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Arterial input function derived from pairwise correlations between
PET-image voxels
Martin Schain1,2,5, Simon Benjaminsson2,3,5, Katarina Varnäs1, Anton Forsberg1,2, Christer Halldin1,2, Anders Lansner2,3,4, Lars Farde1,2

and Andrea Varrone1,2

A metabolite corrected arterial input function is a prerequisite for quantification of positron emission tomography (PET) data by
compartmental analysis. This quantitative approach is also necessary for radioligands without suitable reference regions in brain.
The measurement is laborious and requires cannulation of a peripheral artery, a procedure that can be associated with patient
discomfort and potential adverse events. A non invasive procedure for obtaining the arterial input function is thus preferable. In this
study, we present a novel method to obtain image-derived input functions (IDIFs). The method is based on calculation of the
Pearson correlation coefficient between the time-activity curves of voxel pairs in the PET image to localize voxels displaying
blood-like behavior. The method was evaluated using data obtained in human studies with the radioligands [11C]flumazenil and
[11C]AZ10419369, and its performance was compared with three previously published methods. The distribution volumes (VT)
obtained using IDIFs were compared with those obtained using traditional arterial measurements. Overall, the agreement in VT was
good (B3% difference) for input functions obtained using the pairwise correlation approach. This approach performed similarly or
even better than the other methods, and could be considered in applied clinical studies. Applications to other radioligands are
needed for further verification.
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INTRODUCTION
Positron emission tomography (PET) is a molecular imaging
modality, providing detailed examination of biochemical and
metabolic brain biomarkers in vivo. Throughout recent years, the
applications of PET have for instance lead to new insights into
neurodegenerative and psychiatric disorders as well as to
cognitive neuroscience.1–3

Positron emission tomography is associated with limited spatial
resolution due to the challenging physical properties of emission
tomography.4 Earlier PET systems normally had an estimated
resolution of B6 mm full width at half maximum (FWHM), prevent-
ing accurate measurement of radioligand binding in small anatomic
structures.5 However, methodological advancements in acquisition
hardware and image reconstruction software have significantly
improved the sensitivity and the resolution of more recently devel-
oped PET systems.6–8 The High Resolution Research Tomograph
(HRRT, Siemens Molecular Imaging, Knoxville, TN, USA) is the state-
of-the-art system for human brain PET imaging, with an estimated
resolution of 1.5 mm FWHM in the center of the field of view, when
modeled in the image reconstruction algorithm.9 The high resolu-
tion of the HRRT is a basis for improved quantification in small brain
structures.10 In addition, the HRRT system has an extended axial
field of view of 250 mm,6 allowing for a large proportion of the
head and neck region to be covered in the PET images.

Pharmacokinetic modeling is a method frequently used to
quantify receptor or transporter density from images obtained
with PET. The radioactivity concentration in arterial plasma

represents the model’s input function, and is conventionally
acquired from measurement of the radioactivity level in arterial
blood. Arterial cannulation is however laborious, sensitive to
errors, invasive, and can be associated with patient discomfort as
well as potential adverse events. A non invasive procedure to
estimate the radioactivity level in arterial blood would overcome
these limitations, and is thus preferable.

Several methods to derive the radioactivity level of arterial
blood directly from PET images have been suggested during
recent years.11–14 A majority of the methods are based on either
manual or automatic segmentation of the carotid artery, in
combination with means to compensate for signal artifacts
induced by limited spatial resolution (i.e., partial volume effects).
Due to the moderate resolution and high noise levels associated
with PET, several methods have shown low reproducibility when
implemented by other research groups, leading to a growing
skepticism toward the feasibility of the concept.15 In a recent
review article, it was stated that the difficulties connected with
deriving the arterial input function from PET images are too many
and too difficult to overcome considering the potential benefit of
obviating on-line arterial sampling.16 However, most attempts to
derive blood curves have been performed on PET data acquired
on systems with significantly lower resolution compared with the
HRRT. Since the carotid artery is a small elongated structure with a
diameter of B5 mm,17 with complex hemodynamic patterns,18

system resolution is likely a fundamental factor for accurate
measurement of the image-derived input function (IDIF).
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For the analysis of functional magnetic resonance imaging (MRI)
data, a new algorithm has recently been developed, which clusters
voxels displaying similar statistical fluctuations over time.19 In the
present study, we have adapted parts of this statistical tool to PET
data, so that it clusters individual PET voxels with similar temporal
radioactivity patterns. To assess the utility of the method in
human PET imaging, it was evaluated using two different
radioligands targeting different neurotransmitter systems, and
displaying different kinetic properties.

