attach this
information to specific locations within an image [45].
Using RadLex terms, it provides a standardized information
model compatible with DICOM-SR, XML, and HL7 for-
mats for such observations.

Formal Definition as Basis for Validation and Qualification
Framework

The lack of consensus methods and carefully characterized
performance impedes the widespread availability of urgent-
ly needed quantitative imaging techniques in medicine. A
precondition for use is the demonstration of performance
according to recognized descriptive statistics computed in a
defined patient population with a specific biological phe-
nomenon associated with a known disease state, supported

by evidence in large patient populations, and externally
validated. Not yet merged into a framework that supports
the collaborative work needed to meet the potential of
quantitative imaging analysis are the application of ad-
vanced statistical techniques, the development of controlled
vocabularies and service-oriented architecture for process-
ing large image archives. With the availability of tools for
the automatic ontology-based annotation of datasets with
terms from biomedical ontologies such as those made pos-
sible by the Quantitative Imaging Biomarker Ontology
(QIBO), coupled with imaging archives and a means for
the batch selection and processing of imaging and clinical
data, we believe that imaging will go through a similar
increase in capability analogous to the gains advanced se-
quencing techniques have brought to molecular biology.

To address the need for informatics methods in imaging
research, validation, and qualification, the goal of this project
is to develop a structured knowledge representation using an
ontology to integrate heterogeneous knowledge in imaging
biomarkers. The domain of our ontology is defined as imaging
biomarkers for both preclinical and clinical applications.

Materials and Methods

We have created the QIBO to provide a basis for standard-
izing semantics inclusive of the terms as well as the relation-
ships among them.

Initial Curation to Collect Terms

To gather terms, relationships, and properties of the terms in
the imaging biomarker ontology, we started with a literature
review of the journal Molecular Imaging and Biology. We
sampled 22 articles published since 2006. The inclusion
criteria was that articles made nontrivial use of quantitative
imaging measurements, which was not true of many
chemistry/probe development papers. Articles were ran-
domly sampled and added until it was subjectively deter-
mined that the scope of the concepts had begun to elucidate
enough structure such that an ontology could be designed
around it. This work was by two individuals with 23 years
of imaging research experience in total with all work
reviewed by both and the more senior arbitrating conflicts.
Further, we also distilled terms associated with 95 putative
biomarkers in oncology indications from 43 articles in such
journals as JNM, JMRI, Cell, Molecular Imaging and Biol-
ogy, and Transgenic Research; 47 putative biomarkers in
cardiovascular indications from 30 articles in such journals
as JNM, Molecular Therapy, Stroke, and Circulation; 52
putative biomarkers in neurology indications from 25
journals such as Nuclear Medicine and Biology,
NeuroImage, and Nuclear Instruments & Methods in
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Physics Research; 22 putative biomarkers in musculoskele-
tal indications from 6 articles in such journals as EJNM and
Molecular Imaging; 5 putative biomarkers in endocrinology
indications from 3 articles in Proceedings of the National
Academy of Sciences and Vanderbilt University Institute of
Imaging Science conference proceedings; and 4 putative
biomarkers from 19 articles in pulmonary indications from
19 articles in such journals as European Respiratory Jour-
nal, Proceedings of American Thoracic Society, Medical
Physics, and Thoracic Imaging. We examined the methods
and results of experiments reported in the papers, focusing
on abstracting terms and relationships that characterize and
annotate an imaging biomarker. This approach allows us to
examine specific instances of biomarkers and to be able to
build the ontology from real world examples.

Reusing Other Publicly Available Ontologies

To build the imaging biomarker ontology, we reviewed a range
of publicly available ontologies and terminologies, including
MeSH [41], NCI thesaurus [46], GO [37], FMA [39], Disease
Ontology [47], and BIRNLex (a controlled terminology for
Biomedical Informatics Research Network) [48] to adopt or
adapt them wherever possible. For example, entities of anatom-
ical structurewere imported fromFMAand entities of biological
process were extracted from GO, MeSH, and NCI thesaurus.

Our solution to integrating multiple ontologies is to minimal-
ly and unambiguously reference the external class from within
QIBO. This is achieved by specifying the external source on-
tology, the external source class from the source ontology and
the QIBO class that references the external source class. In our
case, most of the ontologies we reuse in QIBO are fairly stable.
We coded the minimal references directly in the ontology as
annotation properties in Web Ontology Language (OWL).

Design Decisions

The domain of the ontology includes imaging biomarkers for
both preclinical and clinical applications featuring molecular
imaging because of its richness and biological specificity.

