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Abstract In this paper, we propose a novel method for
segmentation of the left ventricle, right ventricle, and myo-
cardium from cine cardiac magnetic resonance images of the
STACOM database. Our method incorporates prior shape
information in a graph cut framework to achieve segmenta-
tion. Poor edge information and large within-patient shape
variation of the different parts necessitates the inclusion of
prior shape information. But large interpatient shape vari-
ability makes it difficult to have a generalized shape model.
Therefore, for every dataset the shape prior is chosen as a
single image clearly showing the different parts. Prior shape
information is obtained from a combination of distance
functions and orientation angle histograms of each pixel
relative to the prior shape. To account for shape changes,
pixels near the boundary are allowed to change their labels
by appropriate formulation of the penalty and smoothness
costs. Our method consists of two stages. In the first stage,
segmentation is performed using only intensity information
which is the starting point for the second stage combining
intensity and shape information to get the final segmenta-
tion. Experimental results on different subsets of 30 real
patient datasets show higher segmentation accuracy in using
shape information and our method's superior performance
over other competing methods.
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Introduction

Cardiovascular diseases are the leading cause of death in the
Western world [1]. Diagnosis and treatment of these pathol-
ogies relies on numerous imaging modalities like echogra-
phy, computed tomography (CT), coronary angiography,
and magnetic resonance imaging (MRI). Noninvasive tech-
nique like MRI has emerged as a popular diagnostic tool for
physicians to observe the behavior of the heart. It also gives
reliable information on morphology, muscle perfusion, tis-
sue viability, and blood flow. These parameters are obtained
by segmenting the left ventricle (LV) and right ventricle
(RV) from cardiac magnetic resonance (MR) images.

Manual segmentation is tedious and prone to intra- and
interobserver variability. This has necessitated the develop-
ment of automated/semiautomated segmentation algorithms.
An exhaustive review of medical image segmentation algo-
rithms can be found in Frangi et al. [2], while an excellent
review of cardiac LV segmentation algorithms is given in
Petitjean and Dacher [3]. While there are many methods for
LV segmentation, the RV has not received so much attention
[3] because of: (1) its complex crescent shape; (2) lower
pressure to eject blood; (3) thinner structure than LV; and (4)
less critical function than LV. However, Shors et al. [4] show
that MR imaging also provides an accurate quantification of
RV mass.

Most cardiac MRI images show poor contrast between
LV blood pool and myocardium wall, thus giving minimal
edge information. This, in addition to similar intensity dis-
tributions in different regions, makes segmentation of the
LV a very challenging task when using only low level
information (e.g., intensity, gradient, etc). RV segmentation
poses challenges because of their reduced wall thickness in
MR images and shape variations. In such a scenario, inclu-
sion of prior shape information assumes immense signifi-
cance in LV and RV segmentations. We propose a graph-cut-
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based method to segment the LV blood pool, RV, and
myocardium from cine cardiac image sequences using dis-
tance functions and orientation histograms for prior shape
information.

Over the years, many methods have addressed the prob-
lem of LV segmentation from cardiac sequences. Some of
the approaches aim at coronary tree analysis [5—7], late
enhancement detection [8, 9], and analysis of time intensity
curves [10, 11]. These methods use low-level information
from the data without incorporating prior knowledge.
Statistical shape models have also been used extensively
for LV segmentation [2]. Perperidis et al. proposed a four-
dimensional (4D) model by including temporal information
[12]. Besbes et al. [13] used a control point representation of
the LV prior and other images were deformed to match the
shape prior. Shape knowledge has also been combined with
dynamic information to account for cardiac shape variability
[14, 15]. Zhu et al. [14] use a subject specific dynamic
model that handles intersubject variability and temporal
dynamics (intrasubject) variability simultaneously. A recur-
sive Bayesian framework is then used for segmenting each
frame. In Sun et al. [15], the ardiac dynamics is learnt by
using a second order dynamic model. Davies et al. [16]
propose a method to automatically extract a set of optimal
landmarks using the minimum description length (MDL).
But it is not clear whether the landmarks thus extracted are
optimal in the sense of anatomical correspondence.

