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Early identification of potentially salvageable tissue with MRI-
based predictive algorithms after experimental ischemic stroke
Mark JRJ Bouts1, Ivo ACW Tiebosch1, Annette van der Toorn1, Max A Viergever1, Ona Wu2 and Rick M Dijkhuizen1

Individualized stroke treatment decisions can be improved by accurate identification of the extent of salvageable tissue. Magnetic
resonance imaging (MRI)-based approaches, including measurement of a ‘perfusion-diffusion mismatch’ and calculation of
infarction probability, allow assessment of tissue-at-risk; however, the ability to explicitly depict potentially salvageable tissue
remains uncertain. In this study, five predictive algorithms (generalized linear model (GLM), generalized additive model, support
vector machine, adaptive boosting, and random forest) were tested in their potency to depict acute cerebral ischemic tissue that
can recover after reperfusion. Acute T2-, diffusion-, and perfusion-weighted MRI, and follow-up T2 maps were collected from rats
subjected to right-sided middle cerebral artery occlusion without subsequent reperfusion, for training of algorithms (Group I), and
with spontaneous (Group II) or thrombolysis-induced reperfusion (Group III), to determine infarction probability-based viability
thresholds and prediction accuracies. The infarction probability difference between irreversible—i.e., infarcted after reperfusion—
and salvageable tissue injury—i.e., noninfarcted after reperfusion—was largest for GLM (20±7%) with highest accuracy of risk-
based identification of acutely ischemic tissue that could recover on subsequent reperfusion (Dice’s similarity index¼ 0.79±0.14).
Our study shows that assessment of the heterogeneity of infarction probability with MRI-based algorithms enables estimation of
the extent of potentially salvageable tissue after acute ischemic stroke.
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INTRODUCTION
Contemporary treatment protocols for patients suffering from
acute ischemic stroke ask for adequate and early identification of
tissue at risk of infarction to allow for proper clinical decision
making. Current thrombolytic treatment guidelines indicate safe
treatment time windows of 3 to 4.5 hours after stroke onset.1

However, this time window may be too strict in particular cases,
unnecessarily excluding patients who may benefit from
reperfusion therapy.2

Neuroimaging, particularly with magnetic resonance imaging
(MRI), provides a powerful tool for characterization of acute
cerebral ischemic tissue status, which can aid in treatment
decision making in individual patients.3 In particular, diffusion-
weighted imaging, for detection of acute ischemic tissue
damage,4 and perfusion-weighted imaging, for detection of
hemodynamic disturbances,5 provide sensitive and specific
means for acute stroke diagnosis. Dichotomization of MRI-
derived perfusion- and diffusion-based lesion volumes into
overlapping and nonoverlapping areas enables selection of
patients with a ‘perfusion-diffusion mismatch’ who may be
eligible for thrombolytic treatment.2,6,7 However, lack of
standard postprocessing procedures and threshold values may
compromise robust characterization of a ‘perfusion-diffusion
mismatch’,3,8 and volumetric analysis may obscure and
oversimplify the complex and heterogeneous status of the
affected tissue.7,9,10 This mismatch area may therefore

overestimate the actual tissue area at risk,5,11,12 as well as
exclude injured tissue that is potentially salvageable.13

The complex relation between multiple pathophysiologic
factors involved in stroke lesion progression may be better caught
and described using multiparametric imaging-based statistical
algorithms. These algorithms allow voxelwise integration of
multiple MRI-based tissue and perfusion parameters to compute
a single quantitative probabilistic index.14,15 Multiparametric
algorithms can more accurately estimate risk of infarction
compared with single MRI-based parameters, and show good
correspondence with actual lesion outcome.14,16 However, it is
unclear whether such algorithms also enable accurate
differentiation between irreversibly damaged and potentially
salvageable tissue, which would significantly advance the value
of this approach for selection and planning of therapeutic
intervention.12,17