We have built the OWL-based ontology using Protégé, a
widely used and freely available ontology editing tool [49].
Protégé supports two ontology modeling paradigms: OWL
and frames. Despite many similarities between the two lan-
guages, OWL provides description logic reasoning capability
with high expressive power [50]. Classes can be asserted
directly in the ontology in both OWL and frames, describing
necessary conditions. Only necessary and sufficient condi-
tions can be defined in OWL to specify new classes where
an OWL classifier can be run to generate inferred hierarchy.
Inferred hierarchy is particularly suitable for representing the
heterogeneous knowledge in imaging biomarkers. It allows
the defining of newly discovered biomarkers. OWL enables

powerful knowledge reasoning. It is capable of conveying
complexity and richness in imaging biomarker research.

Based on our curation efforts, we first identified top-level
terms that capture major entities appearing in an imaging
biomarker experiment. We also created synonyms and defini-
tions for classes in the ontology. To ensure consistency, Is–A
relationship (subsumption) is strictly conserved in every branch
of the ontology. Other relationships that organize the terms in a
structured and meaningful way are defined as properties, such
as the relationships between the first level classes.

We anticipate that QIBO will be extended to relate and link
to other established ontologies such as FMA [51], GO [52],
SNOMED [53], and RadLex [54] as well as other standard-
ized domain ontologies such as from the Open Biological and
Biomedical Ontologies Foundry [55], leveraging the Basic
Formal Ontology (BFO) [56] upper ontology for alignment
through a shared abstract level. It also incorporates NBIA [57]
and AIM UML models, associated common data elements
and underlying NCIt and other ontology concepts.

Results

Upper Level Terms and Their Relations

We first identified top-level terms of QIBO in the temporal
order in which they would appear in an imaging biomarker
experiment (Fig. 1). We then formally defined the first level
classes and their semantic relationships (Fig. 2). The ontology
contains 567 classes, of which IMAGING INSTRUMENTand
BIOLOGICALTARGETare the two largest classes in terms of
the number of subconcepts (Figs. 3 and 4). Term names in the
following description are denoted in CAPS for clarity.

We also created synonyms and definitions for classes in the
ontology. To ensure consistency, Is–A relationship
(subsumption) is strictly conserved in every branch of the
ontology (Fig. 5). Other relationships are defined as properties,
such as relationships between the first level classes (Fig. 2).

BIOLOGICAL SUBJECT refers to the living organism,
or part of a living organism, on which an experimental or
clinical imaging study is performed. We created 56 sub-
classes under this branch. BIOLOGICAL INTERVENTION
refers to a procedure performed on the BIOLOGICAL
SUBJECT either to perturb the biology (e.g., conditional
gene expression) or for therapeutic purposes (e.g., drug
administration; Fig. 2). There are in total 24 concepts in
BIOLOGICAL INTERVENTION.

The IMAGING BIOMARKER MEASUREMENT is a
central term in the ontology and has relationships to many of
the other upper classes. IMAGING BIOMARKER
MEASUREMENT has subclasses, ANATOMICAL MEA-
SUREMENT (e.g., length and volume) and FUNCTIONAL
MEASUREMENT (e.g., metabolic rate biomarker and
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Fig. 1 First level classes in the
QIBO, organized by the order
of appearance in an imaging
biomarker experiment

Fig. 2 Top level classes and
their relationships
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permeability biomarker), which are the super classes for 28
and 18 concepts, respectively.

IMAGING INSTRUMENT, as the largest branch with 115
concepts in the ontology, includes conventional anatomical
imaging instruments (e.g., CT and MRI) as well as molecular
and functional imaging instruments (e.g., microscope and bio-
luminescence imaging). ALGORITHM describes image pro-
cessing, analytic techniques and/or modeling methods used to
extract the IMAGING BIOMARKER MEASUREMENT.
There are 20 different algorithm concepts in the branch. Al-
though this term often is not mentioned with the IMAGING

BIOMARKER MEASUREMENT, it is an indispensable step
in the acquisition of the measurement. IMAGING AGENT is
an exogenous material (e.g., contrast agent or molecular probe)
optionally administered to the BIOLOGICAL SUBJECT that
is used to visualize some component or process within the
subject. IMAGING AGENT contains 57 subclasses.

BIOLOGICAL TARGET, as the second largest branch
with 113 concepts in the ontology, is the part of the biolog-
ical subject that is optionally targeted by the IMAGING
AGENT; it is visualized in the image and measured in order
to create the imaging biomarker. BIOLOGICAL TARGET
refers to biological components such as biomolecules, cells,
or anatomical structure/space. The subclasses are populated
using terms from an existing ontology NCI thesaurus, as
well as our own terms. For example, subclasses of enzyme
in molecular target are shared with those of enzyme in NCI
thesaurus; multicellular organ level target shares subclasses
with skeletal system part in NCI thesaurus. INDICATED
BIOLOGY includes 55 biological process and 37 disease
concepts, which are populated using terms from GO, MeSH,
and Disease Ontology. For example, terms under DISEASE
reference equivalent classes in the Disease Ontology via
DOID using the annotation property (Fig. 6). There are 24

