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Abstract In this work, the authors present an effective
denoising method to attempt reducing the noise in mammo-
graphic images. The method is based on using hierarchical
correlation of the coefficients of discrete stationary wavelet
transforms. The features of the proposed technique include
iterative use of undecimated multi-directional wavelet trans-
forms at adjacent scales. To validate the proposed method,
computer simulations were conducted, followed by its appli-
cations to clinical mammograms. Mutual information orig-
inating from information theory was used as an evaluation
measure for selection of an optimal wavelet basis function.
We examined the performance of the proposed method by
comparing it with the conventional undecimated discrete
wavelet transform (UDWT) method in terms of processing
time-consuming and image quality. Our results showed that
with the use of the proposed method the computation time
can be reduced to approximately 1/10 of the conventional
UDWT method consumed. The results of visual assessment
indicated that the images processed with the proposed
UDWT method showed statistically significant superior im-
age quality over those processed with the conventional
UDWT method. Our research results demonstrate the supe-
riority and effectiveness of the proposed approach.

Keywords Medical imaging . Mammograms .Wavelet
transform . Image quality . Denoising

Introduction

Breast cancer is one of the leading causes for cancer mor-
tality among women and continues to be a significant public
health problem in the world [1, 2]. Mammography is one of
the most effective and reliable methods for early breast
cancer detection [3–6]. However, mammography is still far
from being ideal, with its sensitivity only ranging from 70 %
to 90 % [7]. The clinical significance of early breast cancer
diagnosis and a clear need to reduce false–negative rate of
screening mammography have motivated the development
of computer-aided detection (CADe) systems for decision
support [8–17]. These systems typically involve a series of
steps; first applying a variety of image preprocessing to
reduce the noise and/or to enhance suspicious structures in
the image and then using morphological and textural anal-
ysis to better differentiate these structure between true pos-
itives and false positives. Thus image preprocessing plays a
key role in extracting the characteristic features of images to
implement CADe system classification. The main image
processing techniques applied for mammography could be
used to smooth noise, equalize systematic variations in
density or gray level, and enhance local contrast and sharp-
ness of calcifications. Image processing has indeed been
suggested as a way to improve performance of digital mam-
mography [18, 19].

Noise removal is one of the most common and important
processing steps in CADe systems for mammography. Be-
cause of its importance, there has been an enormous amount
of research dedicated to the subject of noise removal and
many methods have been proposed [20–33]. Several
approaches have been proposed with the use of discrete
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wavelet transform (DWT) [30, 31, 34, 35]. The DWT is very
efficient from the computational point of view, but it is shift
variant. Thus its denoising performance can change drasti-
cally if the starting position of the signal is shifted. In order
to achieve the shift invariance and to get more complete
characteristic of the analyzed signal, the undecimated DWT
(UDWT) has been proposed [36–39]. Mencattini et al. de-
veloped methods for the reduction of noise in mammo-
graphic images, based on UDWT using subband noise
variance computation both for homoscedastic and hetero-
scedastic noise [40, 41]. The reported methods were robust
and effective. But, the methods were not advantageous from
computational aspects. Zhao et al. proposed an image
denoising based on Gaussian and non-Gaussian distribution
assumption for wavelet coefficients [42]. Huang et al.
reported a denoising method by selecting the thresholds
for denoising directly by evaluating some statistical proper-
ties of the noise [43]. Unfortunately, the assumption of a
signal-independent, Gaussian, and homoscedastic noise may
appear not suitable for medical images.

In the present study, we presented a modified UDWT
approach to mammographic denoising both for improving
image quality and for decreasing image processing time-
consuming. The main features of the proposed method
include the incorporation of the use of hierarchical correla-
tion of the coefficients of the UDWT and iterative use of
undecimated multi-directional wavelet transforms at two
consecutive levels.

In this paper, we firstly conducted computer simulations
for selection of an optimal wavelet basis function to perform
wavelet analysis. In this simulation study, mutual informa-
tion originating from information theory was used as an
evaluation metric for the selection. After determination of
an optimal wavelet basis function, we applied the proposed
approach to 30 clinical mammograms for image denoising.
We compared our results with those obtained from the
conventional UDWT method. The validity of the proposed
approach was verified by perceptual evaluation.

