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Abstract Calorie restriction (CR) remains the most
robust metabolic intervention to extend lifespan and
improve healthspan in several species. Using global
and targeted mass spectrometry-based metabolomics
approaches, here we show that chronic CR prevents
age-related changes in specific metabolic signatures.
Global metabolomic analysis using ultra-performance
liquid chromatography–tandem mass spectrometry
detected more than 7,000 metabolites in sera from

ad-libitum-fed young, aged, and aged C57BL/6 mice
maintained on 40 % CR. Multivariate statistical anal-
ysis of mass spectrometry data revealed a clear sepa-
ration among the young, aged, and aged–CR mice
demonstrating the potential of this approach for pro-
ducing reliable metabolic profiles that discriminate
based on age and diet. We have identified 168 dis-
criminating features with high statistical significance
(p≤0.001) and validated and quantified three of these
metabolites using targeted metabolite analysis. Calorie
restriction prevented the age-related alteration in spe-
cific metabolites, namely lysophosphatidylcholines
(16:1 and 18:4), sphingomyelin (d18:1/12:0), tetraco-
sahexaenoic acid, and 7α-dihydroxy-4-cholesten-3-
one, in the serum. Pathway analysis revealed that CR
impacted the age-related changes in metabolic byprod-
ucts of lipid metabolism, fatty acid metabolism, and
bile acid biosynthesis. Our data suggest that metabo-
lomics approach has the potential to elucidate the
metabolic mechanism of CR’s potential anti-aging
effects in larger-scale investigations.

Keywords Metabolomics . Calorie restriction .Aging .

Serum .Ultra-performance liquid chromatography.Mass
spectrometry

Introduction

Calorie restriction (CR) refers to an intervention in-
volving reduced consumption of a nutritious diet on
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the order of about 20–50 % below ad libitum (AL)
levels. Calorie restriction has proven to be the most
robust intervention for both increasing lifespan and
improving healthspan across a wide range of species
(Smith et al. 2010; Fontana et al. 2010; Masoro 2005;
Anderson and Weindruch 2010). Furthermore, well-
controlled studies in humans suggest that certain ben-
eficial metabolic effects of CR observed in rodents and
other species may be relevant to human physiology
(Heilbronn et al. 2006; Racette et al. 2006; Rochon et
al. 2011). Epidemiological findings further support the
relationship between caloric intake and chronic dis-
ease risk factors (Omodei and Fontana 2011). Despite
the weight of this evidence, the challenge remains to
identify the mechanisms underlying the beneficial
effects of CR. To this end, application of the emerg-
ing metabolomics technology can be a powerful ap-
proach towards achieving this goal.

Global metabolomics is the comprehensive investi-
gation of endogenous metabolites in complex biolog-
ical specimens and has the potential to identify
metabolic pathways and networks altered due to bio-
logical effects (Nicholson et al. 1999; Fiehn 2002).
Global metabolomics strategies have been widely ap-
plied to study cancer, diabetes, neurological diseases,
cardiovascular diseases, obesity, effects of nutrition
and exercise, and for drug discovery and development
(Nagrath et al. 2011; Barderas et al. 2011; Wishart
2008; Rezzi et al. 2007; Kim et al. 2010; Lewis et al.
2010; Huang et al. 2010; Mishur and Rea 2012). This
methodology has also been applied in aging studies in
several species including Caenorhabditis elegans, fruit
fly, rodents, dogs, and humans (Kristal and Shurubor
2005; Mishur and Rea 2012). In mammalian studies,
carnitines, fatty acids, and other metabolites associated
with energy metabolism, lipid metabolism, nucleic acid
metabolism, and oxidative stress were shown to be
perturbed with age (Williams et al. 2005; Granger et
al. 2007; Lu et al. 2008; Lawton et al. 2008).

Even thoughmetabolomics has been applied to study
aging and age-associated diseases (Mishur and Rea
2012), as well as to study effects of specific foods in
aging animals (Fu et al. 2011; Yang et al. 2011; Yan et al.
2009), the use of this methodology for studying effects
of CR on aging has been limited at best. Comparison of
urine metabolomic profiles in dogs (Nicholson et al.
2007) and Sprague–Dawley rats (Zhang et al. 2011)
using nuclear magnetic resonance (NMR) and liquid
chromatography–mass spectrometry (LC-MS)-based