The performance of the method was compared with that of
three other methods, previously described by Chen et al.20 Mourik
et al.,21 and Naganawa et al.22 These methods were selected from
the literature since they, among others, have shown the best
performance in the estimates of cerebral metabolic rate of
glucose.15

MATERIALS AND METHODS
Rationale for Selection of Radioligands
Data obtained by PET examination in human subjects with two different
radioligands were used in the present study. The radioligands were chosen
for different purposes. [11C]flumazenil (GABAA-receptor radioligand) was
chosen because its quantification often requires an input function, since
the suitability of the pons as a reference region has been questioned.23

[11C]AZ10419369 (5HT1B-receptor radioligand)24 was included to evaluate
the approximation of venous sampling as a substitute to arterial sampling,
since its negligible metabolism in human subjects permits to use the total
radioactivity in plasma as an estimate of the input function without need
of metabolite correction.25

Subjects and Positron Emission Tomography Measurements
A total of 12 subjects were examined with the HRRT. Six subjects were
examined using [11C]flumazenil, and their PET data consisted of baseline
measurements in an occupancy study, which will be published elsewhere.
Remaining six subjects were examined with [11C]AZ10419369. Subjects
were healthy according to psychiatric and medical history, physical
examination, laboratory testing, ECG, and magnetic resonance imaging
(MRI). The procedures were approved by the Research Ethics Committee in
Stockholm, Sweden, and the Radiation Safety Committee at Karolinska
University Hospital, Stockholm, and were performed in accordance with
the current amendment of the Declaration of Helsinki and International
Conference on Harmonization/Good Clinical Practice guidelines. All
subjects gave their written informed consent before participation. Injected
masses, specific radioactivities, and subjects’ ages and genders are given in
Table 1. For each subject, a plaster helmet was made to minimize head
motion during the acquisition.26 The radioactivity was administered as a
bolus injection, immediately after which the intravenous line was flushed
with saline. For all subjects, the radioactivity level in arterial blood was
measured via an automatic blood sampling system (ABSS; Allogg
Technology, Mariefred, Sweden) for the first 5 minutes, followed by
manual arterial sampling at midpoint of each frame.27 In addition, for the
[11C]AZ10419369 data, radioactivity levels were also measured in venous
samples obtained at 3, 15, 30, 45, 60, and 90 minutes after injection.

Positron emission tomography measurements were acquired in list
mode for 63 minutes in case of [11C]flumazenil, and 93 minutes in case of
[11C]AZ10419369. The PET images were reconstructed using Ordinary
Poisson Ordered Subset Expectation Maximization, with 16 subsets and 10
iterations, including modeling of the system’s point spread function.9 The
frame definition for each of the radioligands is reported in Table 1.
To compensate for potential residual motion, a post reconstruction frame-
to-frame realignment algorithm was applied to all PET images.8

Magnetic Resonance Image Acquisition and Processing
For all the subjects, T1-weighted MR images were acquired using a 1.5-T
MRI system (11 subjects were studied using the GE signa system scanner
(GE Medical Systems, Milwaukee, WI, USA), and the remaining subject was
imaged using the Gyroscan Intera system (Philips Medical Systems, Best,
The Netherlands)). All MR images were segmented into gray and white
matter, and coregistered to PET using SPM5 (Wellcome Department of
Cognitive Neurology, University College London).

Methods for Image-Derived Input Function
To reduce the computational load, a subset of each PET image covering
the neck was extracted (illustration of the image subset is shown in
Supplementary Figure 1). This subset was used when estimating the blood
signals using the four methods described below.

