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A large proportion of Candida albicans cell surface proteins are decorated post-translationally by glycosyl-
ation. Indeed N-glycosylation is critical for cell wall biogenesis in this major fungal pathogen and for its
interactions with host cells. A detailed understanding of N-glycosylation will yield deeper insights into
host-pathogen interactions. However, the analysis of N-glycosylation is extremely challenging because
of the complexity and heterogeneity of these structures. Therefore, in an attempt to reduce this complex-
ity and facilitate the analysis of N-glycosylation, we have developed new synthetic C. albicans reporters
that carry a single N-linked glycosylation site derived from Saccharomyces cerevisiae Suc2. These glycosyl-
ation reporters, which carry C. albicans Hex1 or Sap2 signal sequences plus carboxy-terminal FLAG3 and
His6 tags, were expressed in C. albicans from the ACT1 promoter. The reporter proteins were successfully
secreted and hyperglycosylated by C. albicans cells, and their outer chain glycosylation was dependent on
Och1 and Pmr1, which are required for N-mannan synthesis, but not on Mnt1 and Mnt2 which are only
required for O-mannosylation. These reporters are useful tools for the experimental dissection of N-gly-
cosylation and other related processes in C. albicans, such as secretion.

� 2013 The Authors. Published by Elsevier Inc. Open access under CC BY license.
1. Introduction

Candida albicans is an opportunistic pathogen that inhabits the
oral cavity, gastrointestinal and urogenital tracts of many healthy
individuals. This fungus is a frequent cause of mucosal infections
(e.g. oral and vaginal thrush), and in severely immunocompro-
mised patients it can cause life-threatening systemic infections of
the bloodstream and internal organs (Calderon et al., 2003; Kabir
and Hussain, 2009; Odds et al., 1988).

The C. albicans cell wall plays a key role in host-fungus interac-
tions during the infection process. The C. albicans cell commits sig-
nificant resources to the synthesis of its cell wall, which comprises
approximately 30% of its dry weight. This robust cell wall helps to
protect the fungus from environmental insults. Yet the cell wall is
dynamic, its proteomic and carbohydrate content responding to
the growth conditions (Lenardon et al., 2010; Sosinska et al.,
2008). The cell wall is made up of an inner layer of chitin, ß-1,3-
glucans and ß-1,6-glucans, and an outer layer that largely com-
prises highy glycosylated mannoproteins (Klis et al., 2001). These
mannoproteins, which decorate the C. albicans cell surface, repre-
sent significant antigenic determinants that contribute to and
modulate immune recognition (Mora-Montes et al., 2010, 2007;
Netea et al., 2008; Torosantucci et al., 1990; Wang et al., 1998;
Gow et al., 2012). Indeed, mannoproteins are important C. albicans
pathogen-associated molecular patterns (PAMPs) that are recogni-
sed by specific host pattern recognition receptors (PRRs) during
host innate immune responses (Brown and Gordon, 2001; Gow
et al., 2007; McKenzie et al., 2010; Netea et al., 2008, 2006; Sheth
et al., 2011; Gow et al., 2012). Cell surface mannoproteins also in-
clude adhesins that promote attachment to host tissues and inva-
sins that enhance endocytosis by host cells (Bates et al., 2006,
2005; Mora-Montes et al., 2009; Munro et al., 2005; Phan et al.,
2007; Sundstrom et al., 2002). Not surprisingly, C. albicans null mu-
tants that lack key mannan biosynthetic enzymes display attenu-
ated virulence, confirming that cell wall mannosylation is
important for pathogenicity (Bates et al., 2006, 2005; Mora-Montes
et al., 2010, 2007, 2009).

C. albicans cell surface mannoproteins are posttranslationally
adorned with O- and/or N-mannans that influence their biophysi-
cal properties, stability and function (Harvey, 2005). In addition,
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ß-1,2-linked mannosides are attached to phosphopeptidomannan
and phospholipomannan molecules in the C. albicans cell wall
(Fradin et al., 2008). Here we focus on N-glycosylation, which has
been studied in some depth in C. albicans (Bates et al., 2006,
2005; Mora-Montes et al., 2010, 2007; Nishikawa et al., 2002;
Southard et al., 1999; Warit et al., 2000). In general, the process
of N-glycosylation in C. albicans appears to be similar to that of
the non-pathogenic yeast, Saccharomyces cerevisiae although there
are some important differences in the N-mannans in these two
species. N-glycosylation initiates in the endoplasmic reticulum
where a preassembled N-linked glycan core (Glc3Man9GlcNAc2) is
transferred onto Asn-X-Ser/Thr acceptor sites (Burda et al., 1999;
Knauer and Lehle, 1999). Glucosidases and mannosidases then pro-
cess this inner core glycan to Man8GlcNAc2 (Herscovics, 1999) be-
fore transit to the Golgi apparatus where elaborated outer chains
are added. Linear backbones of up to and over 50 a-1,6-linked
mannose residues are laid down on the inner core. Highly
branched structures are then created by addition of a-1,2- and
a-1,3-linked mannoses (Ballou, 1990; Herscovics, 1999; Herscovics
and Orlean, 1993). In C. albicans, outer chains also contain manno-
sylphosphate, which are chains of ß-1,2-linked mannoses attached
via phosphodiester bonds (Trinel et al., 1997). Together, these car-
bohydrate decorations can comprise up to 95% of the molecular
mass of cell wall mannoproteins (Dean, 1999).