metabolomic strategies, respectively, indicate effects of
CR on gut microbiotal metabolism, energy metabolism,
and renal activity. In urine, age-related increases in
levels of metabolites such alanine and lactate were at-
tenuated in aged dogs on CR (Nicholson et al. 2007)
whereas levels of these metabolites were reported to be
increased in plasma from aged mice on CR (Selman et
al. 2006). Using NMR-based metabolomics, other
metabolites found to be present at differential levels in
plasma were glucogenic amino acids, cholesterol, and
very-low-density lipoproteins, indicating that CR plays
a role in hepatic gluconeogenesis, fatty acidmetabolism,
and lipid biosynthesis (Selman et al. 2006). Studies of
aging and CR applying an electrochemical detection
method coupled to high-performance liquid chromatog-
raphy separations for metabolomics have also been de-
scribed; however, this technology is limited to redox-
active compounds and does not provide structural infor-
mation (Kristal et al. 2007).

In the work herein, we have applied both global and
targeted ultra-performance liquid chromatography
(UPLC)–tandem MS methods to elucidate discrimina-
tory metabolites related to aging and CR in mouse
serum. Blood sera from young AL-fed, aged AL-fed,
and aged mice on CR were investigated. The UPLC–
tandem MS approach allowed identification, verifica-
tion and quantification of metabolites altered due to
age and affected by CR. Bioinformatics and pathway
analysis of the high-density UPLC-MS data allowed
identification of associated metabolic pathways as
well as specific metabolites. This study illustrates
the potential of this approach to determine under-
lying molecular mechanisms altered by aging and
modulated by CR.

Materials and methods

Blood serum collection

Blood serum samples were collected from three groups
of female C57BL/6 mice—3-month-old fed ad libitum
normal chow diet (Y–AL), 26-month-old fed AL (A–
AL), and 26-month-old maintained on chronic CR diet
as described previously (Yang et al. 2009). CR was
initiated at 14weeks of age at 10% restriction, increased
to 25% restriction at 15weeks, and to 40% restriction at
16 weeks (A–CR), and then maintained for the rest of
life. All CR mice were provided 40 % less diet (NIH31/
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NIA fortified) by weight compared with AL-fed mice
according to the National Institute on Aging (NIA) CR
protocol (http://www.nia.nih.gov/research/dab/aged-
rodent-colonies-handbook/caloric-restricted-colony).
The 3-month-old mice were obtained from the colony
maintained at Charles River Labs under contract from
the NIA, and the 26-month-old cohort including those
maintained under long-term CR was purchased from
NIA-aging rodent colony (Harlan Sprague–Dawley,
Indianapolis, IN). After arrival, mice were housed four
per cage in plastic cages with TekFresh for bedding
within a temperature- and humidity-controlled vivarium
in the Comparative Biology Core of the Pennington
Biomedical Research Center (PBRC), which is a
specific-pathogen-free facility. The photocycle was con-
trolled automatically with lights on and off every 12 h,
and animals were maintained on their respective diets as
listed above. It has been shown previously that single or
multi-house mice on CR have no effect on lifespan
(Ikeno et al. 2005). The mice were sacrificed 1 week
after arrival, and blood was collected by cardiac punc-
ture and stored at –80°C until UPLC-MS. Only female
mice were selected for this study, because it has been
shown that the direction of change in the metabolite
profiles upon CR are gender-specific (Mellert et al.
2011). All protocols were approved by the PBRC Insti-
tutional Animal Care and Use Committee (IACUC).

Global metabolomics analysis

Sample preparation

Serum samples were defrosted at 4°C. Each sample
was then deproteinized by adding chilled methanol to a
110-μL aliquot of the serum sample (4:1v/v methanol-
to-serum ratio). The mixture was incubated at –20°C for
1 h and centrifuged at 20,800× g for 15 min at 4°C. The
supernatant was dried under vacuum and reconstituted
in 100 μL of H2O.

UPLC–ESI–qTOF–MS analysis

Blood serum components were separated and analyzed
using an ACQUITY UPLC system directly interfaced
to an electrospray ionization source of a Synapt
HDMS quadrupole time-of-flight (qTOF) MS (Waters
Corp., Milford, USA). Ten microliters of sample was
loaded on a Waters ACQUITY UPLC BEH C18
1.7 μm, 2.1×50-mm column. The mobile phases used

were 0.1 % formic acid (solvent A) and 0.1 % formic
acid in acetonitrile (solvent B). The separation was
performed at 40°C using a gradient program that
started with 100 % solvent A for 3 min followed by
a linear ramp to 100 % B over 13 min. The flow rate
was maintained at 600 μL min–1.