Materials and Methods

Undecimated Discrete Wavelet Transform Method

TheUDWThas been discovered for various purposes and under
different names, e.g., the shift/translation invariant wavelet
transform, the stationary wavelet transform, or the redundant
wavelet transform [39, 44]. The key point is that it is redundant,
shift invariant, linear, and it gives a better approximation to the
continuous wavelet transform than the approximation provided
by the orthonormal discrete wavelet transform. Unlike the
DWT, the UDWT does not incorporate the down sampling

operations. Thus, the approximation coefficients (low-frequency
coefficients) and detailed coefficients (high-frequency coeffi-
cients) at each level are the same length as the original signal.

The basic algorithm of the conventional UDWT is that it
applies the transform at each point of the image and saves the
detailed coefficients and uses the approximation coefficients
for the next level. The size of the coefficients array does not
diminish from level to level [36]. This decomposition is
further iterated up to level 4. After computing the UDWT of
the image, thresholding of the detailed coefficients at all levels
using VisuShrink technique [45] is performed by applying the
universal threshold proposed by Donoho and Johnstone [46].
The wavelet coefficients are subjected to soft thresholding,

with threshold given by t ¼ σ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logðnÞp

, where σ is the
standard deviation of the noise at level 1 and n is the size of the
coefficient arrays [47]. The wavelet basis function used here
was Daubechies order 2 (db2). The inverse UDWT is then
computed to obtain the denoised image.

Proposed Method

Figure 1 shows the flowchart of our proposed method. The
main steps are outlined below:

1) Apply the UDWT to the original image to produce
wavelet coefficients up to level 2.

2) Compute the hierarchical correlations of the detailed
coefficients (subbands) between level 1 and level 2 for
the three different (horizontal, vertical, and diagonal)
subbands, respectively. The hierarchical correlations for
the three detailed subbands are given by:

Coeflev 1 p; qð ÞðHÞ;ðV Þ;ðDÞ � Coeflev 2 p; qð ÞðHÞ;ðV Þ;ðDÞ
��� ���

ð1Þ
where p and q are the new coordinates after wavelet
transform. Coeflev_1 and Coeflev_2 are wavelet coeffi-
cients of level 1 and 2. H, V, and D denote horizontal,
vertical, and diagonal subbands, respectively.

3) Determine threshold values for each detailed subband
based on the obtained hierarchical correlation values.
The determination procedure is as follows:

(a) Generate a correlation image ImgCor (p,q) for each
detailed subband:

Im gCor p; qð ÞðHÞ;ðV Þ;ðDÞ ¼ jCoeflev 1 p; qð ÞðHÞ;ðV Þ;ðDÞ

� Coeflev 2 p; qð ÞðHÞ;ðV Þ;ðDÞj
ð2Þ

(b) Find themaximum value in each row in the horizontal
(x) direction of the obtained correlation image for
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each of the three detailed subbands, that is, high-
frequency horizontal, vertical, and diagonal subbands.

(c) Calculate the mean of the maximum values obtained
from all rows in the x direction of the correlation
image. The mean is denoted by Meanmax.

(d) Exclude those correlation values greater than
0.8×Meanmax. These excluded values are con-
sidered signal data. The value of 0.8 was de-
termined empirically through experimentation.

(e) Calculate the standard deviation σ from the
remaining correlation values.

(f) Determine the threshold value by using the
formula:

THR ¼ 1:6� σ ð3Þ

The value of 1.6 was determined empirically
through experimentation.

4) Apply the determined threshold values to the correla-
tion values:

New Coeflev 1 p; qð Þ ¼
Coeflev 1 p; qð Þ; if Coeflev 1 p; qð Þ � Coeflev 2 p; qð Þj j � THR

0; otherwise

( )
; ð4Þ

where New Coeflev 1 p; qð Þ is the newly obtained, modified
coefficient for level 1. The modified coefficients of the
horizontal, vertical, and diagonal subbands are respectively
obtained. It should be noted that the threshold operation was
only applied to the detailed components. The approximation
component remains unchanged.

5) Apply inverse wavelet transform to reconstruct
denoised image based on the approximation coeffi-
cients of level 1 and the three modified, detailed
coefficients of level 1.

6) Repeat steps 1–5 one time to further remove the
noise and lead to obtain a final denoised image.