Shape models are generally unable to capture variability
outside the training set. Kaus et al. [17] combine a statistical
model with coupled mesh surfaces for segmentation.
However, their assumption that the heart is located in the
center of the image is not always valid. In Jolly et al. [18], a
LV blood pool localization approach is proposed which acts
as an initialization for LV segmentation. A 4D probabilistic
atlas of the heart and 3D intensity template was used in
Lorenzo-Valdes et al. [19] to localize the LV. Many other
methods have been proposed that segment the LV from
short-axis images [20-22], multiple views [23, 24], and
using registration information [25, 26]. Paragios [21] uses
prior shape information in an active contour framework for
segmenting the LV. Mitchell et al. [27] use a multistage
active appearance model to segment LV and RV. Some of
the works on LV segmentation also show results for RV
segmentation. These include image-based approaches like
thresholding [28-30], pixel classification approaches [31,
32], deformable models [33-36], active appearance models
[27, 37], and atlas based methods [19, 23, 38].

Previous works on segmentation using shape priors in-
clude, among others, active contours [21, 39], Bayesian
approaches [40], and graph cuts [41-43]. Graph cuts have
the advantage of being fast, give globally optimal results,
and are not sensitive to initialization, while active contours
are sensitive to initialization and can get trapped in local
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minima. Shape information in graphs is based on interaction
between graph nodes (or image pixels) and interpixel inter-
action is generally limited to the immediate neighborhood
although graph cuts can also handle more complex neigh-
borhoods [44]. Therefore prior shape models assume great
significance. The first works to use prior shape information
in graph cuts were [41, 42]. In Freedman and Zhang [41],
the zero-level set function of a shape template of natural and
medical images was used as the shape prior with the
smoothness term. The smoothness term favors a segmenta-
tion close to the prior shape. Slabaugh et al. [42] used an
elliptical shape prior, under the assumption that many
objects can be modeled as ellipses. They then employ many
iterations where a preinitialized binary mask is updated to
get the final segmentation. Vu et al. [45] use a discrete
version of shape distance functions to segment multiple
objects, which can be cumbersome. A flux-maximization
approach was used in Chittajallu et al. [46] to include prior
shape information, while in Veksler [47], the smoothness
cost was modified to include star shape priors. A graph cut
method using parametric shape priors for segmenting the LV
was given in Zhu-Jacquot and Zabih [48], while Ben Ayed
et al. [49] employ a discrete distribution-matching energy. In
other methods, Ali et al. [50] construct a shape prior with a
certain degree of variability and use it to segment DCE-MR
kidney images.

The above methods using graph cuts generally use a large
amount of training data or assume that the prior shape is
simplistic. We propose a method that has the capability to
handle different shapes and uses a single image to get the
shape prior, thus overcoming the constraints of the other
methods. The novelties of our work are twofold. First, we
determine the shape penalty based on a combination of dis-
tance functions and distribution of orientation angles between
apixel and edge points on the prior shape. Second, our method
uses a single image from each dataset to get prior shape
information and is flexible enough to be used on different
datasets. Appropriate energy terms are formulated to assign
correct labels to pixels near the prior boundary where defor-
mation is observed. In “Materials and Methods,” we describe
our method in greater detail. “Experiments and Results”
presents results of our experiments on real datasets, and we
list our conclusions in “Conclusions.”

Materials and Methods

Importance of Shape Information

Automatic segmentation of the LV in cine MR poses the
following challenges: (1) the overlap between the intensity

distributions of different regions of the heart; (2) the lack of
edge information due to poor spatial contrast; (3) the shape
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variability of the endocardial and epicardial contours across
slices; and (4) the intersubject variability of the above fac-
tors. RV segmentation poses challenges because of their
reduced wall thickness in MR images and shape variations.
Consequently, relying only on intensity information is
bound to give inaccurate segmentation results. This requires
use of some high-level information like prior shape infor-
mation. But due to large intersubject variability, it is difficult
to have a generalized shape model for all patients. To
overcome this challenge, we propose to have a shape prior
for each dataset which can easily be constructed. However,
it is fairly common to observe large shape changes of the
endocardium between images from the initial and later
stages of cine MRI. Therefore, the cost function should be
formulated in a manner that it can handle the large changes
in shape. Our proposed method is based on this approach,
i.e., to construct a simple prior shape model for each patient
dataset and adapt it to handle the shape variations observed
in a cine MR sequence.