N-glycosylation is dependent upon a number of activities, some
of which have been defined in C. albicans. The generation of outer
chains is dependent on Och1, which adds the first a-1,6-linked
mannose to the inner core. Therefore inactivation of Och1 blocks
the elongation of N-mannans in C. albicans (Bates et al., 2006).
Members of several families of glycosyl transferases, including
MNN, BMT and MNT genes, mediate the addition of a-1,2-, ß-1,2-,
a-1,3- and a-1,6-linked mannose residues during N- and O-glyco-
sylation. Most of them remain to be characterised (Mora-Montes
et al., 2010). However, Mnt1 and Mnt2 have been defined as func-
tionally redundant a-1,2-mannosyltransferases that add the sec-
ond and third mannose units during O-glycosylation (Buurman
et al., 1998; Munro et al., 2005; Thomson et al., 2000). Inactivation
of MNT1 and/or MNT2 does not appear to affect N-glycosylation.
Mannosyltransferases depend upon Mn++ for their activity, and
hence upon the Golgi Mn++ transporter, Pmr1. Hence C. albicans
pmr1D mutants display defects in N-linked outer chain glycosyla-
tion as well as in O-glycosylation (Bates et al., 2005).

As these and other components of the glycosylation apparatus
are defined, the next step involves the detailed biochemical dissec-
tion of their contribution to N-glycosylation and to cell surface
properties. This is not trivial, however, because glycosylation pat-
terns are complex and heterogeneous, as described for invertase
in S. cerevisiae, for example (Zeng and Biemann, 1999). Different
cell wall proteins carry different numbers of potential N-glycosyl-
ation sites. Even specific cell wall proteins display highly heteroge-
Table 1
C. albicans strains.

Strain Genotype

CAI4 ura3D::kimm434/ura3D::kimm434
NGY98 ura3D::kimm434/ura3D::kimm434, pmr1D::hisG/pmr1
NGY112 ura3D::kimm434/ura3D::kimm434, mnt1-mnt2D::hisG
NGY205 ura3D::kimm434/ura3D::kimm434, och1D::hisG/och1D
CAI4 � GR1 ura3D::kimm434/ura3D::kimm434, RPS1-pACT1-GR1
CAI4 � GR2 ura3D::kimm434/ura3D::kimm434, RPS1-pACT1-GR2
CAI4 � GR3 ura3D::kimm434/ura3D::kimm434, RPS1-pACT1-GR3
NGY98 + GR1 ura3D::kimm434/ura3D::kimm434, pmr1D::hisG/pmr1
NGY112 + GR1 ura3D::kimm434/ura3D::kimm434, mnt1-mnt2D::hisG
NGY205 + GR1 ura3D::kimm434/ura3D::kimm434, och1D::hisG/och1D
NGY98 + GR2 ura3D::kimm434/ura3D::kimm434, pmr1D::hisG/pmr1
NGY112 + GR2 ura3D::kimm434/ura3D::kimm434, mnt1-mnt2D::hisG
NGY205 + GR2 ura3D::kimm434/ura3D::kimm434, och1D::hisG/och1D
neous glycosylation patterns (Harvey, 2005; Medzihradszky,
2008), potentially because of the differential usage of potential
N-glycosylation sites on individual molecules. The situation may
be complicated further by possible stochastic behaviours of the
mannosylation apparatus leading to the elaboration of outer chains
of variable lengths and branching patterns. Clearly, specialised
tools are required to reduce this complexity thereby allowing bio-
chemical dissection of N-mannans. Therefore we now describe the
development and validation of a new reporter for the analysis of N-
glycosylation in C. albicans.

2. Materials and methods

2.1. Strains and growth conditions

Strains used in this study are listed in Table 1. Strains were
grown at 30 �C in YPD or SD minimal medium (Sherman, 1991)
supplemented with 50 lg/ml uridine as required.

2.2. Strain construction

Three glycosylation reporter genes (GR1, GR2 and GR3) were
designed, synthesised by DNA2.0 (Menlo Park, CA, USA) and sub-
cloned between the HindIII and NheI sites of pACT-GFP (Barelle
et al., 2004), which is based on CIp10. CIp10 is a Candida integrat-
ing plasmid that was developed for the stable integration of se-
quences into the C. albicans genome at the RPS1 locus (formally
known as RPS10) (Murad et al., 2000). The GR sequences replaced
the GFP coding region in pACT-GFP. This placed each reporter gene
under the control of the C. albicans ACT1 promoter and S. cerevisiae
CYC1 terminator in the plasmids pACT-GR1, pACT-GR2 and pACT-
GR3, respectively. Each gene was resequenced to confirm the accu-
racy of the gene construction. The sequences of the GR1, GR2 and
GR3 reporter genes are available with GenBank Accession Nos.
GU733317, GU733318, and GU733319, respectively. GR protein
structure was predicted using the UCSF Chimera modeller program
(Yang et al., 2012).