Fig. 1 Flow chart of the
proposed method
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The major differences between the proposed UDWT
method and the conventional UDWT method are as
follows. First, the conventional UDWT decomposed
the original image (level 0) into one low-frequency
band (low-low band; approximation coefficients) and
three high-frequency bands (low–high, high–low, and
high–high bands; detailed coefficients) for each resolu-
tion level with the same size as the original image. The
decompositions are usually conducted up to resolution
level 4. In contrast, the proposed UDWT method only
needs to perform the computation up to resolution level
2 and repeat the computation one time. Second, the
conventional UDWT thresholded the detailed coeffi-
cients at all 4 levels with the same thresholding value,
while the proposed method utilized the hierarchical cor-
relation of the coefficients between the level 1 and level
2 of the three detailed coefficients for thresholdings.
That is, the thresholding values were various and de-
pendent on the nature of the noise.

Computer Simulated Images

Computer simulated images were designed and used for
selection of wavelet basis functions. The design framework
is as follows. A simulated image g(x,y) was given by a
spatial convolution between a uniform-distributed signal
(an object) f(x,y) having intrinsic noise u(x,y) and a blurring
function B. If the external noise v(x,y) was also taken into
consideration, the resulting image could be represented by
the following formula:

g x; yð Þ ¼
X8
s¼1

s� f x; yð Þ þ u x; yð Þ �W½ � � Bþ v x; yð Þ � Kf g;

ð5Þ
where the symbol * represents the convolution operation
and s is an integer representing the number of strips of the
simulated image. The terms of W and K are weighting
coefficients used to adjust noise level [48, 49].

In the simulation studies, the input image f(x,y) consisted
of 8 stripes with different width. The u(x,y) and the v(x,y)
were Poission noise and Gaussian noise, respectively. We
used an “m×m” (m is an odd integer) averaging filter as the

blurring function. The extent of blurring was adjusted by
varying the filter size. Figure 2 shows two simulated images
with different resolution, contrast and noise levels. The
simulated images were regarded as different thickness of
fibers, which realistically depicts one of the major signs of
breast cancer in a mammogram.

Selection of Wavelet Basis Functions

We evaluated six different wavelet basis functions,
namely, discrete FIR approximation of Meyer wavelet
(dmey), Daubechies order 2 (db2), Symlets order 7
(sym7), Coiflets order 1 (coif1), Coiflets order 5
(coif5), and biorthogonal 6.8 (bior6.8), as candidates
for selection as the most suitable basis function for the
UDWT used in this study. The reason for pre-selecting
the mentioned 6 basis functions was because they are
comparatively popular wavelet basis functions used in
the analysis of signals and images [50].

Mutual Information

In this work, we employed mutual information (MI) as a
metric of image quality [48, 51] for selecting a suitable
wavelet basis function to be incorporated in the proposed
method. MI is used to express the amount of information
that an output image contains about an input object. The
more the MI value provides, the better the image quality is
[48]. Therefore, the overall quality of an image can be
quantitatively evaluated by measuring MI.

We briefly describe the theoretical framework utilized in
this work for image quality assessment. A more detailed
explanation of the theoretical constructs can be found in
Refs. [48] and [51].

If a set of events a1, a2….. am whose probabilities are
given by {p1, p2,…….pm}, then the Shannon entropy H can
be expressed as

H P1;P2; ::::Pmð Þ ¼ �
Xm
i¼1

Pilog2Pi: ð6Þ

Here, we consider that x and y as two random variables
corresponding to an input variable and an output variable,

Fig. 2 Two computer-
simulated images. a Image with
higher contrast and lower noise
level. b Image with lower con-
trast and higher noise level
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respectively. In this case, the entropy for the input and
that for the output can be denoted as H(x) and H(y),
respectively. Then the mutual information, MI(x;y) , can
be defined as follows:

MI x; yð Þ ¼ HðxÞ � HyðxÞ ¼ HðyÞ � HxðyÞ
¼ HðxÞ þ HðyÞ � H x; yð Þ; ð7Þ

where H(x,y) is the joint entropy, and Hx(y) and Hy(x)
are conditional entropies.

Consider an experiment in which every input has a
unique output belonging to one of the various output cate-
gories. In this work, the inputs are considered to be a set of
subjects—for example, a test sample object with steps of
various thickness—whereas the outputs may be their
corresponding images with various optical densities or gray
levels. As shown in Eq. 7, MI carries the amount of infor-
mation that output y has about input x.

If the output is identical to the input, then knowing
the output provides complete information about the input.
In this case, MI is maximized and equal to the input
entropy, and the uncertainty of the input is reduced to 0.
This means that knowing (or viewing) the image of an

object (subject) receives complete information about the
object (subject). Thus, the quality of the obtained image
reaches to a maximum value in terms of MI. If, on the
other hand, the output and the input are independent,
then knowing the output does not help make any con-
clusions about the input. In this case, the MI value is
zero, and therefore, the uncertainty about the input
remains unchanged. This means that the obtained image
has the lowest quality from the point of view of MI.

