Skip to main content
. 2013 Jan 8;26(4):731–739. doi: 10.1007/s10278-012-9556-5

Table 2.

3-D US image classification results of breast tumors using neural network with all proposed features and VI, respectively

Sonographic classification NN with all features NN with VI
Benigna Malignanta Benigna Malignanta
Benign TN 47 FN 7 TN 42 FN 8
Malignant FP 13 TP 46 FP 18 TP 45
Total 60 53 60 53

TP true positive, TN true negative, FP false positive, FN false negative

aHistological finding. Accuracy = (TP + TN)/(TP + TN + FP + FN); sensitivity = TP/(TP + FN); specificity = TN/(TN + FP); positive predictive value = TP/(TP + FP); negative predictive value = TN/(TN + FN)