Each plasmid was linearised by digestion with StuI and trans-
formed into C. albicans (Gietz et al., 1995; Walther and Wendland,
2003) to target chromosomal integration of the constructs at RPS1
(Murad et al., 2000). Correct integration at RPS1, which was con-
firmed by diagnostic PCR, restores URA3 functionality and does
not impair in vitro or in vivo phenotypes (Brand et al., 2004).

2.3. Protein preparations

Intracellular protein extracts were prepared using conventional
protocols (Millar et al., 1992). Briefly, C. albicans cells were grown
in YPD overnight, harvested, resuspended in lysis buffer (0.1 M
Tris–HCl, pH 8, 10% glycerol, 1 mM DTT, 0.1 mg/ml pepstatin A,
Source

Fonzi and Irwin (1993)
D::hisG Bates et al. (2005)
/mnt1-mnt2D::hisG Munro et al. (2005)
::hisG Bates et al. (2006)

This study
This study
This study

D::hisG, RPS1-pACT1-GR1 This study
/mnt1-mnt2D::hisG, RPS1-pACT1-GR1 This study
::hisG, RPS1-pACT1-GR1 This study
D::hisG, RPS1-pACT1-GR2 This study
/mnt1-mnt2D::hisG, R RPS1-pACT1-GR2 This study
::hisG, RPS1-pACT1-GR2 This study
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containing protease inhibitor cocktail (Roche Applied Science; Bur-
gess Hill, UK)), and sheared with glass beads. Lysates were centri-
fuged at 15,000g for 10 min at 4 �C, and these extracts stored at
�20 �C. Extracts were reduced with 3 mM dithiothreitol (60 �C,
20 min), S-alkylated with 13 mM iodoacetamide (25 �C, 10 min),
digested 8 h at 37 �C with trypsin (20 ng/ll; Promega, UK), dried
by rotary evaporation (SC110 Speed Vac, USA), and dissolved in
0.1% formic acid before analysis by western blotting.

To isolate extracellular proteins, C. albicans strains were grown
in 1 l SD at 30 �C for 24 h. The culture medium was separated from
cells by centrifugation, the extracellular proteins concentrated
using an Amicon membrane ultrafiltration system (10 kDa cut-
off: Millipore Ltd, Watford, UK) as described (Schratter, 2004),
and the extracellular fraction stored at �20 �C. To purify the
His6-tagged reporter proteins, His60 Ni Gravity Column Purifica-
tion kits were used according to the manufacturer’s instructions
(Takara Bio Europe/Clontech, Saint-Germain-en-Laye, France).
Preparations were then dialysed against phosphate-buffered saline
and freeze-dried before analysis or concentrated by Vispaspin
ultrafiltration (Sartorius Stedim Biotechnology, UK).
2.4. Western blotting

Protein concentrations were assayed using standard protocols
(Bradford, 1976). In some cases, before electrophoresis, samples
were treated with 25 mU of endoglycosidase H (Roche) in 50 mM
sodium acetate buffer, pH 5.2, for 16 h at 37 �C to remove N-man-
nan. Standard protocols were used for western blotting (Smith
et al., 2004) with slight modifications. For extracellular fractions,
samples corresponding to equivalent culture volumes were sub-
jected to electrophoresis. Protein samples were mixed with Nu-
PAGE� sample loading buffer (Life Technologies Ltd., Paisley, UK)
containing 1 mM DTT and heated at 70 �C for 10 min. Proteins were
separated on 4–12% NuPAGE Bis-Tris gels (Invitrogen) for 1 h at
200 V/cm, and electro-transferred to polyvinylidene difluoride
(PVD) membranes for 3 h at 25 V/cm. Parallel gels were stained
with Coomassie reagent or with the Pierce Glycoprotein staining
kit (Fisher Scientific, Loughborough, UK). PVD membranes were
blocked overnight at 4 �C using PBS plus 0.1% Tween 20 and 5%
semi-skimmed dry milk. Western blots were either probed with
a rabbit anti-FLAG polyclonal antibody (1:10,000 dilution in PBS;
Sigma–Aldrich, Gillingham, UK), or a horse radish peroxidise-con-
jugated mouse anti-His6 antibody (1:5000 dilution in PBS; Invitro-
gen). The secondary antibody was horse radish peroxidise-
conjugated anti-rabbit IgG (1:3000 dilution in PBS; Cell Signalling,
MA, USA). Signals were detected with an HRP western blotting kit
(Amersham, Little Chalfont, Buckinghamshire, UK).
3. Results