We hypothesized that acute imaging-based predicted infarction
areas can be subdivided into volumes of irreversible and
reversible tissue injury. Hence, we selected five well-established
predictive algorithms and determined each algorithm’s efficacy
in (1) early detection of tissue at risk of infarction and (2)
differentiating irreversibly damaged tissue from potentially
salvageable tissue, based on multiparametric MRI data after
experimental stroke. To that aim, we compared early measures of
infarction risk with final outcome after ischemic stroke in rats with
or without subsequent reperfusion.
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MATERIALS AND METHODS
Animal Procedures
We partly included data from animals that have been previously used for
another study.18 The current study provides new and original results that
have not been described in our previous study. Animal procedures were
conducted according to the guidelines of the European Communities
Council Directive and approved by the Ethical Committee on Animal
Experiments of the University Medical Center Utrecht and Utrecht
University. Surgical procedures have been described in detail
elsewhere.18,19 In brief, before surgery male Wistar rats (275 to 400 g,
Harlan, Horst, The Netherlands) received an intramuscular injection of
gentamicin sulfate (5 mg/kg) as antibiotic treatment, and 2.5 mL glucose-
saline solution to prevent dehydration. Subsequently, animals were
anesthetized by a subcutaneous injection of 0.5 mL/kg fentanyl citrate
(0.315 mg/mL) and fluanisone 10 mg/mL (Group I), or by mechanical
ventilation with 2% isoflurane in air to O2 (7:1) (Groups II and III). Body
temperature was maintained at 37.5 (±0.5)1C with a temperature-
controlled heating pad. The right carotid artery was exposed by a
ventral incision in the neck. A modified catheter was advanced into the
internal carotid artery, until the tip was proximal to the middle cerebral
artery (MCA). Unilateral MCA occlusion was induced by insertion of an
intraluminal filament (Group I) (1), or by slow injection of a homologous
blood clot (50 mm long, 24-hour old) (Groups II and III). Subsequently, the
wound was closed and animals received a subcutaneous injection of
buprenorphine (0.03 mg/kg) for pain relief, and 5 mL glucose-saline
solution to compensate for loss of water and minerals. In the first three
days after surgery, excessive weight loss was partially compensated by
subcutaneous injection of Ringer’s lactate solution (0 to 10 mL, depending
on degree of weight loss). Within 30 minutes after MCA occlusion (MCAo),
animals were positioned in the MR scanner, and acute imaging was
conducted between 0.5 and 2 hours after stroke. Immediately after the first
imaging session, Group II and III animals received saline (Group II) or
10.0 mg/kg recombinant tissue plasminogen activator (rt-PA; Actilyse,
Boehringer Ingelheim, Alkmaar, The Netherlands, 3.0 mg/mL) (Group III),
intravenously administered over a 30-minute period (10% bolus injection;
90% continuous infusion). Animals were allowed to recover afterwards.
Group I animals underwent a second MRI session at 72 hours after onset,
whereas for Group II and III animals MRI was repeated at 24 hours after
MCAo to confirm reperfusion and 168 hours to establish actual tissue
injury.

In Group I, 7 out of 14 rats with an acute lesion in the MCA territory
survived up to 3 days to undergo the second MRI session. In Groups II and
III, survival rate after successful MCAo was higher: 7 out of 9 animals in
Group II and 5 out of 7 animals in Group III survived up to day 7. This led to
the following sample sizes for the present study: Group I: n¼ 7; Group II:
n¼ 7; and Group III: n¼ 5.

Image Acquisition
Magnetic resonance imaging was conducted on a 4.7-T scanner
(Varian, Palo Alto, CA, USA). Group I animals underwent MRI—with a
9.0-cm inductively coupled Helmholtz coil for signal transmission and
detection—at 0.5 to 2 hours and at 72 hours after MCAo. For each session,
MRI consisted of T2-weighted spin echo (repetition time (TR)¼ 3,000 ms;
echo time (TE)¼ 17.5 ms; number of echoes¼ 8; data matrix¼ 128� 128
� 11; field-of-view (FOV)¼ 25� 25� 13.2 mm3; 0.13 mm interslice gap),
diffusion-weighted multislice echo planar imaging (TR¼ 2,000 ms; TE¼ 80
ms; data matrix¼ 128� 128� 11, FOV¼ 25� 25� 1.2 mm3; 0.13 mm
interslice gap; b¼ 124, 404, 844, and 1,444 s/mm2; 3 diffusion directions),
and dynamic susceptibility-weighted contrast-enhanced MRI (TR¼ 300 ms;
TE¼ 20 ms; flip angle¼ 51; data matrix¼ 64� 64� 3; 500 time points;
FOV¼ 25� 25� 3.6 mm3; 0.13 mm interslice gap) in combination with an
intravenous bolus of gadopentate-dimeglumine (Magnevist, Schering,
The Netherlands; 0.5 mg/kg).