We use a second-order Markov random field (MRF)
energy function for our method. MRFs are suitable for
discrete labeling problems (i.e., the solution is defined as a
set of discrete labels) and enable us to include context-
dependent information. Context-dependent information
allows us to impose additional constraints such that neigh-
boring pixels take similar labels and a smooth solution is
favored. For two class image segmentation, the labels are
object or background, and smoothness constraints minimize
isolated outlier segmentations. Graph cuts can find the glob-
ally optimal solution for specific formulations of binary-
labeled MRF binary functions [44]. The energy function of
a second-order MRF is given as

E(L) = ZSEP D(LS) +4 Z(S.t)EN V(LS’ Lt) (1)

where P denotes the set of pixels, L, denotes label of pixel s
€ P, and N is the set of neighboring pixel pairs. The labels
denote the segmentation class of a pixel (0 for background
and 1 for object). The labels of the entire set of pixels are
denoted by L. D(L;), is a unary data penalty function derived
from observed data and measures how well label L fits
pixel s. V' is a pairwise interaction potential that imposes
smoothness and measures the cost of assigning labels L; and
L, to neighboring pixels s and #. A is a weight that determines
the relative contribution of the two terms. Note that both D
and ¥ consist of two terms, each incorporating intensity and
shape information.

Overview of Our Method We describe our method in terms
of LV segmentation but it can be easily extended for RV
segmentation. Our method consists of the following steps to
segment the LV in a new image: (1) manually identify a
small region inside and outside the LV. These regions give

the reference intensity histograms of object and background.
(2) Segment the image using only intensity information. The
obtained segmentation is used to update the intensity
distributions of object and background. This initial seg-
mentation need not be optimal; and 3) incorporate shape
information in D and V to get the final segmentation.
Before segmentation, the image sequence is corrected
for any rotation or translation motion using the method
in Mahapatra and Sun [51].

For every dataset, the shape prior is the first image of the
sequence. Using this prior, we segment the second image of
the sequence. The segmentation of the second image acts as
the prior shape for segmenting the third image of the se-
quence and so on. This approach is necessary to account for
the large degree of shape change of the LV due to its
contraction (and subsequent expansion). If we use the shape
prior of the first image to segment the third (or later) images,
the magnitude of shape change is too large for an accurate
segmentation. We shall first explain our method for two
class segmentation and then extend it to multiclass
segmentation.

Intensity Information

First, we manually identify image patches on the LV
and background. The distribution of pixel intensities
within the identified areas helps to determine a pixel's
penalty for each label. Patches from the LV and RV
belonging to training images show the intensity distri-
butions follow a Gaussian. Figure lc shows distribu-
tions of a few example patches, each obtained from a
different patient. Since all of them are approximately
unimodal Gaussians, we model the intensity distribu-
tions as Gaussians, and for each segmentation label,
the mean and variance of intensities is estimated. The
intensity penalty D; is the negative log likelihood and
given as

Dy (LS) = —log Pr([s |Ls) (2)

where /; is the intensity at pixel s, Pr is the likelihood,
and L;=object/background is the label. The smoothness
term V,, assigns a low penalty at edge points based on
the intensity of neighboring pixel pairs, and favors a
piecewise constant segmentation result. It is defined as

X +, Ls 7& Lt
R (3)

(Ly—1,)?

Vi(Ls, L) = {g 20°

where o determines the intensity difference up to which
a region is considered as piecewise smooth. It is equal
to the average intensity difference in a neighborhood
and w.rt pixel s.|s—¢] is the Euclidean distance
between s and .
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Fig. 1 Illustration of shape prior segmentation using orientation infor-
mation. (a) Orientation histograms for a synthetic image showing the
different points outside and inside the shape; (b) reference cardiac
image with LV endocardium highlighted in yellow, epicardium in

Shape Information

Figure 1a shows an illustration of the reference shape as a
continuous circle and different points (4—F) inside and
outside the shape. We shall explain the significance of the
dotted line in LV segmentation later. Figure 1b shows the
reference image from a typical dataset with the LV endocar-
dium outlined in yellow and the epicardium outlined in
green. First, we explain how the shape prior is used to
segment the LV blood pool. Later, we extend our explana-
tion to the segmentation of both blood pool and
myocardium.