3.1. Design of synthetic, codon-optimised N-glycosylation reporters for
C. albicans

Our goal was to develop a new reporter to facilitate the analysis
of N-glycosylation in C. albicans. We reasoned that this reporter
need not encode a functional entity, except with regard to its abil-
ity to act as a glycosylation target. Therefore, we chose to create a
synthetic reporter that carries multiple features to facilitate down-
stream characterisation of its N-glycosylation. This reporter carries
a single N-glycosylation site (to prevent heterogeneous glycosyla-
tion at multiple target sites). This site, which is derived from S.
cerevisiae Suc2, has been validated biochemically (Marshall,
1972; Gavel and von Heijne, 1990). We chose a 147 amino acid re-
gion of S. cerevisiae Suc2 that surrounds a well-defined glycosyla-
tion site (Asn146-Ser-Thr) in the Suc2 protein (Ziegler et al.,
1988). This Suc2 fragment, which corresponds to amino acids
119 to 265 of the unprocessed invertase sequence, carries trypsin
cleavage sites seven residues before (K139) and five residues after
(R151) the target N-glycosylation site to facilitate downstream
analysis by mass spectroscopy. The next step was to include a sig-
nal sequence to programme secretion of the reporter protein. The
first reporter we constructed (GR1) included the 23 amino-termi-
nal amino acids of C. albicans N-acetylglucosaminidase Hex1 (Can-
non et al., 1994). Finally, to facilitate immunodetection and
purification, three sequential eight amino acid FLAG epitopes and
a single His6 sequence were included at the carboxy terminus of
this synthetic reporter, each of which were separated by a glycine
residue (Fig. 1).

This artificial amino acid sequence was then converted into its
corresponding nucleotide open reading frame, using preferred co-
dons for C. albicans (Brown et al., 1991) and avoiding usage of
the CTG codon, which is decoded as serine rather than leucine in
this pathogen (Santos et al., 1993; White et al., 1995). SphI and
XmaI restriction sites were then introduced into the GR1 sequence
upstream and downstream of the region encoding the target N-gly-
cosylation site to facilitate modification of this site in the future.
Also HindIII and NheI sites were introduced at the beginning and
end of the synthetic coding region to facilitate cloning (Fig. 1). Un-
wanted restriction sites were then removed by exchanging synon-
ymous codons. Having designed this artificial reporter, the GR1
gene was then synthesized and cloned into the C. albicans expres-
sion vector pACT1-GFP (Barelle et al., 2004) to create pACT1-GR1,
by replacing GFP with the GR1 reporter downsteam of the ACT1
promoter (Section 2).

Two additional reporters (GR2 and GR3) were then designed,
synthesized and cloned to generate the plasmids pACT1-GR2 and
pACT1-GR3. In GR2 the 23 residue Hex1 signal sequence was re-
placed with the 63 amino acid amino-terminal region from the
C. albicans Sap2 protein that contains the pre-pro-peptide se-
quence from this secreted aspartyl protease (Morrison et al.,
1993; Togni et al., 1991) (Fig. 1). GR3 was based on GR2, but in
GR3 the glycosylation target Asn146-Ser-Thr was changed to
Gly146-Ser-Thr. GR3 is therefore a negative control which contains
Sap2 secretion signals but lacks the target N-glycosylation site.

3.2. Expression of the N-glycosylation reporters in C. albicans

On the basis of their design, the GR1, GR2 and GR3 reporters
were expected to express immature (unprocessed) proteins in
C. albicans of about 25 kDa, 28 kDa and 28 kDa, respectively
(Fig. 1). Following signal peptide cleavage the GR1, GR2 and GR3
proteins were predicted to have molecular masses of about
23 kDa, 26 kDa and 26 kDa, and following cleavage of the Sap2
pro-peptides from GR2 and GR3, these proteins were expected to
have masses of about 23 kDa in the absence of any glycosylation.
GR1 and GR2 contain the target Asn146-Ser-Thr sequence and
therefore were predicted to be N-glycosylated, whereas GR3 lacks
this sequence and was expected to remain unglycosylated.

To test these predictions we first examined the intracellular
expression of the GR1, GR2 and GR3 reporters. Total soluble pro-
tein extracts were prepared from C. albicans CAI4 cells transformed
with pACT1-GR1, pACT1-GR2 or pACT1-GR3, and from control cells
lacking GR sequences (Section 2). Western blotting was then per-
formed on these extracts, probing for the FLAG3 and His6 epitopes
(Fig. 2A and B). Using the anti-FLAG antibody, clear expression of
GR proteins was observed in pACT1-GR1, pACT1-GR2 and pACT1-
GR3 transformants compared with the control cells. The intracellu-
lar levels of GR3 were higher than for GR1 and GR2. GR1 proteins of
about 25–38 kDa were observed, compared with GR2 proteins of
about 32–40 kDa and GR3 proteins of about 22–40 kDa. The main
intracellular forms observed for GR3 (30–40 kDa) were longer than