Pairwise correlation method. The novel approach is based on the Pearson
product-moment correlation coefficient (PCC), r, which was calculated
between all voxel pairs in a slightly smoothed (2 mm FWHM Gaussian filter)
version of the image subset. That is, for voxels i and j, the PCC between
their respective time-activity curve (TAC), xi and xj, with T time steps was
calculated as

rij ¼

PT
t¼ 1
ðxiðtÞ� xiÞðxjðtÞ� xjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t¼ 1
ðxiðtÞ� xiÞ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼ 1
ðxjðtÞ� xjÞ2

s : ð1Þ

Pearson product-moment correlation coefficients of voxel pairs displaying
a strong measure of correlation (| rij|4y with 0oyr1) were stored in a
sparse correlation matrix M, so that Mi,j¼ ri,j, for all iaj. To avoid extracting
noisy voxels located in the vessel, all autocorrelations were zeroed
(Mi,i¼ 0). A visual representation of M is shown in Figure 1A. The total
number of voxels, N, was around 106 for each subject. Values for y were set
such that the correlation matrices were of manageable sizes, and
estimated for each radioligand separately after preliminary evaluation of
the data sets. They were set to 0.95 and 0.97 for [11C]flumazenil and
[11C]AZ10419369, respectively. The size of M obtained with these
thresholds was always o2 GB. Values for T (i.e., total number of time
frames) are reported in Table 1. To extract blood voxels, coregistered MR
images were segmented by applying an intensity threshold (Figure 1B)
such that the resulting binary mask only included voxels from the carotid
artery. Each extracted voxel was used as an index to the rows in M. The
voxels in the columns of all selected rows were classified as blood voxels,
and constituted a ‘carotid artery mask’, which were applied to all time
frames. The calculation of M for each subject was performed on 96 nodes
of a CRAY XE6 (Lindgren at PDC-KTH: AMD Opteron 12-core 2.1 GHz processors,
with 2 processors and 32 GB memory per node), and took 1 to 2 hours.

The amount of spill-out of radioactivity from the carotid region of interest
(ROI) varies throughout a PET measurement. In the initial phase when the
radioactivity is still in the vessels, the spill-out is a major issue. At later time
points, the radioactivity gradient between the vessels and their vicinity is
smaller and could potentially be neglected. Therefore, only the first 3 minutes
of the acquisition were corrected for partial volume effects using the geometric
transfer matrix approach28 reduced to one compartment, and a 2� 2� 2 mm
FWHM Gaussian filter. The width of the filter was set slightly higher than the
measured system resolution, since the carotid artery is not in the center of the
field of view.

To increase the agreement between the IDIF and the measured input
function (MIF), late blood samples were used to scale the tail of the curves.
For [11C]flumazenil, the average of the five latest blood samples were used,
and for the [11C]AZ10419369 data, only the latest venous sample was used
as a scaling factor.

Table 1. Experimental set-up. Median (min�max) values are reported

Radioligand Age (years) Gender
(M/F)

Injected mass
(mg)

Specific radioactivity
(GBq/mmol)

Frame definition (s)

[11C]flumazenil 32 (23–34) 6/0 0.1 (0.06–0.23) 1,013 (467–1,616) 9� 10, 2� 15, 3� 20, 4� 30, 4� 60, 4� 180,
7� 360

[11C]AZ10419369 65 (54–69) 4/2 0.82 (0.41–1.18) 239 (119–461) 8� 10, 5� 20, 4� 30, 3� 60, 4� 180, 12� 360
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Chen’s method. The method has been described in detail in the
literature.20 In short, manual ROIs were drawn on 16 consecutive planes
below the circle of willis. For each of the carotids (left and right), ROIs for
both the vessel and its vicinity were drawn. The measured blood curve
obtained from the carotid artery ROI, CA

mea, was then assumed to be
described as

Cmea
A ðtÞ¼ RC �Ctrue

A ðtÞþ SP � CvicðtÞ; ð2Þ

where CA
true denotes the true (but unknown) radioactivity concentration in

the arterial blood, and Cvic denotes the measured radioactivity in the
vicinity ROIs. The two constants RC and SP denote recovery coefficient and
the spill-in coefficient, respectively. In Chen’s method, late blood samples
are used to estimate the values of RC and SP, which are in turn used to
calculate CA

true for the whole measurement. For comparative purposes, the
same number of blood samples was used as for the PWC method. The
fitting was performed for each blood vessel separately. In those cases,
RC and SP were o0 or 41, the parameters were reestimated with non
negativity constraints applied, as described in the original paper.20