We define labels as background (label 0) and foreground
(label 1). For point 4 (Fig. 1 (a)), we calculate the signed
distance from the prior shape. We adopt the convention that
pixels within the prior shape have a positive distance while
pixels outside the prior have a negative distance. If the sign
indicates the pixel to be outside the prior then it is likely to
belong to the background and its penalty is defined as

Ds(Ly = 0) =0
DiELszlizK ()

Dy is the shape penalty and K is a variable which we shall
describe later. If the sign of the distance indicates the pixel
to be inside the prior, then it has greater probability of
belonging to the LV and its penalty is defined as

Ds(L; = 0) =K
Dol — 1) =0 (5)

The above formulations make the segmented shape very
similar to the reference shape. Cine cardiac images are
acquired without gating over different phases of the cardiac
cycle resulting in large degree of shape change of the LV. In
order to segment the deformed LV, we relax the constraints
on pixels near the prior’s boundary. Referring back to Fig. 1,
we observe that pixel 4 is nearer to the reference shape than
point B. We set a threshold normal distance of dth pixels
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green, and RV in blue; and (c¢) intensity distributions of the LV and
RV. We refer the reader to the online version for a better interpretation
of the figures

from the shape within which the LV may deform and allow
for a change in labels of pixels within this dth distance.
Pixels which fall within this area are equally likely to take a
particular label, and therefore have the same penalty.
Therefore,

Ds(Ly = 0/1) = K;d, < dth (6)

The above formulation indicates that both labels are
equally likely. d, refers to the distance of pixel s from the
shape. To determine dth, we adopt the following steps. After
rigid alignment, we choose seven datasets having manual
segmentations and calculate the Hausdorff distance (HD)
between LV contours of successive frames. The HD gives
a measure of shape variations, and the mean HD gives an
idea of the average shape change over consecutive frames. It
is observed that the maximum distance between LV con-
tours of successive frames is 5 pixels, and the average
distance is 3:5 pixels. Therefore, we set dth=5 pixels.
Note that for any point lying on the edge of the prior shape
d;=0. For most such edge points, the distribution of orienta-
tion angles may not be spread over four quadrants. But, since
ds=0, the penalty is assigned according to Eq. 5.

Another contribution of our work is the formulation of
the smoothness penalty based on the prior shape. For every
pixel, we calculate its distribution of orientation angles for
all points on the prior shape. This is called shape context
information and has been used for the purpose of shape
matching and classification [52]. Let the histogram of ori-
entation angles for point s with respect to the prior shape be
denoted as /. Similarly the corresponding histogram for
neighboring point ¢ is denoted as /,. The similarity between
two histograms s, ¢ is given by the x* metric as:

L=k [hy(k) — h(K)]
s, he| = 5 > e DCEVICE (7)

where k denotes the kth bin of the K-bin normalized histo-
grams. K=36 with 18 bins each positive and negative angle
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values (as the angle values are in the range (—180; 180)).
The 2 metric gives values between 0 and 1. Note that other
histogram similarity measures can be used (like
Bhattacharyya measure) without any significant change in
results. The smoothness cost due to prior shape information
is given as

VY(LS7LI> = 1 - ‘hsaht| (8)

In Belongie et al. [52], it has been demonstrated that the
above metric is robust to shape changes for the purpose of
shape matching. Our objective for the above formulation is
to check the similarity of a pair of neighboring points with
respect to shape information. Similar pixels s and ¢ will have
low value of 4, and /4, and the corresponding V is high.
Dissimilar neighboring pixels s and 7 will have high value of
hg and A, and the corresponding Vg is low. Thus, the above
formulation of Vg serves our desired purpose.

Definition of K

The variable K is defined as
K=1+max K =1+ maxep Z{s,t}eN Vi (Ls, Ly)
9)

The value of K will always be between 1 and 2. Referring
back to Egs. 4 and 5, we observe that the value of K should be
high compared with 0 (which is the penalty for the other label)
so that the pixel s has less probability of being assigned the
corresponding label. Moreover, the penalty should also be
more than the weights of the links between neighboring
pixels. The above formulation of K serves the purpose.