Fig. 1. Design of the N-glycosylation reporters for C. albicans. (A) Cartoon illustrating the structure of the gene, which is transcribed from the ACT1 promoter and terminated
via ScCYC1 sequences in pACT1 (Barelle et al., 2004). The codon optimised, synthetic coding regions encode part of the ScSuc2 protein which includes a single N-glycosylation
site (Asn146-Ser-Thr) (Ziegler et al., 1988) flanked by trypsin cleavage sites. The synthetic coding regions encode carboxy-terminal FLAG3 and His6 tags. The GR1 reporter
gene encodes an amino-terminal signal sequence from Hex1 (Cannon et al., 1994), whilst GR2 encodes an amino-terminal pre-pro-sequence from Sap2 (Morrison et al., 1993;
Togni et al., 1991). GR3 is derived from GR2, but lacks the N-glycosylation site. (B) Cartoon illustrating the predicted structure of a mature N-glycosylated reporter protein,
showing the glycosylation defects in C. albicans och1 and pmr1 mutants and the site of cleavage of endoglycosidase H (Netea et al., 2008). (C) Structural prediction of the GR1
reporter protein, highlighting the glycosylation site (yellow), the signal sequence (red), and the FLAG3-His6 tag (green).
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predicted (26–28 kDa) (Fig. 2A). This might reflect unexpected ef-
fects on the electrophoretic mobility of intracellular GR3 because
these bands were also detected with the anti-His6 antibody
(Fig. 2B), their mobility was not affected by treatment with endo-
glycosidase H (Fig. 2A and B), and the mobility of the secreted form
of GR3 displayed the expected mass of about 23 kDa (Fig. 3). We
conclude that all three GR reporters were successfully expressed
in C. albicans.
Treatment of these extracts with endoglycosidase H (Mora-
Montes et al., 2007) (which removes asparagine-linked mannosy-
lation) reduced the masses of the GR1 and GR2 proteins, but not
the GR3 proteins (Fig. 2A). Therefore, we conclude that GR1 and
GR2 were N-glycosylated, and that GR3 was not glycosylated, as
predicted. Some heterogeneity in the lengths of the GR proteins re-
mained after deglycosylation with endoglycosidase H (Fig. 2A).
This suggests that both processed and unprocessed forms of each



Fig. 2. Intracellular forms of the N-glycosylation reporters in C. albicans. Western
blots of intracellular extracts of wild type C. albicans cells (CAI4) transformed with
pACT-GR1, pACT-GR2, pACT-GR3 or the empty CIp10 vector (C, control) (Table 1).
Extracts were either untreated (�) or treated (+) with endoglycosidase H before
analysis. (A) Western blots were probed with a polyclonal anti-FLAG antibody. In
the left panel, 15 lg of protein sample was loaded per lane. The right panel shows a
separate gel containing less protein (5 lg) for the GR3 protein extracts. (B) An
analogous western blot probed with a monoclonal anti-His6 antibody. (C) Western
blot of trypsin digested intracellular extracts from wild type C. albicans cells (CAI4)
expressing pACT-GR1 or pACT-GR2 and probed with anti-FLAG antibody. The
carboxy-terminal FLAG-tagged GR tryptic peptides of about 15 kDa are highlighted
(arrow) as well as the endoglycosidase H band at about 29 kDa (asterisk). The
Coomassie stained gel confirming the protein loading is shown in the supplemen-
tary data (Fig. S1).

Fig. 3. Secreted forms of the N-glycosylation reporters in C. albicans. Western
analysis of secreted proteins from wild type C. albicans cells (CAI4) transformed
with pACT-GR1, pACT-GR2, pACT-GR3 or the empty CIp10 vector (C, control)
probed with the polyclonal anti-FLAG antibody. Extracts were either treated (+) or
not treated (�) with endoglycosidase H before analysis and samples corresponding
to equivalent culture volumes were run on the gels. The black arrow indicates the
mature 23 kDa deglycosylated forms of the GR proteins. The asterisk highlights the
band corresponding to endoglycosidase H itself.
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GR protein (retaining or lacking the amino-terminal signal peptide)
were present inside C. albicans cells. Proteolysis is unlikely to ac-
count for the multiple isoforms as protease inhibitors were in-
cluded during protein extraction (Section 2). Interestingly, the
full length form of GR3 (about 40 kDa) was present at significantly
higher levels than the processed forms of GR3. In contrast the pro-
cessed forms of GR2 (about 32 kDa) were more abundant than the
unprocessed forms of this protein. Therefore signal peptide cleav-
age from the GR2 reporter appeared more efficient than for the
GR3 protein.

The anti-His6 antibody appeared less sensitive than the anti-
FLAG antibody at least with regard to detection of the GR proteins
as signals were detected for GR3, but not for GR1 and GR2 (Fig. 2B).
Therefore anti-FLAG antibody was used for most of our subsequent
experiments. Nevertheless, these analyses confirmed the lack of
glycosylation of GR3 and the observation that the unprocessed
form of GR3 accumulates inside C. albicans cells.

The functionality of the tryptic cleavage sites (Fig. 1A) was
tested by digestion of GR1 and GR2. As predicted, carboxy-terminal
FLAG3-tagged fragments of about 15 kDa were generated by tryptic
digestion of these reporter proteins (Fig. 2C). Coomassie staining of
a parallel gel confirmed the efficacy of the tryptic digestion on the
proteins in these extracts as well as the comparable protein load-
ing of GR1 and GR2 extracts (Fig. S1).