Mass spectra were acquired in the positive ion
mode from 50 to 1,000m/z, with an electrospray volt-
age of 3 kV, sample cone voltage of 30 V, extraction
cone voltage of 2 V, and source temperature of 120°C
using MassLynx software (Waters Corp.). All samples
were run in triplicate. The mass spectrometer was
operated in the MSE mode for the first run and the
MS mode (collision energy of 6 V) for the second and
third runs. The MSE mode uses an alternating low-
energy (collision energy of 6 V) and high-energy
(collision energy linearly ramped from 10 to 50 V)
0.08-s scans to acquire data. The collision energy
ramp causes fragmentation of molecules as they pass
the collision cell. The MSE mode provides precursor
and product ion information for every detectable com-
ponent in the mixture (Bateman et al. 2007). Leucine
enkephalin ([M + H]+ 556.2771) was utilized for lock
mass correction. Quality control samples consisting of
human blood serum (Sigma, St. Louis, Missouri) were
analyzed throughout the run to monitor the system’s
stability and performance.

Multivariate statistical analysis

LC-MS data analysis was performed using Marker-
Lynx XS (Waters Corp.). Chromatography and cen-
troided MS data were aligned to generate a single data
matrix consisting of retention time, mass-to-charge
(m/z), and normalized ion intensity for each detected
peak in individual samples. Parameters used to gener-
ate the data matrix from smoothed and deisotoped data
were as follows: extracted ion chromatogram (XIC)
window, 0.03 Da; marker intensity threshold, 30
counts; mass window, 0.03 Da; retention time win-
dow, 0.05 min; and automatic peak detection. Princi-
pal components analysis (PCA) using Pareto-scaled
data was performed to reduce the dimensionality of
the data and to reveal any segregation of the three
mouse groups in an unsupervised manner. Three
PCA analyses were conducted comparing two mouse
groups at a time (Y–AL vs. A–AL, A–AL vs. A–CR,
and Y–AL vs. A–CR). Supervised projection to latent
structures (PLS) and orthogonal projection to latent
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structures–discriminant analysis (OPLS–DA) were
employed to detect features that exhibited the greatest
contribution in group discrimination. Lists of features
(markers with characteristic retention time and mass-to-
charge (m/z) values) which exhibited differential levels
between Y–AL and A–AL, A–AL and A–CR, and Y–
AL and A–CR were generated and are presented in
Electronic supplementary material Tables S-1 and S-2
(online resource). This list was obtained by selecting
features with p(corr)[1]≥0.8 and p(corr)[1]≤−0.8 in the
S-plots obtained from three OPLS–DA analyses which
had p values≤0.001 based on Student’s t test for at
least one of the comparisons and normalized ion in-
tensities ≥1.0 (arbitrary unit) for at least one group.

Metabolite identification and metabolic pathway
analysis

Database searches using METLIN, Madison Metabo-
lomics Consortium Database (MMCD), KEGG,
HMDB, Lipidmaps, and Chemspider databases were
performed with 5 ppm tolerance for potential identifi-
cation. Mass Fragment analysis (Waters Corp.) using
TOF-transformed and noise-reduced high-energy MS
data, elemental composition analysis, isotope model-
ing (MassLynx), and manual inspection of the high-
energy product ion MS data were used to confirm
identification obtained from the database search. Mass
Fragment is a tool that predicts the structure of frag-
ment ions from a pre-assigned structure of the precur-
sor ion. This allows matching of the theoretical
fragment ions with the acquired high energy MS data
to aid in the definitive identification of metabolites.
This tool also served to eliminate candidate structures
that did not give rise to plausible fragment ions match-
ing the acquired high-energy MS data. The Web-based
program MassTRIX (Suhre and Schmitt-Kopplin
2008) was utilized to identify metabolic pathways
and also to aid in the assignment of chemical identities
to the features. MassTRIX translates masses from MS-
based metabolomics experiment into identified metab-
olites on KEGG-based annotated pathways.