Mourik’s method. Mourik’s method relies on optimal reconstruction
settings for HRRT data.29 To assess the clinical applicability, the standard
reconstruction setting normally applied to HRRT data at Karolinska
Institutet was used (see section Subjects and Positron Emission
Tomography Measurements). To delineate ROIs for the carotids, a
summation image of the early frames was smoothed, after which the
4 hottest pixels in 16 planes below the circle of willis were identified, as
described as optimal ROI volume for the HRRT data.29 Those 64 voxels
were applied to all image frames to obtain the IDIF. Also, the image-
derived blood curves were scaled using late blood samples, as it has been
reported to have beneficial effect on the performance of the method.

Naganawa’s approach. Naganawa’s method uses a modified FastICA
implementation for performing independent component analysis (ICA).22

In this study, the ICA calculations were performed using the author’s own
matlab toolbox EPICA, freely available at http://home.att.ne.jp/lemon/
mikan/EPICA.html. The method assumes that the signal obtained from the
PET image is a linear combination of underlying independent components,
of which the blood signal is one. More specifically, if two components in
the data are more similar as compared with the other components, ICA
tends to estimate them into a single component. The EPICA extracts two
independent components by default. Since the blood TAC is more
different than tissue TACs from all brain regions regardless of their kinetic
properties, one of the components will correspond to the estimated blood
TAC and the other to the tissue TAC.

The ICA only provides the shape of the independent components, and
not their magnitude. Late blood samples were therefore used to scale the
blood TAC. No correction for partial volume effects was applied since
potential spill-out of radioactivity is in theory taken care of in the unmixing
process. Those subjects for which the EPICA generated blood curves with
negative values were discarded from the analysis.

Correction for Metabolites and Plasma Fractions
In PET kinetic modeling analyses, it is commonly assumed that only
unchanged radioligand in plasma can pass the blood brain barrier and
enter the brain. Therefore, to obtain the input functions, image-derived
and measured blood curves were corrected for metabolite concentrations
and plasma fractions. The parent fraction of [11C]flumazenil was measured
using high-performance liquid chromatography of plasma samples
obtained at 5, 10, 20, 30, and 40 minutes after injection, and the curve
was fitted using the Hill function. [11C]AZ10419369 has negligible
metabolism and was therefore not corrected for metabolites.25 The
plasma-to-blood ratio was measured after centrifugation of the blood
samples (arterial samples for [11C]flumazenil, and venous and arterial
samples for [11C]AZ10419369). For estimation of the plasma-to-blood ratio
at intermediate time points, several fitting functions were evaluated
(logarithmic, exponential, linear, average, and the Michaelis–Menten
equation (y(x)¼ ax/(bþ x)). For [11C]flumazenil, the Michaelis–Menten
equation was used since it provided smallest residuals, whereas for
[11C]AZ10419369, the average plasma fraction was used since none of the
more advanced models provided better fit.

Regions of Interest
The ROIs included in the study were specific for each radioligand, based on
the knowledge of the receptor distribution in the brain. For [11C]flumazenil,
the ROIs included were occipital cortex, frontal cortex, putamen,
cerebellum, and pons, and for [11C]AZ10419369, occipital cortex, frontal
cortex, putamen, ventral striatum, and cerebellum were used. All ROIs were
manually delineated on each subject’s MRI, and coregistered to the
corresponding PET image. For both radioligands, the gray matter obtained
from segmentation of the MRI was also included.

Quantification
The primary outcome measure was the distribution volume (VT), defined as
the area under the curve (AUC) of the target TAC divided by the AUC of the
input function, when extrapolated to infinity. VT was calculated with the
Logan graphical analysis approach, using both IDIF and MIF.30 The time of
equilibrium, t*, was set after preliminary evaluation of both data sets to
verify that the slope of the Logan plot displayed linearity. The same t* was
used for both MIF and IDIF, and was set to 21 minutes for [11C]flumazenil,
and 33 minutes for [11C]AZ10419369. All calculations of VT were performed
with PMOD v.3.2 (PMOD Group, Switzerland).