Image Dataset

Mammograms were obtained from the data base of the Japa-
nese Society ofMedical Imaging Technology [52]. The original
screen-film mammograms were collected from several medical
institutions and they were digitized using a film digitizer with a
pixel size of 100×100μm and 10-bit gray-level resolution. The
size of each imagewas 2,510×2,000 pixels. A region of interest
with a fixed size of 200×200 pixels was manually selected. A
total of 30 mammograms (14 normal cases and 16 abnormal
cases) obtained from the database were used for investigation
of the effectiveness of the proposed method.

Table 1 Comparison of three
image quality measurements of 6
different wavelet basis functions
for simulated noisy images

MI: mutual information, MSE:
mean square error, SNR: signal
to noise ratio

Image quality measurement Wavelet basis function

dmey db2 sym7 coif1 coif5 bior6.8

MI (bit) 0.68 0.81 0.72 0.79 0.69 0.72

MSE 58.43 50.20 55.87 51.01 57.1 55.51

SNR (dB) 27.93 29.10 28.21 28.93 28.04 28.29

Fig. 3 An example showing images and plots of the three detailed coefficients. a Vertical, b horizontal, and c diagonal coefficients
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Visual Evaluation

The obtained 30 mammograms were processed using both the
proposedUDWTand the conventional UDWTmethods. Thus, a
total of 90 images including the original images were used for
image quality valuation. In this study, Scheffe’s method of paired
comparison was employed for visual performance analysis [53,
54]. The visual evaluation was conducted by seven experi-
enced radiological technologists (ranging from 15 to 25 years
of experience). All images were evaluated on a pair of popular
medical 3M monochrome liquid-crystal display (LCD) mon-
itors (2,048×1,536 matrix, 700:1 contrast ratio, Mediotto,
Nagano, Japan). To assure a consistent image on the monitors,
all displays were calibrated to comply with the Digital Imag-
ing and Communications in Medicine (DICOM) part 14:
Grayscale Standard Display Function. Each observer
reviewed the images independently. The reading time was
limited to less than 20 s for each reading. The observers
independently evaluated one pair of images, which were
shown on the monitors at a time, using a 5-point grading scale
(−2 points to +2 points). If the image shown on the left is
much better than that shown on the right in terms of overall
image quality, the left image is given +2 points; the left image
is given +1 point when it is slightly better than the right one;
the left image is given 0 point, when both images show the
same image quality. In contrast, if the image shown on the left
is much poorer than that shown on the right in terms of overall
image quality, the left image is given −2 points; the left image is
given −1 point when it is slightly poorer than the right one.
Comparisons were made by use of three possible combinations,
that is, original/conventional UDWT, original/proposedUDWT,

and conventional UDWT/proposed UDWTcombinations. Each
pair of images was determined randomly. Also, the two separate
images (left side vs. right side) were arranged on a random basis.

Results

Selection of Wavelet Basis Functions

The quality of the UDWT-processed simulated images was
quantitatively assessed by use of the MI metric. We also
employed two commonly used measurement parameters,
mean square error (MSE), and signal to noise ratio (SNR)
for comparison. In medical imaging, MSE is frequently used
as a metric to evaluate the difference between a reference
image and a noisy image or a processed image. The pro-
cessed image with minimum MSE indicates that the image-
processing method is the best. As it is seen, MSE needs two
images for the calculation. In the present simulation studies,
we used a noise-free simulated image as the reference im-
age. As is well-known that a higher SNR value means that
the signal strength is stronger in relation to the noise levels,
thus the higher the SNR value the better the quality of the
image is. Results for the simulated noisy images processed
by the 6 wavelet basis functions are presented in Table 1. It
is obvious from the table that the wavelet-processed image
with db2 basis function gave the best result among the 6
basis functions in all three quality metrics. Thus, we selected
db2 basis function for the proposed method.