Targeted metabolomics analysis

Validation and quantification of selected metabolites

Identification of palmitoyl carnitine (Sigma), oleoyl
carnitine (Avanti Polar Lipids), and docosapentaenoic

acid (Sigma) were validated using the commercially
available standards. Targeted analysis of standards and
samples was performed on an Acquity UPLC system
directly interfaced to the electrospray ionization source
of a Xevo triple quadrupole MS (Waters Corp.). The
UPLC conditions (i.e., column, column temperature,
mobile phases, gradient program, and flow rate) were
identical to the global MS analysis. The mass spectrom-
eter was operated in the positive ion mode, and MS
parameters and multiple reaction monitoring (MRM)
transitions for all three standards were optimized using
direct infusion at a flow rate of 5 μL min−1. The opti-
mized parameters were capillary voltage of 3.5 kV, ex-
traction cone voltage of 3 V, and source temperature of
150°C. Sample cone voltages (CV) and collision ener-
gies (CE) for the MRM transitions were as follows:
palmitoyl carnitine (400.2→85), CV030, CE025;
oleoyl carnitine (426.2→85), CV032, CE026; and
docosapentaenoic acid (331.3→93), CV028, CE030.
Five microliters of the standard mixtures prepared in
water with concentrations ranging from 0.025 to
1.000 ng μL–1 was loaded, separated on the UPLC
column, and analyzed using MRM–MS to generate a
standard calibration curve for each compound. All three
compounds were quantified in 5 μL of the pooled
mouse serum for each group using the standard
calibration curves.

Results

Our prior studies demonstrated that, compared with
AL-fed 24-month mice, animals maintained on chron-
ic CR were substantially protected from age-related
thymic involution and T cell senescence (Yang et al.
2009). The sera from these mice were used for metab-
olomic analyses in the current study to test the hy-
pothesis that chronic CR maintains youthful metabolic
signatures in aging.

Global metabolomics analysis

Figure 1 presents representative base peak ion (BPI)
chromatograms from deproteinized mouse blood sera
of the three groups (3-month-old (Y–AL), 26-month-
old (A–AL), and 26-month-old mice on chronic CR
diet (A–CR)) analyzed with reverse-phase UPLC–elec-
trospray ionization (ESI)–qTOF in positive ion mode.
The relative standard deviations for the variability in
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retention times in the chromatograms and mass-to-
charge (m/z) for specific ions in the spectra across
different biological and technical replicates were found
to be ≤1 % and ≤0.008 %, respectively. These observa-
tions demonstrate instrument stability and reproducibil-
ity in separation and detection of metabolites from
mouse sera. To further examine the performance of our
global metabolomics data acquisition workflow, QC and
mouse sera samples were subjected to PCA analysis as
shown in Electronic supplementary material Fig. S-1
(online resource). It can be clearly seen that the QC
and mouse sera samples occupy a separate metabolic
space in the PCA scores plot and have very distinct and
reproducible metabolomic profiles. Together with the
representative chromatograms (Fig. 1), these results
show that metabolite profiles from mouse sera samples
regardless of age and diet are overall similar to each
other, are distinct compared with human metabolite
profiles, and are reproducible.

To determine if global metabolomic profiles can dis-
tinguish between samples based on age and diet, a single

data matrix containing retention time, m/z, and normal-
ized intensity of each metabolic feature detected repro-
ducibly was generated using MarkerLynx (Waters
Corp.). This analysis resulted in the extraction of 7,343
features from the LC-MS data of mouse sera samples.
The number of features detected in our analysis are
comparable to other plasma and serum metabolomics
studies using this methodology (Denery et al. 2011,
Dunn et al. 2011). Unsupervised PCA score plots that
show the first (PC1) and second (PC2) components for
three pair-wise comparisons (Y–AL vs. A–AL, A–AL
vs. A–CR, and Y–AL vs. A–CR) are presented in Fig. 2.
These plots show clear differentiation within each com-
parison. Figure 2a shows that young and old mice fed ad
libitum are clearly separated along the vertical compo-
nent (PC2), suggesting that there are underlying differ-
ences in the metabolome with age. The separation
between aged mice with and without CR also strongly
indicates that the metabolomic pattern is altered by the
diet intervention (Fig. 2b). Interestingly, serummetabol-
ic profiles of young mice fed AL and aged mice on CR
were also found to be clearly different from each other,
suggesting that CR does not result in complete protec-
tion from the aging-associated metabolic state (Fig. 2c).
In addition, PLS–DA analysis of all three groups also
resulted in three distinct clusters occupying separate
metabolic spaces in the scores plot (Fig. 2d). Thus, the
scatter plots from the PCA analysis clearly show that
serum metabolomic profiles have the potential to distin-
guish groups based on age and/or diet.