VT obtained with MIF was used as gold standard, and the methods were
evaluated by investigating the percent difference between regional VT

obtained with IDIF and MIF (calculated as 100� {(VT
IDIF� VT

MIF)/VT
MIF}, and by

linear regression analysis. In addition, the agreement between the AUC
and maximal peak height between IDIF and MIF were assessed.

Statistical Analysis
The agreement between IDIF and MIF was assessed using one-way
repeated measures ANOVA, followed by pairwise comparisons using

Figure 1. (A) Pearson product-moment correlation coefficient (PCC) between all voxel pairs in an image subset (number of voxels N¼B106)
stored in a sparse matrix M. The PCC between the time-activity curves of voxels i and j is highlighted. (B) Carotid artery voxels were
segmented from coregistered magnetic resonance (MR) images and used as indices to rows in M to extract correlated (columnar) voxels.
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Bonferroni correction to adjust for multiple comparisons. Image-derived and
MIFs were compared in terms of peak height and AUC. Also, VT values
obtained in one representative ROI (occipital cortex) using both IDIF and MIF
were compared in a similar manner. The significance level was set to 0.05.
Aforementioned statistical analysis was performed using SPSS v. 20 (IBM
Corporation, Somers, NY, USA).

RESULTS
Pairwise Correlation Method
In all subjects, the PWC method enabled to identify clusters
corresponding to the carotid artery (Figure 2). The radioactivity
concentration in the carotids was corrected for spill-out on early
frames (to3 minutes), whereas the tail of the TAC (t43 minutes)
was scaled with manual samples. This approach provided image-
derived blood curves in good agreement with those obtained
from manual sampling (see Figure 3 for PWC and other methods).
No statistical difference of AUC, peak height, or VT was found
between MIFs and IDIFs obtained with the PWC method for
[11C]flumazenil and [11C]AZ10419369. For [11C]flumazenil, the AUC
of the input functions was on average slightly underestimated
(6.9±14.2%) as compared with MIF (Table 2). The AUC of the IDIFs
for the [11C]AZ10419369 data was in good agreement with the MIF
(� 2.3±14.8%, Table 2). The peak height generally showed larger
across subject variability than the AUC for both radioligands; but
the impact of peak height on the agreement of the outcome
measures was limited. The difference between VT estimated with
IDIF and MIF was on average 2.8±11.8% (Figures 4 and 5),
ranging from 7.3±11.3% for [11C]flumazenil to � 1.7±10.7% for
[11C]AZ10419369. Linear regression analysis showed good agree-
ment in the estimates of VT for both radioligands, with intercepts
close to 0 and slopes and R2 values close to 1 (Table 2). Scatter plots
of the regression analysis are shown in Supplementary Figure 2.

Chen’s Method
Neither the [11C]flumazenil nor the [11C]AZ10419369 data required
non negativity constraints when estimating RC and SP. One of the
[11C]AZ10419369 subjects, however, resulted in SP and RC41
regardless of whether the constraints were applied or not. The
difference in AUC between IDIF and MIF (Table 2) was comparable
to that obtained using the PWC method for [11C]AZ10419369
(P¼ 0.56), whereas for [11C]flumazenil, Chen’s approach signifi-
cantly underestimated the AUC of the IDIF (P¼ 0.02). The
agreement in peak height was also comparable to that obtained
using the PWC method (P¼ 0.168 and P¼ 1.0 for [11C]flumazenil
and [11C]AZ10419369, respectively, Table 2). The difference
between VT obtained with IDIF and MIF was on average across
both radioligands 7.2±20.2%. For each radioligand, the percent

difference in VT was � 3.3±23.0% (P¼ 1.0) for [11C]AZ10419369,
whereas a larger and significant discrepancy was observed for the
[11C]flumazenil data (17.6±8.5%, P¼ 0.01), as a result of the
underestimated input functions (Figures 4 and 5).

For one of the [11C]flumazenil subjects, and three of the
[11C]AZ10419369 subjects, the blood curve derived from one of
the vessels could not be fitted according to equation (2), due to
slightly anomalous shape of the blood curve at late time points.
For each of these subjects, only the TAC from the remaining vessel
was used.