Group II and III animals underwent MRI with an updated protocol—
using a 9.0-cm inductively coupled Helmholtz coil and an inductively
coupled 2.5-cm surface coil for signal detection, respectively—at 0.5 to 2,
24, and 168 hours after MCAo. Magnetic resonance imaging consisted of
T2-weighted spin echo (TR¼ 3,600 ms; TE¼ 15 ms; number of echoes¼ 12;
data matrix¼ 256� 128� 19; FOV¼ 32� 32� 19 mm3), diffusion-
weighted 8-shot echo planar imaging (TR¼ 3,500 ms; TE¼ 38.5 ms; b¼ 0
and 1,428 mm2/s; 6 diffusion directions; data matrix¼ 128� 128� 19;
FOV¼ 32� 32� 19 mm3), and dynamic susceptibility-weighted contrast-
enhanced MRI (TR¼ 330 ms; TE¼ 25 ms; flip angle¼ 51; data matrix¼
64� 64� 5; 400 time points; FOV¼ 32� 32� 5.0 mm3) was acquired in

combination with an intravenous bolus of gadobutrol (Gadovist, Schering,
The Netherlands; 0.32 mmol/kg).

Image Processing
Parametric maps of the T2 and trace of the apparent diffusion coefficient
(ADC) were calculated by mono-exponential fitting. Maps of the cerebral
blood flow index (CBFi), cerebral blood volume, and mean transit time
(MTT) were calculated by tracer arrival time-insensitive deconvolution,20

with an arterial input function from two voxels in the ipsilateral internal
carotid artery. Relative tracer delay and dispersion were determined from
the time-to-peak of the derived residue function (Tmax).20 All parametric
maps were spatially aligned using a nonrigid co-registration procedure.21

This was followed by segmentation of brain parenchyma from surrounding
tissue using the brain extraction tool.22 All maps were normalized
and expressed as relative after dividing each voxel by mean values of
normal appearing contralateral gray-matter regions, except for Tmax. Tmax

maps were normalized by subtraction of the derived mean values.12 Mean
contralateral gray-matter values were calculated using a contralateral,
cerebrospinal fluid-excluded mask of four consecutive slices.
Contamination by white-matter tissue was prevented by three
consecutive morphologic erosion steps. Ipsilateral and contralateral
hemispheres were defined by a manually derived linear boundary
through the midline. Cerebrospinal fluid, specified as voxels with T2

values at least 4.5 standard deviations higher than mean normal
contralateral values (from 65 control rats), was excluded in further
analysis. Infarcted tissue was automatically identified as voxels with T2

values at least 2 standard deviations higher than mean contralateral gray-
matter values on poststroke day 3 (Group I) or 7 (Groups II and III) (T2-based
lesion sizes at day 3 after permanent MCAo or at day 7 after embolic stroke
have been shown to correspond with infarction size on postmortem
histologic sections23,24). Acute perfusion abnormality was similarly
identified on acute MTT values. Acute diffusion abnormality was defined
as at least 2 standard deviations lower than mean contralateral ADC
values. Volumes with abnormal tissue were subsequently normalized by
the total ipsilateral hemispheric volume, and expressed as hemispheric
lesion fraction (HLF¼ lesion volume/ipsilateral hemispheric volume). The
volumetric difference between the acute perfusion and diffusion
abnormality was used to determine the perfusion-diffusion mismatch.
A reduction of 440% in the volume of perfusion abnormality from
2 to 24 hours in Group II and III animals was considered as indicative of
reperfusion.