Two-component OPLS–DA analyses were performed
to detect features that contributed most to the discrimina-
tion among the three groups. Identification of features
that explains the maximum separation between these
groups is critical to identify potential mechanisms respon-
sible for the longer lifespan and improved healthspan
observed with CR. Loadings S-plots that complement
the score plots of OPLS–DA are presented in Fig. 3. Ions
with reliability modeled correlation (p(corr)[1]) ≥0.8
and ≤−0.8 were selected from each S-plot as potential
markers. These lists of discriminating ions in each com-
parison were further examined to identify ions that sig-
nificantly contributed to the separation (p value≤0.001).
This value was selected to confidently identify metabo-
lites altered due to CR and age and to decrease the risk of
false-positives arising from inherent biological variability.
The number of features determined to discriminate Y–AL
versus A–AL, A–AL versus A–CR, and Y–AL versus
A–CR were 14, 77, and 141, respectively. It should be

a) Y–AL

b) A–AL

c) A–CR

8 10 12 14 16 

8 10 12 14 16 

8  10 12 14  16

Time (min)

100

0
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100

0
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Fig. 1 Representative BPI chromatograms (within 8–16 min re-
tention time window) obtained from mouse sera samples analyzed
with reverse-phase UPLC–ESI–qTOF operating in positive ioni-
zation mode. Arrows point to regions in chromatograms where
levels of features were changed with advanced age and partially or
completely restored to the young level with CR
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noted that these features are not necessarily unique to that
comparison. A total of 168 features exhibiting discrimi-
nation in at least one of the comparisons are summarized
in Electronic supplementary material Tables S-1 and S-2
(online resource).These results show that there are a
substantial number of potential markers that can discrim-
inate between groups. The number of metabolites
detected to be affected by CR is ~5-fold higher than those
affected by aging. These results are consistent with gene
expression studies examining CR effects in mice as
reported in the literature (Lee et al. 2002). In transcrip-
tional profiles of the heart of male B6C3F1mice, 21% of
genes were found to be affected by CR while only 10 %
of genes were affected by aging alone. This observation
led Lee and co-workers to conclude that CR can both
prevent age-associated alterations in gene expression and
also affect expression of genes not affected by aging. This

might explain why we also observe more metabolites
affected with CR than with age.

We have identified several discriminatory features
largely based on database results and manual inspec-
tion of TOF-transformed high-energy product ion
spectra (Electronic supplementary material Table S-1;
online resource). Additional strategies including spec-
tral matching with reference compounds, mass frag-
ment analysis (Waters Corp.), elemental composition
analysis, and isotope modeling were exploited to in-
crease the confidence of the identification. Based on
our data, levels of 77 features are altered significantly
(p value≤0.001) in aged mice upon subject to CR (A–
CR) compared with their age-matched mouse group fed
AL (A–AL) (Fig. 4). Interestingly, CR completely or
partially restored levels of 15 of these features towards
the young phenotype (Fig. 5). These 15 features include

a) PCA (Y–AL vs. A–AL) b) PCA (A–AL vs. A–CR)

d ) PLS–DAc) PCA (Y–AL vs. A–CR)
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Fig. 2 Unsupervised principal component analysis (PCA) score
scatter plots of (a) Y–AL and A–AL, (b) A–AL and A–CR, (c)
Y–AL and A–CR, and (d) supervised projection to latent struc-
tures–discriminant analysis (PLS–DA) score scatter plot of the

three animal groups. Plots show biological and technical repli-
cates (n03). Technical replicates of each serum sample formed
tight clusters indicating excellent system performance
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lysophosphatidylcholines (16:1 and 18:4), sphingomye-
lin (d18:1/12:0), tetracosahexaenoic acid, and 7α-

dihydroxy-4-cholesten-3-one. Other features with m/z
209.121, 159.068, 363.261, 364.270, 673.528,
536.414, 476.314, 158.119, 759.946, and 339.270 could
not be identified definitively in this analysis. However,
levels of these metabolic features can be used as a
fingerprint to distinguish samples based on age and diet
and to study the effect of CR in future studies.

To identify possible metabolic pathways affected due
to CR and age, ions contributing significantly to the
separation of the three groups were analyzed and placed
into a biological and genomic context using MassTRIX
(Suhre and Schmitt-Kopplin 2008). This resulted in the
identification of regulated pathways, such as those in-
volved in lipid metabolism (glycerophospholipid me-
tabolism, arachidonic acid metabolism, linoleic acid
metabolism, α-linolenic acid metabolism, fatty acid me-
tabolism, and sphingolipid metabolism) and bile acid
metabolism (primary bile acid biosynthesis, bile secre-
tion, steroid biosynthesis). Detailed characterization for
three of the discriminating metabolites was further car-
ried out by comparison with commercially available
authentic standards.