But pixels within d; distance of the prior shape are
allowed to change their labels and their final labels will
depend upon the values of VS(s;, 7). Considering this situa-
tion, the value of K should not be very high compared with
VS such that there is very limited scope for change of labels.
Considering all the above scenarios, we find that the current
formulation of K also achieves this objective. Another ad-
vantage of such a formulation is that it avoids the need for
assigning parameters on an ad hoc basis. The final cost
function defined as a combination of intensity and shape
information is

E(L) =", [Dy(L) +Dy(Ly)]

2D ew WilLs L) + Vi(Ls, L) (10)

Extension to Multiple Classes We describe our algorithm’s
extension to segmentation of blood pool and myocardium.
Consequently, its extension to RV segmentation is straight-
forward. Segmentation of the image into LV blood pool,
myocardium, and background requires three labels (0 for

background, 1 for myocardium (outside endoardium but
within epicardium), and 2 for blood pool (within endocar-
dium)). The intensity distribution is obtained by manually
identifying a small patch in the different regions. For shape
information, we define two prior shapes, one outlining the
blood pool (endocardium) and the other outlining the myo-
cardium (epicardium). The first stage for segmentation is
accomplished using intensity distribution similar to Eq. 2.
The difference is now we have three labels with each class
defined by its mean and variance.

Figure 1b shows contours of manual segmentation for the
epicardium, endocardium, and the RV. To include shape
information we have two reference shapes. Let us denote
the prior endocardium as shape 4 (continuous circle in
Fig.1a) and the epicardium as shape B (dotted circle in
Fig.1a). Any pixel within 4 is part of the endocardium,
pixels outside A but within B are part of the myocardium,
while pixels outside B belong to the background. Thus if
pixel s € 4 (s is within 4), the penalty is defined as

Ds(Ly =0) =K
Ds(Ly=1) =K (11)
Ds(Ly=2)=0

If pixel s ¢ A and s € B the penalty function is defined as

Ds(Ly =0) =K
Ds(L,=2) =K

If pixel s ¢ A and s ¢ B the penalty function is defined as

Dg(Ly=0)=0
Ds(Ly=1) =K (13)
Ds(Ly=2)=K

We also have to take into account the change in labels of
pixels near the shape boundary. For pixels near the bound-
ary of 4, it can take either label 1 or 2. Thus, the penalty for

such pixels is
Ds(Ls = 1/2) = K, d! «dth* (14)

d* refers to the distance of pixel s from 4 and dth* =5
pixels is the threshold distance for shape A. Likewise, pixels
near boundary of B will have labels either 0 or 1, and the
penalty is defined as

Ds(Ly = 0/1) = K, d® «dth® (15)

The shape smoothness cost VS is defined as in Eq. 8§,
where the distance is calculated from the nearest shape prior.

Optimization Using Graph Cuts

Pixels are represented as nodes on a graph which also
consists of a set of directed edges that connect two nodes.
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The edge weight between two neighboring nodes is the
smoothness term while the data penalty term is the edge
weight for links between nodes and label nodes (terminal
nodes). The optimum labeling set is obtained by severing
the edge links in such a manner that the cost of the cut is
minimum. The number of nodes is equal to the number of
pixels and the number of labels is equal to the number of
classes L. Details of graph construction and optimization
can be found in Boykov and Veksler [44].

Validation of Segmentation Accuracy

To quantify the segmentation accuracy of our method, we
use the dice metric (DM) [34] and HD. DM measures the
overlap between the segmentation obtained by our algo-
rithm and reference manual segmentation and is given by

B 2TP (16)
~ 2TP +FP +FN

DM gives values between 0 and 1. The higher the DM,
the better is the segmentation. Generally, DM values higher
than 0.80 indicate good segmentation for cardiac images
[34].

DM

HD The DM gives a measure of how much the actual manual
segmentation was recovered by the automatic segmentation.
But the boundaries of the segmented regions may be far apart.
The HD aims to measure the distance between the contours
corresponding to different segmentations.