3.3. Secretion of the N-glycosylation reporters from C. albicans

Having confirmed that all three GR reporters are expressed in
C. albicans, that GR1 and GR2 are glycosylated at the target
Asn146, and that GR3 is a valid negative control for glycosylation,
the next step was to examine the secreted forms of these reporters.
Secreted proteins were harvested from the growth medium of
C. albicans cells transformed with pACT1-GR1, pACT1-GR2 or
pACT1-GR3, and from control cells that did not contain a GR repor-
ter. These secreted extracts were then subjected to western blot-
ting, probing for the FLAG epitope (Fig. 3). A heterogeneous
smear of high molecular weight material (>60 kDa) was reproduc-
ibly detected in GR1 extracts, and an analogous, faint smear was
barely detectable in GR2 extracts. These probably represent hyper-
glycosylated forms of the GR1 and GR2 proteins. Consistent with
this conclusion, endoglycosidase H treatment of these GR1 and
GR2 extracts resolved this heterogeneous material into clear bands
of about 23 kDa. These 23 kDa bands were consistent with the gen-
eration of processed, deglycosylated GR1 and GR2 proteins of the
predicted molecular mass. A second band of 25 kDa was observed
following endoglycosidase H treatment. This band was also ob-
served in control extracts that lack GR sequences (Fig. 3), and when
running endoglycosidase H alone. We conclude that this back-
ground band represents non-specific antibody binding to endogly-
cosidase H itself (Umeyama et al., 2002).

The GR3 intracellular extracts also displayed a heterogeneous
smear of high molecular weight material (>35 kDa: Fig. 3).



Fig. 4. Impact of glycosylation defects upon GR1 processing in C. albicans. Western
analyses of endoglycosidase H treated (+) and untreated (�) extracts from C.
albicans mutants transformed with pACT1-GR1: wt, CAI4 cells transformed with
pACT1-GR1; mnt, NGY112 cells (mnt1 mnt2) containing pACT1-GR1; och1, NGY205
cells containing pACT1-GR1; pmr1, NGY98 cells containing pACT1-GR1 (Table 1).
Membranes were probed with the polyclonal anti-FLAG antibody. (A) Western
analysis of intracellular protein extracts. (B) Western analysis of extracellular
fraction. Samples corresponding to equivalent culture volumes were run on these
gels. (C) Western analyses of His6-purified material from extracellular fractions
from wild type, och1 and pmr1 cells: �, untreated; +, digested with endoglycosidase
H. The black arrows highlight the processed, deglycosylated 23 kDa form of GR1.
The asterisks highlight the background band corresponding to endoglycosidase H.

112 S. Shahana et al. / Fungal Genetics and Biology 56 (2013) 107–115
However, this smear was not resolved following endoglycosidase
H treatment, and the nature of this material is not known. In-
stead, a GR3-dependent band of about 23 kDa was observed in
extracellular fractions irrespective of whether they were treated
with endoglycosidase H or not (Fig. 3). We conclude that C. albi-
cans cells can process and secrete some non-N-glycosylated GR3
protein. Therefore, all three GR reporters were secreted by C. albi-
cans, GR1 and GR2 generating hyperglycosylated forms, as
predicted.
3.4. Impact of specific glycosylation defects upon the N-glycosylation
of GR1 in C. albicans

To further validate the GR reporters we tested the impact of
well-defined glycosylation mutations upon their behaviour in
C. albicans. First we focused on GR1, which carries the Hex1 signal
sequence.

As described above, C. albicans cells lacking the functionally
redundant a1,2-mannosyltransferases Mnt1 and Mnt2 display de-
fects in O-glycosylation, but not N-glycosylation (Buurman et al.,
1998; Munro et al., 2005; Thomson et al., 2000). Therefore, similar
GR1 glycosylation patterns were predicted in wild type and mnt1
mnt2 cells. Similar intracellular forms of GR1 were observed in
both cell types, and these forms were resolved by endoglycosidase
H into the 25 kDa protein retaining the signal sequence and the
mature 23 kDa protein (Fig. 4A). Furthermore, the heterogeneous
high molecular mass extracellular forms of GR1 secreted by wild
type and mnt1 mnt2 cells were resolved into the 23 kDa mature
protein by treatment with endoglycosidase H (Fig. 4B). We con-
clude that, as predicted, the disruption of MNT1 and MNT2 did
not affect GR1 glycosylation.

Both Och1 and Pmr1 are required for the elongation of N-man-
nan outer chains (Bates et al., 2006, 2005). However, neither Och1
nor Pmr1 is required for the addition of the inner core. Once again,
the GR1 reporter behaved as predicted. No significant differences
in the intracellular forms of GR1 were observed between wild type,
och1 and pmr1 cells (Fig. 4A), suggesting that addition of the inner
core glycosyl unit to GR1 remained unaffected by inactivation of
Och1 or Pmr1. The extracellular extracts from och1 and pmr1 cells
contained heterogeneous immunoreactive material of 30–50 kDa
(Fig. 4B). Some of this secreted material appeared to be resistant
to deglycosylation by endoglycosidase H, suggesting that it repre-
sented background material of some sort. However endoglycosi-
dase H treatment did generate a FLAG-reactive band of about
23 kDa, presumably corresponding to the mature deglycosylated
GR1 protein (Fig. 4B). To clarify this further, His6-tagged proteins
were partially purified from the extracellular fractions of wild type,
och1 and pmr1 cells (Section 2) and subjected to western blotting
with the anti-FLAG antibody (Fig. 4C). Heavily glycosylated forms
of the FLAG3-His6-tagged GR1 of greater than 55 kDa were secreted
from wild type cells, whereas the major glycosylated forms of the
GR1 protein that were secreted from och1 and pmr1 cells displayed
molecular masses of about 30 kDa. All of these forms were resolved
to the mature 23 kDa protein upon endoglycosidase H treatment.
This indicates that, as predicted, the inactivation of Och1 or Pmr1
inhibited the elaboration of outer chain N-mannan on GR1.