Mourik’s Method
For all subjects, Mourik’s method provided ROIs located in the
center of the carotid. Similarly to Chen’s method, the agreement in
AUC and peak height between IDIF and MIF (Table 2) was good for
[11C]AZ10419369 (P¼ 0.96 and P¼ 0.45), whereas both AUC and

Figure 2. Voxel clusters obtained from the PWC method using (A) [11C]flumazenil and (B) [11C]AZ10419369.
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peak height were significantly underestimated for [11C]flumazenil
(P¼ 0.04 and P¼ 0.02). The difference between VT obtained from
IDIF and MIF (Figures 4 and 5) was on average 11.9±20.3%, and

ranged from 20.2±12.6% for [11C]flumazenil (P¼ 0.03), to
3.5±23.1% for [11C]AZ10419369 (P¼ 1.0).

Naganawa’s Method
EPICA generated negative blood curves for all subjects measured
with [11C]flumazenil. The whole data set was thus discarded from
the analysis. In addition, one subject measured with
[11C]AZ10419369 was also removed from the analysis due to
negative blood component.

For the remaining data, EPICA successfully generated one curve
displaying blood-like shape for each subject, normally with
severely overestimated AUC and peak height (Table 2).
VT estimated with input functions obtained with EPICA showed
a large variability, and was on average substantially lower than
that obtained using MIF (Figure 4). The percent difference was on
average � 19.0±26.9% (Figure 5). Due to the inconsistencies in
the number of remaining subjects, and the overall poor
performance, the results from Naganawa’s method were not
included in the ANOVA.

Table 2. AUC and peak difference between IDIF and MIF (calculated as 100� (IDIF�MIF)/IDIF), and linear regression analysis data for all radioligands
and methods (scatter plots shown in Supplementary Figure 2)

Input curves properties Linear regression analysis

AUC difference (%) Peak difference (%) VT slope VT intercept VT R2

[11C]flumazenil

Chen � 17.85±7.675 � 26.89±20.86 1.21 � 0.17 0.98
Mourik � 19.27±10.62 � 44.00±15.95 1.29 � 0.45 0.95
PWC � 6.91±14.22 2.03±41.17 1.1 �0.13 0.96

[11C]AZ10419369
Chen 8.63±36.27 � 17.02±47.59 1.3 � 0.25 0.89
Mourik � 0.77±35.17 � 36.68±37.33 1.35 � 0.23 0.9
Naganawa 71.50±103.53 183.77±206.95 1.29 � 0.21 0.9
PWC 2.29±14.82 7.02±18.35 1.01 �0.02 0.96

AUC, area under the curve; IDIF, image-derived input function; MIF, measured input function; PWC, pairwise correlation.
Bold values highlight the method providing slope and R2 closest to one, and intercept closest to zero.
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DISCUSSION
In this study, we propose a new method for estimation of the IDIF.
The method is based on the calculation of pairwise correlations
between voxel pairs in the PET image. The performance of the
method was evaluated by comparing VT obtained with the IDIF to
that obtained with MIF, and compared with three other methods
previously described. The method was evaluated using two
different radioligands targeting different neurotransmitter systems
and displaying different kinetic properties.

The Pairwise Correlation Method
In general, VT estimated with IDIF obtained with PWC was in good
agreement to that obtained using MIF for both radioligands.
A larger variability was observed for [11C]flumazenil data, where
one subject displayed roughly 25% difference between VT

obtained from IDIF and MIF. On average across the subjects
measured with [11C]flumazenil, the agreement was substantially
better (B7% difference). The [11C]AZ10419369 data also displayed
some variability in the agreement of regional VT, but the average
difference between VT obtained from IDIF and MIF was o2%. The
lowest agreement was generally found in cerebellum, which has a
negligible density of 5HT1B receptors. The discrepancy between
IDIF and MIF was likely related to the low value of VT in
cerebellum, considering that the absolute maximal difference in VT

was quite small (B0.1 mL/cm3).
The agreement in VT obtained with the PWC method was better

than that obtained with the other methods for both radioligands.
For [11C]flumazenil, the PWC method was the only approach that
did not result in significantly different VT values as compared with
MIF, and for [11C]AZ10419369, the across subject variability was
smaller. This improved agreement is likely related to the fact that
the methods of Chen and Mourik classify voxels displaying a peak
in early time frames as blood voxels, whereas the PWC method is
based on correlations between voxels over all time frames.
Therefore, the PWC approach has the advantage of excluding
voxels with noise in early frames, and voxels displaying a non
blood-like pattern in late frames.