Tissue Outcome Prediction
To predict poststroke tissue infarction, we used predictive algorithms that
combine a carefully balanced set of acutely acquired MRI parameters
(xi¼ x1,.., xm)—here T2, ADC, CBF, MTT, and Tmax—on a voxelwise basis in
relation to corresponding tissue infarction derived from T2 follow-up
maps.25 A predictive algorithm calculates, based on a training data set, an
optimized set of coefficients that map a relation of samples from the
acutely acquired images to a class that represent ultimately infarcted tissue
and a class that represents noninfarcted tissue. Subsequently, this set of
coefficients can be used to estimate the probability of tissue infarction
(Pinfarct¼ P(infarct|x1,.., xm)) from newly introduced samples. To estimate
Pinfarct, we selected five predictive algorithms based on (1) a generalized
linear model (GLM),14 (2) a generalized additive model (GAM),26 (3) a
support vector machine (SVM),16,27 (4) decision tree-based adaptive
boosting (ADA),28 and (5) random forest (RF).29 Of these five algorithms,
GLM and SVM had previously shown to successfully predict the extent of
tissue infarction.14,16

Generalized linear model, GAM, and SVM estimate Pinfarct by a logistic
function: P¼ 1/(1þ e� Z(x)) where Z(x) is a link function that defines the
relationship of M MRI parameters (x) to the tissue outcome at follow-up.
In GLM, Z(x) is a linear link function: ZðxÞ¼

PM
j¼ 1 bjT xj þ a, with b

describing the weights of each MRI parameter, and a the bias or intercept
of the linear function. Coefficients a and b can be estimated using iterative
reweighted least squares fitting.14,30 In GAM, b is replaced by an additional
smoothing term f(x): ZðxÞ¼

PN
j¼ 1 fjðxjÞþ a defining a nonlinear link

function, where f(x) can be estimated using cubic spline regression.26 In
contrast to GLM and GAM, SVM uses a more indirect relationship defined
in Z(x). In SVM, Z(x) is a decision function that aims to subdivide the two
tissue classes (infarct versus noninfarct). This binary decision function
describes a linear hyperplane that aims to maximize the separating gap
(i.e., margin) between the two tissue classes’ training samples and is
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defined as: f ðxÞ¼
PN

i yiai�Kðx; xiÞþ b
� �

. a is a weighting vector that

selects only those samples closest to the class boundaries, which
contribute to the estimation of the linear hyperplane (i.e., support
vectors). a is bound between 0 and C, a regularization parameter that
controls the tradeoff between optimizing the margin and allowing
for some samples to reside on the wrong side of the decision boundary
(i.e., misclassification error). Furthermore, a transformation kernel K(x, xi)
can be used to circumvent the need of estimating a highly complex
hyperplane by rearranging the data such that it allows for a simple linear
decision boundary.16,27 In the end, class probability is obtained after fitting
the binary decision function results to a sigmoid function.27

In contrast to GLM, GAM, and SVM, which define a single effective
classification function, Pinfarct can be estimated by combining multiple
apparently less effective decisions of which the combined probabilistic
estimate may be highly effective.29,31 In decision tree analysis, the
presented training data are recursively dichotomized in subgroups until
node purity (i.e., all subgroup samples belong to the same class) is
maximized.31 Yet, small variations in training data sampling may result
in highly different decisions, i.e., decision trees are highly instable.
This instability may therefore make these trees highly ineffective.
Instability can be circumvented and made beneficial by using the
collective classification or ensemble result of multiple decision trees for
estimating infarction probability.12 In this study, two ensemble methods
were tested: ADA and RF. In this context, ADA was applied as an ensemble
meta-algorithm that sequentially grows and weighs multiple decision trees
to give an estimate of infarct probability. At each iterative step, weights are
adjusted to emphasize the incorrect classifications, focusing on the parts of
the training data that needs most improvement.32 Random forest is
another type of ensemble method that provokes decision tree instability
using bootstrap aggregating or bagging. A subset of randomly drawn
samples with replacement from the set of training samples is used to
simultaneously create multiple, variable decision trees. Variability is further
established by randomly selecting a subset of MRI parameters for
branching the decision trees’ nodes (i.e., ‘tries’). Infarction probability is
determined by majority vote of each tree’s classification result.29

Details on operational parameter optimization of the algorithms can be
found in Supplementary Data.