We follow the definition of HD as given in Chalana and
Kim [53]. If two curves are represented as sets of points A=
{ay, as,...} and B={by,b,,...}, where each a; and b, is an
ordered pair of the x and y coordinates of a point on the
curve, the distance to the closest point (DCP) for a; to the
curve B is calculated. The HD is defined as the maximum of
the DCPs between the two curves [54]

HD = max (max;{d(a;, B)}, max;j{d(bj,A) }) (17)

Experiments and Results
Description of Datasets

We have tested our algorithm on 30 training datasets from
the STACOM 2011 4D LV Segmentation Challenge run by
the Cardiac Atlas Project [55]. Although there are 100
training datasets, none of them have manual segmentations
of the RV. Our radiologists manually segmented the RV in
30 of the datasets. All the data came from the Defibrillators
to Reduce Risk by Magnetic Resonance Imaging Evaluation
[56] cohort which consists of patients with coronary artery
disease and prior myocardium infarction. The data were
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acquired using steady-state free precession MR imaging
protocols with thickness of <10 mm, gap of <2 mm, TR of
30-50 ms, TE of 1:6 ms, flip angle of 60°, FOV of 360 mm,
and 256x256 image matrix. MRI parameters varied be-
tween cases, giving a heterogeneous mix of scanner types
and imaging parameters consistent with typical clinical
cases. The images consist of two to six LA slices and on
average 12 SA slices and 26 time frames. Possible breath-
hold related misalignments between different LA and SA
slices were corrected using the method of Elen et al. [57].
The ground truth images provided in this challenge were
defined by an expert using an interactive guide point mod-
eling segmentation algorithm [58].

The dataset was divided into training (15 patients) and
test (15 patients) data. The training and test data were
permuted to obtain 30 different groups such that each patient
data were part of the training and test data. The reported
results are the average of these 30 dataset groups. Automatic
segmentations were obtained using three methods: graph
cuts with intensity information alone (GC), our method
using shape priors with graph cuts (GCSP); and the method
in Lorenzo-Valdes et al. [19] (Metl). The automatic seg-
mentations were compared with manual segmentation using
DM and HD. For Metl, the same prior as our method was
used. For implementing Metl, we calculate the appearance
and location prior as described in their work, while for the
shape prior, we use the flux maximization and template
based star shape constraint only. We weight the different
components of the energy function to get the best segmen-
tation results for both Metl and GC.

Segmentation Results

Figure 2 shows frames from different acquisition stages of a
cine cardiac sequence along with the segmentation results of
the LV from different methods. The first row shows results
for GCSP followed by the results for GC (second row) and
Metl (third row). Each row shows three frames
corresponding to different acquisition stages. The manual
segmentations are shown as red contours. Inclusion of shape
information leads to a definite improvement in segmentation
results as the degree for mis-segmentation is highest for GC.
GC is expected to give poor results because it relies only on
intensity information. Among the two methods using shape
information, GCSP shows a clearly superior performance.
The areas of inaccurate segmentation for GC and Metl are
highlighted by yellow arrows.

Comparative quantitative assessment of segmentations
are made using different metrics like DM, HD, false-
positive rates (Fpr), and sensitivity (Sen). Table 1 shows
the DM and HD values for four methods, i.e., three methods
mentioned before and GCSP without VS (GCSP,,ys). Use
of shape priors significantly improves the segmentation
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Fig. 2 Segmentation results of
cine MRI using different
methods. The manual
segmentation is shown in red in
all images, and the results for
automatic segmentation are
shown in different colors. First
row shows result for GCSP,
second row shows results for
GC, and third row shows results
for Met. We refer the reader to
the online version for a better
interpretation of the figures

Table 1 Comparative performance of segmentation accuracy of cine
MRI using four methods and two metrics (DM and HD)

Myocardium LV blood pool RV

Dice metric (%)

GC 84.2+1.2 85.1+0.9 84.7+1.1
GCSP 91.6+0.9 91.7+1.1 92.2+1.2
GCSPyvs 90.1£1.0 89.3+1.3 88.2+1.1
Metl 89.8+1.3 88.5+0.7 88.0+1.1
Hausdorff distance (pixel)

GC 42+0.9 3.3+£0.5 3.5+0.6 (5.7)
GCSP 1.9+£0.3 1.8+0.4 2.0+0.3 (1.2)
GCSPyvs 2.4+0.4 2.3£0.3 2.8+0.3 (1.6)
Metl 2.540.3 2.2+0.3 2.4+0.3 (1.8)