Fig. 3 Distribution of classes in each of the top-level terms in the
Quantitative Imaging Biomarker Ontology: postprocessing algorithm
(20), biological intervention (24 concepts), biomarker use (32 con-
cepts), imaging agent (57 concepts), biological subject (57 concepts),
quantitative imaging biomarker (57 concepts), indicated biology (92
concepts), biological target (113 concepts), and imaging instrument
(115 concepts)

Fig. 4 Circular graph of the QIBO to get an overview of the nine
classes. Upper classes are highlighted in yellow and each node is a
class

Fig. 5 A partial view of the QIBO in Protégé
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of the 37 disease concepts annotated with DOIDs. Similarly,
BIOLOGICAL PROCESS is semantically equivalent to the
same term in one of the three branches of GO, and thus 46 of
the 55 concepts in Biological Process are shared with the
GO biological_process branch. Although the biological pro-
cess branch in GO is comprehensive in terms of molecular
and cellular processes, we also include disease level pro-
cesses with ill-defined genetics in order to better cover
clinical applications of imaging biomarkers, such concepts
as thrombosis and metastasis. INDICATED BIOLOGY and
BIOLOGICAL TARGET can both be considered as func-
tional annotations of the IMAGING BIOMARKER MEA-
SUREMENT. We make such a distinction in order to
conserve the subsumption property of the ontology. INDI-
CATED BIOLOGY and BIOLOGICAL TARGET are two
classes that overlap significantly with other ontologies.

BIOMARKER USE is the application of the imaging
biomarker, whether for drug development, for a biological
discovery such as signaling pathway identification, or for
clinical practice in diagnosis, screening, staging, etc. This
branch consists of 32 concepts.

Relationships Between Upper Level Terms

Figure 2 shows relationships between upper level terms. To
highlight QUANTITATIVE IMAGING BIOMARKER as
the central term in the ontology, we show the relationships

from the central term to the other terms in Fig. 2. For every
relationship, there is an inverse relationship in the reversed
direction (not shown). For example, QUANTITATIVE IM-
AGING BIOMARKER is_a_measure of INDICATED BI-
OLOGY, and INDICATED BIOLOGY is_quantified_by the
QUANTITATIVE IMAGING BIOMARKER. Relation-
ships are denoted in italics for clarity. The representation
of relationships between upper level terms not only eluci-
dates semantic associations between the terms, but also
allows inferences from one term to another.

In conforming to ontological hierarchy, the relations
between top-level concepts, like other attributes of con-
cepts, are inherited by their subclasses. In another word,
the relations between top-level concepts are propagated
to subclasses in their respective subclasses. Thus, the
relationship between two concepts from different main
branches is dictated by the relationship between their
top-level concepts if these two concepts are two of the
nine main branches. The relationship between any two
concepts within a main branch strictly follows the sub-
sumption property.

Applications

1. Discovery of Novel Biomarkers. Among the benefits of
our approach is the ability to discover how biomarkers
are related. For example, two biomarkers might be used

Fig. 6 The disease class references equivalent classes in the disease ontology via disease ontology ID using the annotation property

J Digit Imaging (2013) 26:630–641 637



for the same disease, but such relations cannot be rep-
resented by a flat list. The ontological structure in QIBO
—both the hierarchical development of concepts, as
well as the free graph-oriented relations among them
—addresses these issues. QIBO enables semantically
identical terms to be considered as one concept in order
to enable precise semantics. This capability can be used
for the discovery of novel biomarkers. We have identi-
fied an example of this use case in our curation (Fig. 7).
Figure 7 shows two associations of measurement–tar-
get–disease.

& the first association was identified in the ninth curated
paper, illustrating that max photons per second per
square centimeter per steradian (biomarker measure-
ment 1) is a measure of cardiac muscle cells (target
1) for acute donor cell death (disease or pathological
condition 1) [58].

& the second association was identified in the 29th curated
paper, which links myocardial blood flow measured as
MBFp or milliliter per minute per milliliter in PET (bio-
marker measurement 2) with myocardium (target 2) and
chronic ischemic heart disease (disease 2; Fig. 7a) [59].

As the targets are identical in the two associations, the
two associations can be linked (Fig. 7b). Thus, biomarker
measurement 1 is a potential new biomarker for disease 2,
and similarly for biomarker measurement 2 and disease 1.
Furthermore, QIBO can be mapped with other public ontol-
ogies to establish associations of biomarkers and other bio-
logical entities for new biological discovery.