3.5. Impact of glycosylation mutants upon GR2 N-glycosylation in C.
albicans

Next we examined GR2 glycosylation in the C. albicans och1,
pmr1 and mnt1 mnt2 mutants. Once again, the inactivation of
Och1, Pmr1 or Mnt1 plus Mnt2 did not significantly affect the
intracellular glycosylation patterns of GR2 (Fig. 5A), confirming
that inner core glycosylation of GR2 proceeded normally in these
mutants. However, effects upon the addition of mannan outer
chains were observed when the secreted forms of GR2 were exam-
ined (Fig. 5B). Wild type and mnt1 mnt2 cells displayed similar gly-
cosylation patterns for the GR2 reporter. These cells secreted
heterogeneous, hyperglycosylated, high molecular weight forms
of GR2, which appear to be resolved to a fully processed 23 kDa
form (Fig. 5B). However, we are unable to exclude the possibility
that unprocessed forms of GR2 contribute to the upper band as-
cribed to endoglycosidase H. Lower yields of the hyperglycosylated
reporter were generally obtained from the mnt1 mnt2 double mu-
tant. The basis for this is not known, but it is conceivable that



Fig. 5. Effects of aberrant glycosylation upon GR2 processing in C. albicans. Western
analyses of endoglycosidase H treated (+) and untreated (�) extracts from C.
albicans mutants transformed with pACT1-GR2: wt, CAI4 cells transformed with
pACT1-GR2; mnt, NGY112 (mnt1 mnt2) containing pACT1-GR2; och1, NGY205
containing pACT1-GR2; pmr1, NGY98 containing pACT1-GR2 (Table 1). Membranes
were probed with the polyclonal anti-FLAG antibody. (A) Western analysis of
intracellular protein extracts. (B) Western analysis of extracellular fraction. Samples
corresponding to equivalent culture volumes: black arrow, the processed, degly-
cosylated 23 kDa form of GR2; white arrow, the unprocessed, deglycosylated
28 kDa pre-pro-form of GR2; asterisk, background band corresponding to endogly-
cosidase H.
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preventing normal O-glycosylation might disturb indirectly the
accumulation of N-glycosylated proteins. However, the processing
of GR1 and GR2 did not seem to be grossly affected (Figs. 4B and
5B). In contrast, both och1 and pmr1 cells secreted a heterogeneous
mixture of ca. 30–40 kDa forms of GR2 which, when treated with
endoglycosidase H, were resolved to mature 23 kDa. The yields of
untreated glycosylated GR2 were higher from the pmr1 cells
(Fig. 5B). Also, changes in mass resulting from glycosylation may
not be reflected accurately in corresponding mobility changes on
SDS gels. Nevertheless, these observations suggest that, like the
GR1 reporter, the outer chain glycosylation of GR2 is inhibited by
inactivation of Och1 or Pmr1.
4. Discussion

The N-glycosylation of cell wall and secreted proteins plays
major roles in maintaining the physiological robustness of C. albi-
cans cells and their interactions with host cells during disease
progression (Bates et al., 2006, 2005; Mora-Montes et al., 2010,
2007; Munro et al., 2005; Phan et al., 2007; Sundstrom et al.,
2002). Indeed, cell surface N-glycosylation is essential for patho-
genicity (Bates et al., 2006, 2005; Mora-Montes et al., 2007,
2009; Munro et al., 2005) and contributes significantly to the rec-
ognition of C. albicans cells by host immunological defences
(Mora-Montes et al., 2010, 2007; Netea et al., 2008; Torosantucci
et al., 1990; Wang et al., 1998). A complete understanding of the
impact of specific N-glycosylation events upon cell wall architec-
ture, adhesion, and the endocytosis and immune recognition by
host cells will depend upon detailed biochemical dissection of
these N-glycosylation events. However, this is extremely chal-
lenging, largely because of the great complexity of N-glycosyla-
tion patterns at the C. albicans cell surface. Therefore, in this
study we have developed and validated reporters designed to
partially reduce this complexity and facilitate the analysis of
N-glycosylation in C. albicans.

The synthetic GR1 and GR2 reporters were designed to carry a
single N-glycosylation site to minimise the differential decoration
of multiple potential sites within the target protein. This Asn146-
Ser-Thr site was based on a known N-glycosylation site from
S. cerevisiae Suc2 (Ziegler et al., 1988). To validate the GR1 and
GR2 reporters we first examined their glycosylation patterns in
wild type cells. We showed that both reporters are expressed in
C. albicans, that partially processed forms of these proteins carrying
an N-linked glycan core accumulate inside the cell, and that heter-
ogeneous, hyperglycosylated GR1 and GR2 proteins are secreted
successfully by C. albicans cells (Figs. 2 and 3). The GR1 and GR2
reporters were expressed and secreted with differing efficiencies
as revealed by our western blotting of samples corresponding to
equivalent culture volumes from each C. albicans strain.