The values show the average measures over all datasets. Values indi-
cate the mean and standard deviation. Entries enclosed in parentheses
indicate maximum HD values

DM dice metric, HD Hausdorff distance, LV left ventricle, RV right
ventricle, GC graph cut with intensity only, GCSP our method using
graph cuts and shape priors, GCSP,,s GCSP without VS, Met] meth-
od in Chittajallu et al. [46]

accuracy as intensity information alone is not sufficient for
LV segmentation in MR images. Our method shows highest
DM values and lowest HD, indicating that our approach of
using shape prior information in both penalty and smooth-
ness terms effectively accounts for shape changes due to
deformations and improves segmentation accuracy.
Furthermore, GCSP,,vs shows lower segmentation accuracy
than GCSP indicating that the importance of formulating a
smoothness cost based on shape information. A paired ¢ test
on the DM values of GCSP and GCSP,,ys gives p<0.01
indicating statistically significant results. The mean and
standard deviations for Sen and Fpr are shown in Fig. 3a,
b. The choice of prior shape also determines the value of the
different measures. If the other images of the dataset have a
deformation magnitude more than dth then the segmentation
accuracy decreases.

Except for Fpr and HD, higher values of other metrics
indicate better agreement with manual segmentation. All
metrics show that inclusion of shape information improves
segmentation accuracy significantly. For all methods using
prior shape information segmentation accuracy is similar for
images which do not exhibit large shape changes with
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Fig. 3 (a) Average sensitivity a

and (b) false-positive rates over J
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respect to the prior shape. However, for those datasets with
large shape changes (as shown in Fig. 2), GCSP performs
better than Metl. Paired ¢ tests on the DM values of GCSP

Fig. 4 Segmentation results for
different methods. Each row
shows results of different
patient datasets from the
STACOM database. Red
contour shows the manual
segmentations, and green
contours show results for
automatic segmentations.
Columns 1-3 show
segmentation outputs for GC,
Metl, and GCSP. We refer the
reader to the online version for
a better interpretation of the
figures
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and Metl give p<0.01 indicating statistically significant
results. Figure 4 shows segmentation results for RV and
LV. Segmentations for only two parts are shown for clarity.
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Table 2 Convergence time for each frame of a cine cardiac MRI using
different methods

Convergence time (s)

GC GCSP GCSPyvs Metl

4 11 9 6

GC graph cut with intensity only, GCSP our method using graph cuts
and shape priors, GCSP,, s GCSP without VS, Met!/ method in Chit-
tajallu et al. [46]

In these examples, GC (column 1) gives better results than
other patients because of fairly well defined intensity infor-
mation. Still our method performs better than others, high-
lighting its advantages over GC and Metl in various
scenarios.

The convergence time for each frame is shown in Table 2.
GCSP takes the maximum time due to two stages while
others have only one stage for segmentation. The time for
GCSP includes the selection of patches, calculating the
penalty values, and getting the final segmentation.

Conclusions

In this paper, we have proposed a novel shape prior seg-
mentation method using graph cuts for segmenting the LV
from a sequence of cine cardiac MRI. We use a single frame
to obtain prior shape information for each dataset. Manual
intervention is limited to identifying the LV, myocardium,
and RV in the first frame of the sequence. This serves
as the prior shape based on which penalty values are
calculated. The shape penalty is calculated using the
distribution of orientation angles from every pixel to
the edge points of the prior shape. Penalty and smooth-
ness terms are formulated such that pixels near the
boundary of the shape prior can change their labels to
account for shape change due to deformations. Due to
elastic deformations in cardiac images, pixels within a
fixed distance from the prior boundary are equally like-
ly to take any of the two labels. In this context, the
formulation of the smoothness term acquires greater
significance in determining the correct labels of the
near-boundary pixels of the prior shape. The smoothness
cost is inversely proportional to the pixel’s distance
from the prior boundary. We also look at the relative
importance of penalty values on segmentation results.

When shape information is combined with the intensity
distributions of the object and background, our method
results in accurate segmentation of the LV and RV,
Experimental results on real patient datasets show the
advantages of using shape priors and the superior perfor-
mance of our method over a competing method.
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