Validation and quantification of metabolites

Validation and quantification of three metabolites iden-
tified as oleoyl carnitine, palmitoyl carnitine, and doco-
sapentaenoic acid were performed through targeted MS
analysis employing MRM using an UPLC–ESI–triple
quadrupole MS. In an ideal case, it would be best to
validate as many features as possible using pure stand-
ards; however, many of the identified compounds are
not commercially available. Nevertheless, the validation
and quantification studies presented below for the three
selected compounds represent metabolites that in-
creased with CR.

Representative MRM chromatograms for the three
metabolites obtained from both the standard solutions
and from mouse sera are presented in Fig. 6. Tandem
MS (MS/MS) spectra were initially acquired for each of
the three compounds and fragmentation patterns were
compared with the high-energy spectra from global
metabolomics analysis. For palmitoyl and oleoyl carni-
tine, the characteristic fragment of acylcarnitines at m/z
85 was observed in both MS/MS spectra and in high-
energy product ionMS data. For docosapentaenoic acid,
product ions arising from the fragmentation of the hy-
drocarbon chain were evident in both data sets. Even
though UPLC conditions used for both global and

a) Y–AL vs. A–AL 

b) A–AL vs. A–CR 

c) Y–AL vs. A–CR 
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Fig. 3 Loadings S-plots of (a) Y–AL versus A–AL, (b) A–AL
versus A–CR, and (c) Y–AL versus A–CR groups from super-
vised orthogonal projection to latent structures–discriminant
analysis (OPLS-DA) showing individual features obtained from
the serum samples. Each point on the plot is a feature that is
characterized by retention time, mass-to-charge, and intensity
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targeted analyses were identical, the retention times
obtained from targeted analysis were shifted from the
retention times observed from the global analysis (pal-
mitoyl carnitine, 10.85targeted vs.13.17global; oleoyl car-
nitine, 11.03targeted vs. 13.28global; and docosapentaenoic
acid, 13.14targeted vs.13.84global min). This is because the
experiments were carried out on two different UPLC
systems and represent differences in connection tubing
volume and column to column variability. This retention
time shift was further confirmed by spiking the stand-
ards in human serum QC samples and by acquiring
untargeted MS data (data not shown). As shown in
Fig. 6, the retention times for each of the metabolites
were identical in both standard solution and in mouse
sera samples which further validates the identity of the
three features.

Concentration of these compounds in sera from
three mouse groups was determined using a standard
calibration curve (Fig. 7). Figure 7 also presents rela-
tive levels of these compounds based on global anal-
ysis. Although global analysis is only capable of
relative quantification, the similarity in the trend in
levels of the metabolites observed using global and
targeted analysis indicates that the former can confi-
dently differentiate the levels even at a first pass in the
analysis. This finding has significant implications,
because this indicates that relative quantification to
differentiate the levels of metabolites by global analy-
sis, especially in cases where formal quantification by
targeted analysis cannot be performed, is reliable. In
summary, the selectivity of the MRM method allowed
the validation of the three markers, while the sensitiv-
ity of the method allowed the quantification of the
three markers amidst the complexity of the serum
matrix.

Fig. 4 Heat map illustrating levels of discriminatory features
found in mouse sera from Y–AL, A–AL, and A–CR groups that
were responsive to CR. The metabolites are listed in decreasing
order based on p value for A–AL vs. A–CR comparison. Shades
from red to green represent increasing normalized intensity of
ions in mouse sera. Fifteen metabolites whose levels are partial-
ly or completely restored by CR are marked

R

Fig. 5 Bar graphs demonstrating relative quantification of the
15 metabolic features that are protected from age-related alter-
ation by CR based on global metabolomics analysis. The error
bars are the standard deviation of the mean from results
obtained from all biological replicates. Statistical significance
values are marked with asterisks as follows: *p<0.05, **p<
0.01, ***p<0.001
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Discussion

In the present study, we have utilized a global and
targeted metabolomics approach to demonstrate its
potential to investigate the effects of CR on aging
processes. Serum from three groups of mice (3-
month-old fed ad libitum (Y–AL), 26-month-old fed
ad libitum (A–AL), and 26-month-old on chronic CR
diet (A–CR)) were analyzed using UPLC–tandem MS.
Mass spectrometry-based metabolomics methodology
was used to take advantage of this technique’s sensi-
tivity, wide dynamic range, selectivity, and capabilities
for structural elucidation and quantification. Since
blood constituents reflect biological processes occur-
ring simultaneously in the tissues, analyzing metabo-
lite profile of serum provides a unique first insight into
the changes that occur due to CR. In addition, blood is
readily available and can be obtained in a minimally
invasive manner.