To confirm that the Asn146-Ser-Thr site represented the only
site of N-glycosylation within the GR1 and GR2 reporters, we com-
pared their glycosylation patterns with those of a negative control.
The GR3 reporter was identical to the GR2 reporter, except that the
Asn146-Ser-Thr sequence was changed to Gly146-Ser-Thr. The
secretion of mature, unglycosylated GR3 (23 kDa) by C. albicans
cells (Fig. 3) confirmed that GR3 was not glycosylated, and hence
that GR1 and GR2 were primarily hyperglycosylated at Asn146.
We then further validated the GR1 and GR2 reporters by examin-
ing their glycosylation in well-defined glycosylation mutants
(Figs. 4 and 5). Although their yields were slightly reduced, as pre-
dicted the glycosylation of GR1 and GR2 were not significantly af-
fected in C. albicans mnt1 mnt2 cells, in which O-glycosylation is
disrupted (Buurman et al., 1998; Munro et al., 2005; Thomson
et al., 2000).

However, the elaboration of outer mannan chains on GR1 and
GR2 was compromised in C. albicans och1 and pmr1 cells, which
have been shown to display significant defects in N-mannan outer
chain elongation (Bates et al., 2006, 2005). Therefore, the process-
ing of the GR1 and GR2 proteins appears to reflect that of natural
mannoproteins (Fig. 6) suggesting that they will prove useful
reporters of N-glycosylation in C. albicans. The GR1 and GR2 report-
ers only differ with respect to their amino-terminal sequences. GR1
carries the Hex1 signal sequence whereas GR2 has the pre-pro- re-
gion from Sap2. Our data suggest that both the Hex1 and Sap2 sig-
nal sequences work in the context of these synthetic GR reporters
(Figs. 2 and 3).

The GR1 and GR2 reporters carry other features that are de-
signed to facilitate their exploitation as N-glycosylation reporters
(Fig. 1). Convenient restriction sites have been engineered to facil-
itate the introduction of alternative sequences in the reporter
genes (Fig. 1). The reporters carry carboxy-terminal FLAG3 and
His6 tags that facilitate their detection (Fig. 2) and partial purifica-
tion (Fig. 4C). Functional trypsin cleavage sites (Fig. 3C) are located
just upstream and downstream of the single N-glycosylation site
(Fig. 1), facilitating downstream analysis by mass spectroscopy.
However further purification of the GR reporter proteins would
be required for this type of analysis, and the following issues might
be considered in the design of such experiments. Firstly, the puri-
fication might be performed at 4 �C and protease inhibitors in-
cluded to reduce proteolysis. Secondly, secreted proteins should
be concentrated from 4 to 5 l of culture supernatant, for example



Fig. 6. Cartoon summarising the observed forms of the GR1, GR2 and GR3 reporters in C. albicans. Each bar represents the structure of a GR protein. (Refer to Fig. 1 for the
elements in each protein.) The number to the right of each bar indicates the estimated molecular mass, where + indicates apparent increased mass due to glycosylation. The
nascent GR1 and GR2 proteins undergo core glycosylation, presumably in the ER, and a proportion of these proteins have their signal sequences removed (Fig. 2). Note that
GR3 lacks the consensus N-glycosylation site and is not glycosylated (Fig. 2). The elaboration of the outer chains on GR1 and GR2 occurs, presumably in the Golgi apparatus, in
an Och1 and Pmr1 dependent manner (Figs. 4 and 5). Also, the Sap2 pro-region is cleaved from a proportion of the GR2 and GR3 proteins. These various forms of GR protein
are then secreted (Figs. 3–5). Subsequent endoglycosydase H treatment deglycosylates these GR proteins (Figs. 3, 4B and 5B). The major forms of each GR protein observed in
the intracellular and extracellular fractions are highlighted by the boxes.

114 S. Shahana et al. / Fungal Genetics and Biology 56 (2013) 107–115
by ultra-filtration, before affinity chromatography using the His6

tag. Thirdly, an additional purification step, possibly based on im-
muno-affinity chromatography of the FLAG-tag (Einhauer and
Jungbauer, 2001), might be required to remove endogenous C. albi-
cans proteins that co-purify with GR reporters on the nickel col-
umns. Even after purification, some heterogeneity in N-
glycosylation patterns is likely to remain, because individual GR
molecules probably vary in their N-glycan structures. Nevertheless,
our system simplifies this heterogeneity by facilitating the analysis
of a specific GR sequence carrying a single N-glycosylation site.
Therefore, these GR reporters should prove to be useful tools for
the dissection of N-glycosylation in C. albicans and its interactions
with the host. We also note that the GR reporters may prove useful
for mechanistic analyses of other virulence-related related pro-
cesses in C. albicans such as secretion, cell wall biogenesis and
adhesion.
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