Since the sparse correlation matrix M contains PCCs between all
voxel pairs in the image, the PWC method uses an a priori
assumption regarding which voxels are likely to display blood like
behavior (i.e., which rows to extract). In this study, carotid artery
voxels as segmented from MRI were used. This procedure could
however be replaced with other means to obtain an initial guess
of the spatial localization of the artery, for example, using the
N hottest voxels on a summation image of early PET frames
(similar to Mourik’s method). Preliminary evaluation shows that
the carotid artery ROI obtained from M is similar regardless of
which of these methods were used for the initial guess (data for
one subject are shown in Supplementary Figure 2). Also, the need
of any initial guess may become obsolete if the PWC method is
combined with a suitable graph clustering method.19,31

Comparison Methods
The four methods for generation of IDIF compared in this study
are conceptually different. The method described by Chen et al.
is a straightforward technique, which mimics the methodology
conventionally used to derive tissue TACs from PET images.
The only prerequisites required for successful implementation
is that the carotid artery to some extent is visible on a
summation image of the early frames for the manual TACs to be
delineated. However, with small ROIs, the image-derived blood
curve may be noisy in late time frames, which may cause
the fitting of RC and SP to fail. This becomes particularly
challenging with radioligands with fast metabolism such as
[carbonyl-11C]WAY-100635, which typically displays small area
under the tail of the blood curve.32 Previous studies have shown
that Chen’s approach can be successfully applied to the radioligands

[18F]FDG, [11C](R)-rolipram and [11C]PBR28.15,33 This study provides
further support for the applicability of Chen’s method for
[11C]AZ10419369, and to a lower extent, for [11C]flumazenil.

Mourik’s method also provided VT values in good agreement to
those obtained with MIF for [11C]AZ10419369, whereas the
difference was larger for [11C]flumazenil. This reduced performance
for [11C]flumazenil was surprising since the method has already
been validated for this radioligand. One explanation could be that,
in the present study, a different number of iterations were used for
the PET image reconstruction. When Mourik et al.29 applied their
method to [11C]flumazenil data acquired with the HRRT, they found
good correspondence between MIF and IDIF using 16 iterations
(compared with 10 in the present study). We have previously
shown, using the NEMA phantom, that for a volume of 10 mm
diameter, increasing the number of iterations from 10 to 16 has
negligible effect on the recovery,9 whereas the noise level and
reconstruction time are increased. However, when considering that
Mourik’s approach is based on very small ROIs, it is likely that the
number of iterations could affect the signal recovery, depending on
the radioligand. In the present study, Mourik’s approach showed
good performance for [11C]AZ10419369. Previous studies using
[18F]FDG, [11C](R)-rolipram, [11C]PBR28, [11C]PIB, (R)-[11C]verapamil,
and (R)-[11C]PK1119515,33,34 have shown better agreement between
MIF and IDIF than the one we found for [11C]flumazenil. Thus, the
performance of Mourik’s approach may be radioligand dependent
and, for some radioligands, the approach may require specific
settings for the image reconstruction.

The method proposed by Naganawa et al. is a purely data-
driven approach, only assuming that the signal obtained is a linear
combination of underlying independent components. In the
original publication, Naganawa et al.22 showed that the method
provided very high precision when estimating the influx rate
constant (Ki) for [18F]FDG data. Other studies have not been able
to replicate this finding using neither [18F]FDG15 nor [11C](R)-
rolipram or [11C]PBR28.33 In addition, when EPICA was applied to
the data sets included in the present study, the calculated
VT showed very large variability and substantial difference from
the gold standard. Also, the lack of a non negativity constraint
enables generation of blood curves that are biologically
meaningless.35 Among the methods evaluated in this study,
EPICA showed to be the least reliable for both radioligands.
However, considering the complex nature of ICA, the result would
likely improve if the algorithm was tuned for each radioligand
used, for example, by modifying the cost function, the number of
principal components included or altering the brain mask.36

Quantification Considerations
Generally, the agreement between VT obtained with IDIF and that
obtained with MIF was more dependent on the agreement in the
AUC between the input functions than on the agreement between
their peak height ratio. Graphical methods for estimation of
VT such as the Logan Plot or the Patlak Plot rely predominantly on
the AUC of the input function. Thus, successful estimation of peak
height becomes less valuable when estimating the IDIF if the
outcome measures are calculated using graphical approaches.
However, if compartmental modeling such as the two-tissue
compartment model was used instead, the difference in peak
height would probably be reflected by an increased variability in
the radioligand influx rate constant K1, normally associated with
blood flow, and consequently, a low accuracy in all rate constants.
All methods evaluated in this study displayed a large variability in
the peak heights, and should thus be used with caution in studies
where changes in blood flow are expected.