Global analysis was performed first to detect as
many metabolites as possible without any bias towards
specific classes of compounds. Over 7,000 metabolic
features were detected in this study. Global analysis
also allows measurement of changes in levels of all
metabolites simultaneously. Multivariate statistical
analysis tools were used to facilitate recognition of

168 features that contributed most significantly to dis-
crimination between Y–AL and A–AL, A–AL and A–
CR, and Y–AL and A–CR sample groups. Since many
metabolites can have identical mass, database inquiries
based on accuratem/z are not sufficient for identification.
We therefore utilized high energy data, physico-chemical
rules in mass spectrometry combined with mass spectral
information from the literature and databases for metab-
olite identification. Targeted analysis using MRM–
UPLC–ESI–MS was used to validate and quantify rep-
resentative identified metabolites, namely oleoyl carni-
tine, palmitoyl carnitine, and docosapentaenoic acid. In
general, the methodology described, combining both
global and targeted metabolomics, allowed us to interro-
gate the mouse sera metabolic profiles to identify metab-
olites that can discriminate animals on different diets and
ages without prior knowledge of the chemical identity
of these targets. Based on identified CR-responsive
metabolites, lipid, fatty acid, and bile acid metabolism
pathways were identified to be over-represented. These
pathways have been shown to play an important role in
aging and age-related disorders (Jiang et al. 2011; Cutler
and Mattson 2001). Specifically, the sphingosine-linked
fatty acids like ceramides serve as “damage-associated
molecular patterns” (DAMPs) that are increased in aged
tissue and cause inflammatory damage via the activation
of Nlrp3 inflammasome (Vandanmagsar et al. 2011;
Youm et al. 2012). Our data have revealed specific fatty
acids in these pathways for which levels in blood serum
may correlate with age-related decline in organ function.
These data also indicate that CR may dampen the age-
related increase in DAMPs and thus slow age-related
organ damage.

Specifically, the age-related decrease in levels of two
of the phospholipids, namely lysoPCs (16:1) and (18:4)
were completely restored by CR (Figs. 4 and 5). Indeed,
it has been shown that the activities of enzymes in-
volved in the deacylation–reacylation cycle in the glyc-
erophospholipid metabolism are altered with aging
(Petkova et al. 1986) and CR (Han et al. 2004). This
cycle is important for maintaining membrane fluidity by
modulating the fatty acid composition of membrane
phospholipids (Farooqui et al. 2000). Fatty acid compo-
sition of membrane phospholipids in rats has been
shown to shift from low to high degree of unsaturation
with age, which increases the peroxidizability index
whereas membranes from rats on CR, while exhibiting
higher levels of essential fatty acids, showed lower
levels on a peroxidizability index (Laganiere and Yu

0

100

%

0

100

10.5 11.5 12.5 13.5

%

Time (min)

0

100

%

0

100

%

0

100

10.5 11.5 12.5 13.5

%

Time (min)

Standard
compounds Mouse serum

a)

b)

c)

0

100

%

Fig. 6 Validation of representative metabolites (a) oleoyl car-
nitine (m/z 426.2→85), (b) palmitoyl carnitine (m/z 400.2→
85), and (c) docosapentaenoic acid (m/z 331.3→93) in mouse
sera using multiple reaction monitoring (MRM) by comparison
with authentic standard compounds. These compounds were
validated in sera from all three mouse groups, but A–CR sample
is presented in the figure. The arrow in (c) points to the peak
corresponding to docosapentaenoic acid
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1993). Because membranes with a high index of poly-
unsaturation have increased susceptibility to oxidation,
lipid peroxidation is a common occurrence with aging,
releasing oxidation products that contribute to chronic
inflammation (Walton et al. 2003; Tahara et al. 2001).
Evidence from long-lived animals have shown that the
degree of unsaturation in membrane phospholipids is
low in these animals compared with short-lived animals
and the deacylation–reacylation cycle is implicated in
this change in lipid profile (Portero-Otin et al. 2001).
Altered desaturase activity involved in fatty acid desatu-
ration pathway was also proposed to account for these
observations (Portero-Otin et al. 2001; Laganiere and
Yu 1993). Indeed, animals on CR have richer pools of
phospholipids that exhibit a reduced degree of unsatura-
tion (Han et al. 2004). Interestingly, consistent with our
observations, levels of C16:1 in phospholipids has been
found to decrease with advancing age (Laganiere and

Yu 1993). Other glycerophospholipids identified in our
global studies such as lysoPC (20:5), lysoPC (17:1), and
lysoPC (22:4) are involved in lipid metabolism but were
not identified to be responsive to CR. This is an impor-
tant observation which implies that changes in the glyc-
erophospholipid metabolism gives rise to specific serum
lipids that change uniquely with CR and can thus be
considered useful markers of CR and aging (e.g.,
lysoPC(16:1) and lysoPC(18:4)).