2. Validation and Qualification Framework. Enabled by
the work in this paper, we are in the process of devel-
oping QI-Bench© (www.qi-bench.org), an open-source
informatics tool which clinicians and researchers with
diverse scientific backgrounds, users without informat-
ics background, can use to characterize the performance
of quantitative medical imaging to specify and support
experimental activities for statistical validation using the
QIBO and other resources accessible through the Na-
tional Center for Biomedical Ontology’s BioPortal [60].
QI-Bench uses QIBO to guide the creation of an imag-
ing biomarker knowledgebase with instances of the
QIBO terms analogous in some ways to how Bio2RDF
and other applications use GO, and we anticipate further
parallels as development continues.

Fig. 7 An example of using the
Quantitative Imaging
Biomarker Ontology for novel
biomarker discovery. a Each of
the two associations was
identified from a curated paper.
b The two associations can be
linked by the common target
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Discussion

This work presented here has several limitations. First, upper
ontologies such as BFO can provide clear philosophical dis-
tinctions between things such as continuants and occurrents and
can enable ontological alignment. Currently, QIBO does not
derive from a standardized upper ontology because of the
obfuscation of the specific terms that are of actual use to
imaging researchers. Second, reusing other ontologies
avoids duplicating efforts and allows for integration be-
tween different ontologies as well as interoperability of
applications using them. However, the actual implementa-
tion of seamlessly merging existing ontologies into a devel-
oping ontology is still an unsolved challenge and our
approach may not be ideal. Third, since ontology develop-
ment is a continual process, a more formalized structure
must be developed for the ongoing development and main-
tenance of the ontology by a larger community. For in-
stance, the addition of concepts and level of detail of
relations should be arbitrated in a fair and consistent man-
ner and unintentional duplication must be avoided. QIBO is
still in its early stages but its structure, content, and docu-
mentation follow and is evaluated against terminology re-
view principles [61].

The Quantitative Imaging Biomarker Ontology we have
developed integrates knowledge from multiple fields, span-
ning the context for use, and assay methods. Context for use
is represented by biology of interest (biological target, indi-
cated biology, and biomarker application). The ontology
also includes both clinical terms (e.g., DISEASE) and terms
used in basic biological research (e.g., BIOLOGICAL PRO-
CESS). Assay methods are represented by upper classes,
including image technique (e.g., IMAGING AGENT and
IMAGING INSTRUMENT), and method of quantitation
( e . g . , IMAGE PROCESSING and ANALYSIS
ALGORITHM).

Integration of these different fields will facilitate bio-
marker discovery and accelerate the translation of imag-
ing biomarkers from research to clinical use. In
addition, we reuse existing ontologies whenever possi-
ble. The complete QIBO is available to the public on
the BioPortal website [62].

The subsumption (IS–A) relationship and other types
of relationships between terms maintained in the ontol-
ogy enable semantically meaningful retrievals of related
terms in QIBO. For example, the ontology may be used
to annotate instances of imaging biomarkers. Similar
biomarker instances can be retrieved based on their
semantic similarity.

To our knowledge, this is the first ontological represen-
tation of knowledge in imaging biomarker research.
Tulipano et al. developed a terminology in molecular imag-
ing, focusing on bridging the imaging domain with gene

product function, process and location described in GO [63,
64]. However, the top level terms in this ontology only
encompass imaging (IMAGING INSTRUMENT, AMPLI-
FICATION TECHNIQUE, IMAGING PROBE), BIOLOG-
I CAL TARGET ( IMAG ING TARGET ) , a n d
MOLECULARE IMAGING ENTITY, which is too broad
to specify and differentiate different imaging biomarkers.

RadLex and QIBO are two closely related knowledge
representations in imaging, but each with a different
focus. The RadLex annotations are semantic descriptors
of qualitative interpretation on images, whereas QIBO
semantically captures quantitative features that are com-
putationally derived.

One promising use of the ontology is to bridge the QIBO
terms according to their relationships and create statements
represented as RDF triples and store them in an RDF store
such as Bio2RDF. We have begun this work as one aspect of
QI-Bench. By doing so, we are building semantically rich
specifications for linked data. This representation will pro-
vide a direct benefit in allowing integrated knowledge
across imaging and non-imaging data sets, as well as en-
abling applications to assemble/transform the set of RDF
triples to SPARQL queries.

Data integration on the conceptual level enabled by this
method abstracts out implementation details to increase the
accessibility of data. Data integration could be performed
across the genomic, gene expression, clinical phenotype,
and imaging data, using federated SPARQL queries and
inferencing to formulate testable hypotheses and associated
datasets for the validation of a new imaging biomarker
based on a linked data specification of the biomarker using
terms from QIBO.

Conclusions

We have developed QIBO to support imaging biomarker
research. It integrates heterogeneous knowledge in the field
of quantitative imaging and bridges preclinical and clinical
imaging biomarker research. Presently, we validated the
ontology using published imaging biomarker data. We have
demonstrated its utility in various applications associated
with the QI-Bench program such as data retrieval, mining
new information from the literature and discovering novel
imaging biomarkers.
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