Arterial and Venous Sampling
During the initial phase of the PET acquisition, arterial sampling is
conventionally performed with high frequency, typically drawing
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B0.1 mL of arterial blood every second. Therefore, a method to
generate IDIFs could be useful to derive the blood curve,
substituting the need of frequent arterial sampling and the use
of automated blood sampling systems. Still, all IDIF methods
(including PWC) require at least one arterial sample to provide
good accuracy in the estimates of VT. The need of arterial blood
has been one of the major concerns regarding the wide
applicability of IDIFs.16 Several methods without the need of
blood samples have been proposed,14,37–39 but their accuracy in
the estimates of VT and cerebral metabolic rate of glucose has
been shown to be significantly lower when compared with
methods including arterial blood sampling.15,33 Furthermore, even
if a non invasive method was able to provide high accuracy in the
blood curve estimate, multiple blood samples would still be
needed to correct for plasma-to-blood ratio and radioactive
metabolites, and to provide accurate estimates of binding
parameters.

An interesting alternative is to investigate the possibility to
replace arterial with venous samples when scaling the IDIF. For
radioligands with similar metabolism in both venous and arterial
blood, the metabolite analysis could be performed on venous
samples. Also, if the radioactivity level is similar in venous and
arterial plasma at late times of the acquisition, late venous
samples could be used to scale the IDIF. In a recent study, Hahn
and colleagues showed that IDIF together with venous samples
could be used to quantify 5HT1A receptor binding using the
radioligand [carbonyl-11C]WAY. The present study shows that also
for [11C]AZ10419369 data, arterial samples can be replaced with
venous samples. This interchangeability is possible since the
radioactivity level is similar in venous and arterial plasma at late
time points (data not shown), which is not the case for all
radioligands. For other radioligands that show differences of
radioactivity concentrations or parent fractions between arterial
and venous plasma, a potential solution is to use the venous
measurements to model the arterial plasma concentration,40

similarly to the work performed previously for nicotine
concentrations.41

Future Aims
With regard to the PWC method, calculating the PCC for all voxels
in a PET image is associated with a high computational load. For
this study, a super computer was used to generate results within
reasonable time. For the method to be applied in a more standard
setting, the algorithm could be optimized by reducing the number
of PCCs calculated (by including only artery voxels when
generating the sparse correlation matrix, i.e., only including rows
of interest in Figure 1A), and by executing the calculation on a
graphical processing unit. This approach is currently under
evaluation in our group.

Moreover, successful clustering of PET voxels using the PWC
method has other potential applications. For instance, by applying
the algorithm to parametric data, it may be possible to identify
voxels correlating across subjects. This approach can be used for
detecting and identifying pathologic patterns of radioligand
binding on a group level, and possibly to derive classifiers which
might serve as an aid in differentiating between control and
patient groups. Hence, the PWC method provides new exploratory
possibilities besides IDIF.

Conclusion
The PWC method was able to generate IDIFs which were similar to
the MIFs for both radioligands evaluated in this study. For the
[11C]AZ10419369 data, no arterial samples were needed for
accurate estimation of IDIFs. Kinetic modeling using IDIFs
provided VT values in good agreement to those obtained with
MIF. Of the methods evaluated in this study, the PWC method
showed best accuracy in the estimates of VT, whereas Chen’s and

Mourik’s approaches were more radioligand dependent. The
method described by Naganawa et al showed large variability of
VT, and sometimes provided negative blood curves. Further
validation to other radioligands is needed to assess the wide
applicability of the algorithm in clinical studies. However, the PWC
method provides a novel way of representing dynamic PET data,
and may provide other exploratory applications.
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