We have also identified a sterol lipid derivative, 7α-
dihydroxy-4-cholesten-3-one, which is involved in bile
acid biosynthesis pathway. This metabolite exhibited an
age-related decline and was partially restored by CR. In
fact, it has been shown that bile acid formation decreases
with aging (Einarsson et al. 1985; Parini et al. 1999;
Bertolotti et al. 1993). Indeed, activities of 12α-
hydroxylase and cholesterol 7α-hydroxylase were found
to be reduced with aging in female Sprague–Dawley rats
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left panel shows the normalized intensities of each metabolite
obtained from global metabolomic analysis of mouse serum sam-
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and standard deviation (error bars) from biological replicates for
the global analysis and technical replicates (n03) for the targeted
analysis. Statistical significance values are marked with asterisks
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(Ferland et al. 1989) and elderly patients (Bertolotti et al.
1993), respectively. CR was demonstrated to reverse
this age-related decline in bile acid formation (Ferland
et al. 1989), indicating that CR regulates specific
enzymes within this pathway. Indeed, increased atten-
tion is being focused on bile acids as major mediators of
longevity associated with CR (Roux and Chartrand 2010;
Ferbeyre 2010) and also with genetic mutations promot-
ing longevity, such as the dwarf mouse (Gems 2007).

In summary, metabolomic profiles of biological fluids
presented here and in the literature using both NMR
(Selman et al. 2006; Nicholson et al. 2007) and MS
techniques (Zhang et al. 2011) are able to distinguish
the aged population against those under CR and can
identify discriminating metabolites. However, compared
with other studies, the MS-based methodology utilized
here detected significantly larger (fivefold) number of
CR-responsive metabolites. In addition, we show that
levels of 15 age-associated metabolites are completely
or partially restored by CR. Our data also suggest that the
effect of CR is more pronounced than the influence of
aging alone in the serum metabolic profile of mouse.
These results are consistent with gene expression studies
in heart tissue of male B6C3F1 mice on CR (Lee et al.
2002). However, these results are in contrast with urinary
metabolic profiles of dogs (Nicholson et al. 2007)
obtained using NMR-based metabolomics strategy,
which showed that changes in metabolomic profiles were
dominated by age, with only subtle effects produced by
CR. However, this CR manipulation was only 25 %
reduction from controls compared with mice in our study
subjected to 40 % CR. Regardless of the metabolomics
strategy used or biological fluid analyzed, the common
observation among all metabolomics studies is that CR is
associated with lipid and fatty acid metabolism.

Two general limitations of the current state of metab-
olomics technology are the lack of comprehensive an-
notated endogenous metabolite databases to aid in
identification of as many metabolites as possible and
the availability of pure compounds for validation and
absolute quantification of identified metabolites. With
the growth in the number of metabolomics researchers,
both the databases and availability of synthetic com-
pounds is expected to improve in the near future. De-
finitive identification of as many metabolites as possible
will allow more detailed biological interpretation. In
addition, another limitation of the current study was that
we analyzed only two age groups, 3 and 26 months.
Since the 3-month group can be considered mature but

still very young, the study would have been strength-
ened if older mice, e.g., 6 months, could have been
examined. Future studies can overcome this limitation
by examining three or more age groups to represent a
more complete lifespan perspective.

In conclusion, we were able to employ a MS-based
global and targeted metabolomics approach to inves-
tigate serum metabolomic profiles related to CR and
aging. This approach allowed the determination of
discriminatory metabolites which were used to identi-
fy the metabolic pathways implicated in CR. This
report does not intend to be a comprehensive metab-
olomic analysis of aging and CR, but rather our ob-
jective is to describe a methodology with potential for
conducting larger scale studies. Identification of dif-
ferentiating features without definitive identification is
relatively straightforward and can be used to distin-
guish between various sample types and to evaluate
CR mimetics. Because the serum metabolome is com-
prised of the sum of changes from all different tissues,
our future studies will focus on use of this methodol-
ogy to identify tissue specific alterations due to CR
and aging. These future studies will also include in-
vestigation of effect of CR and aging across various
mice strains and age groups.
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