Figure 3 shows an example of processing procedure of the
proposed method for the simulated noisy images. Figure 3a–c

Fig. 4 Example of simulated
noisy images before and after
denoising. a Original simulated
noisy image. b Image processed
by the proposed UDWT method

Table 2 Comparison of three
image quality measurements for
the simulated noisy images be-
fore and after image processing

MI: mutual information, MSE:
mean square error, SNR: signal
to noise ratio

Image quality Original simulated Proposed UDWT- Conventional UDWT-
measurement noisy image processed image processed image

MI (bit) 0.40 0.81 0.56

MSE 130.37 50.20 76.66

SNR (dB) 24.10 29.10 25.59
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illustrates the in-progress status of the process for the vertical,
horizontal and diagonal wavelet coefficients, respectively. For
example, shown on the left column of the top row of Fig. 3a is
the wavelet coefficients of subband at level 1 and on the right
column is the x-direction profile of the coefficient distribution
at the central pixels indicated on the image. Shown on the left
column of the middle row is the correlation image depicting
the correlation values between level 1 and level 2, and on the
right column is the x direction profile of the correlation values
at the central pixels indicated on the image. On the left column
of the bottom row shows the image obtained from the newly
modified coefficients of subbands at level 1 after performing

the first iteration of the processing of the proposedmethod and
shown on the right column corresponds to the x direction
profile of the coefficient distribution at the central pixels.
Similarly, Fig. 3b, c illustrates the in-progress status for the
horizontal and diagonal coefficients, respectively. Looking at
the initial coefficient distribution of level 1 (top row, left
column) and the modified coefficient distribution (bottom
row, right column) for each of the three detailed coefficients,
it is obvious that the noise has been substantially removed.

Figure 4 shows an example of the simulated noisy images
before and after applying the proposed image-processing
method to the original noisy simulated images. Results of

Fig. 5 Four examples of
processing results for image
denoising. a Original
mammograms, b images
processed with proposed
UDWT method, and c images
processed with conventional
UDWT method. Shown at the
first and second rows are two
abnormal cases and shown at
the third and fourth rows are
two normal cases
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quantitative assessment using the three measurement param-
eters are shown in Table 2. It is obvious from the three
quality metrics shown in the table that the use of the pro-
posed method significantly improved image quality in terms
of noise.

Clinical Applications

Figure 5 illustrates four examples (enlarged parts) of
processing results for image denoising. Shown on the
left, middle, and right columns are original images,
images processed with the proposed UDWT method,
and images processed with the conventional UDWT
method, respectively. Shown at the first and second
rows are two abnormal cases and shown at the third
and fourth rows are two normal cases.

An example of the results of applying the proposed method
is shown in Fig. 6. Figure 6a, b is the original and the
processed images, respectively. Perceptually, the processed
image is less noisy. Figure 6c is the vertical wavelet coefficient

of the subband at level 1, and Fig. 6d is the profile of the
coefficient distribution traced from the line indicated on the
image (Fig. 6c). Figure 6e shows the new coefficients of the
subband at level 1 after performing the second iteration of the
processing of the proposed method and Fig. 6f illustrates the
profile of the coefficient distribution traced from the line
indicated on the image (Fig. 6e). In comparison of the coeffi-
cient distributions shown in Fig. 6d, f, it is found that the noise
has been significantly reduced. This demonstrates the effec-
tiveness of our proposed method.

Visual Evaluation

The results of scoring for the three combinations by the
seven observers are listed in Table 3. As described earlier,
if the left image of the paired images (two-image combina-
tion) is poorer than the right image, the score obtained is a
negative. From the preference scores shown on the right-
most column of Table 3, the images processed by the pro-
posed UDWT method had the best quality. Figure 7

Fig. 6 An example showing
images and plots of the detailed
(vertical) coefficients. a
Original image, b proposed-
UDWT processed image, c
vertical wavelet coefficient of
the subband at level 1, d profile
of the coefficient distribution
traced from the line indicated in
c, e new coefficients of the
subbands at level 1, and f pro-
file of the coefficient distribu-
tion traced from the line
indicated in e
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illustrates visual evaluation results using Scheffe’s method
of paired comparisons. The results are depicted by a prefer-
ence ranking map for the three image groups, i.e., original,
conventional UDWT-processed, and proposed UDWT-
processed image groups. The figures shown on the horizon-
tal line of the map are average preference degrees of the
three groups. The average preference degrees were obtained
from the average main effects by use of the data shown in
Table 3. The images processed by the proposed UDWT-
method shows the highest ranking, followed by the conven-
tional UDWT-method processed and the original images. A
two-tailed F test was used to measure statistical signifi-
cance. The differences between the proposed UDWT-
method processed images and the conventional UDWT-
method processed images were statistically significant (P<
0.01). The differences between the conventional UDWT-
method processed images and the original images were
statistically significant (P<0.05), but there was no signifi-
cant results with P<0.01.

Discussion

In the current study, we aimed to present a denoising method
based on the UDWT for mammograms. By using our pro-
posed UDWT technique, the computation time can be re-
duced to 2 s (personal computer, DELL, OPTIPLEX 960),
approximately 1/10 of the computing time compared to the
conventional UDWT method. The reason for enabling re-
duction of processing time lies in the following fact: in the
conventional UDWT method, the decomposition and com-
position processes are usually conducted up to resolution
level 4. That is, the method needs to process a total of 12
images (3 detailed coefficients for each of the 4-resolution
levels) for wavelet transforms and inverse transforms and it
results in time consuming. In contrast, the proposed UDWT
method only needs to perform the process up to resolution

level 2 and repeat the calculation one time. Therefore, only 6
images (3 detailed coefficients for each of the 2-resolution
levels) were required for processing. As a result, the com-
puting time using the proposed can be much reduced.

The proposed method computed the hierarchical correla-
tion of the coefficient between the consecutive levels. The
correlation value will become greater, if the coefficients are
signal components. On the contrary, the correlation value
becomes smaller, if the coefficients are noise components.
Thus the discrimination between signal and noise becomes
easier and more accurately as compared to the conventional
UDWT method. As a result, an image with better quality
could be obtained by use of the proposed method as com-
pared to the conventional method.

We also conducted a visual evaluation experiment for the
computer simulated images. The preference ranking was in
the order of the proposed UDWT, conventional UDWT, and
original simulated noisy image. The differences among the
three images were statistically significant (P<0.01). The
results of preference ranking were consistent with the clin-
ical applications for mammograms.

In this study, we used MI as a physical measure of image
quality. We also compared evaluation results in terms of MI
against those in terms of MSE and SNR conventionally used
for noise characterization. The results of the three measures
were well consistent. It demonstrated the potential usefulness
of the MI metric for image quality assessment.

This work has several limitations. First, in the simulation
study, we used simulated noisy images presenting structural
fibers on mammograms. However, typical breast patholo-
gies are fibers (or fibrils), microcalcifications (or specks),
and nodules (or masses). Therefore, further simulation stud-
ies that contain specks and masses on a phantom image are
necessary. Second, the values shown in Eqs. 2 and 3 used in
the procedure for determination of threshold value were
empirically selected. A method for automated determination
is desirable. Finally, we only took six wavelet basis

Fig. 7 Preference ranking map
for the three image groups:
original, conventional UDWT-
processed, proposed UDWT-
processed mammograms

Table 3 Results of scoring for
the three combinations by the
seven observers

C-UDWT: conventional undeci-
mated discrete wavelet transform

P-UDWT: proposed undeci-
mated discrete wavelet transform

Combination Observer

A B C D E F G Sum

Original /C- UDWT −1.2 −1.5 −1.0 −1.0 −1.2 −1.0 −1.0 −7.0

Original / P-UDWT −2.0 −1.0 1.0 −0.2 −1.0 −1.0 −0.2 −4.4

C-UDWT /P- UDWT −2.0 −2.0 −1.0 −1.8 −2.0 −1.0 −1.5 −12.0
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functions into comparison. It may be possible to find a more
suitable basis function than db2 basis function for the pro-
posed UDWT method, if more basis functions are included
for comparison. It was also noted that choice of wavelet
basis function depends on the applications we use. Thus, the
db2 basis function giving the best result is only limited to
the present study.

Future work will focus on the combination of the pro-
posed method with contrast enhancement method for further
improvement in image quality of mammograms.

Conclusion

In this study, we presented an effective denoising method
for reduction of the noise in mammographic images. The
strength of the method was that we used hierarchical corre-
lation of the coefficients of UDWT, together with iterative
use of UDWT at adjacent levels 1 and 2. The advantage of
the proposed method was that the algorithm is simple, fast,
and gives better visual quality results. We examined the
performance of the proposed method by comparing it with
the conventional UDWT method in terms of processing
time-consuming and image quality. Our results showed that
the computation time can be reduced to less than 2 s (speed-
up of factor 10) by using our proposed method. The results
of visual assessment indicated that the images processed
with the proposed UDWT method showed statistically sig-
nificant superior image quality over those processed with
the conventional UDWT method. Our research results dem-
onstrated the superiority and effectiveness of the proposed
approach. We used mutual information as an evaluation
measure for selection of wavelet basis function. The assess-
ment results were consistent with those measured with MSE
and SNR. The results demonstrated the potential usefulness
of mutual information served as an image quality metric.
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