Each algorithms’ prediction accuracy was determined in Group I with a
jack-knifing (i.e., leave-one-out) approach to prevent bias.33 Predictions in
Group II and III were based on aggregated data from Group I-trained
models. Prediction accuracy was assessed by comparing the estimated
infarction probability to the follow-up T2-based tissue outcome. Probability
maps were iteratively thresholded in step values of 1% ranging from 0% to
100%, and at each threshold, the voxels with correct and incorrect
predictions of infarction—true positives (TP) and false positives (FP),
respectively—and noninfarction—true negatives (TN) and false negatives
(FN), respectively—were calculated. This allowed calculation of model
sensitivity or recall (snc¼ recall¼ TP/(TPþ FN)); specificity (spc¼ TN/(TNþ
FP)); and the positive predictive value or precision (prc¼ TP/(TPþ FP)).
Subsequently, sensitivity and 1-specificity were used for receiver operator
characteristic (ROC) statistics. Precision and recall values were used to
create precision-recall (PR) graphs. In ROC statistics, highly skewed data
sets can give a biased view of an algorithm’s performance that may be
avoided using PR statistics.34 Quantitative comparisons were provided by
calculating the area under the curve of the ROC (AUCroc) and PR curve
(AUCpr). Infarction probability maps were thresholded at 50% to define
predicted infarct fraction (PIF¼ predicted infarct volume/ipsilateral
hemispheric volume).17,30 Overlap of PIF and ultimate infarct fraction
defined from follow-up T2 maps was expressed by Dice’s similarity index
(DSI¼ (TPþ TP)/(TPþ FPþ FNþ TP)), and used to assess spatial accuracy.35

Differentiation Between Irreversibly Damaged and Potentially
Salvageable Tissue
Group II and III animals were then used to differentiate between
irreversibly damaged tissue, and tissue at risk of infarction that could be
saved on reperfusion. Therefore, acute infarction risk maps were further
partitioned into (1) normal appearing tissue (acute infarction probability
o50%); (2) irreversibly damaged tissue (acute infarction probability 450%
and tissue abnormality at follow-up stage); and (3) potentially salvageable
tissue at risk (acute infarction probability 450% and normal tissue
appearance at follow-up stage). The infarction probability threshold that
optimally separated potentially salvageable from irreversibly damaged
tissue was determined by calculating interclass and intraclass infarction
probability variance at probability values between 1% and 100%. Optimal

differentiation was considered at the threshold for which interclass and
intraclass variances were highest and lowest, respectively.36 The derived
threshold was then applied to assess the overlap (with DSI) of: acutely
predicted irreversibly damaged tissue and infarction at follow-up (i.e., TP);
acutely predicted irreversibly damaged tissue and salvaged tissue at
follow-up (i.e., FP); acutely predicted potentially salvageable tissue and
normal appearing tissue at follow-up (i.e., TN); and acutely predicted
potentially salvageable tissue and infarction at follow-up (i.e., FN).

Statistical Analysis
Mean predicted infarction risk for each algorithm was compared using
repeated measures ANOVA with post hoc Tukey HSD correction. Prediction
performance measures and tissue volume fractions were compared using a
two-tailed Kruskal–Wallis test. Unpaired data were subsequently tested
with post hoc two-tailed Mann–Whitney rank sum test and false discovery
rate (fdr) correction; pairwise comparisons were tested with two-tailed
Mann–Whitney signed rank test with fdr correction.

RESULTS
Acute and Follow-Up Lesion Volumes
Figure 1 shows lesion volumes, expressed as hemispheric lesion
fraction (HLFs), calculated from acute diffusion, acute perfusion,
and follow-up T2 MRI. In the acute phase, diffusion- and perfusion-
based lesion volumes were not statistically different between
groups; at follow-up, however, infarct volumes in Group I
(permanent filament MCAo; day 3) were significantly larger than
those in Groups II and III (embolic MCAo with reperfusion; day 7).
All groups showed a significantly smaller acute diffusion-based
lesion volume as compared with the volume of acute perfusion
loss, i.e., ‘perfusion-diffusion mismatch’. Follow-up T2-based lesion
volume was comparable to the acute perfusion-based lesion
volume in Group I, and to the acute diffusion-based lesion volume
in Groups II and III. Magnetic resonance imaging at 24 hours after
stroke revealed that the tissue volume with perfusion abnormality
had reduced by 440% in all but one (Group III) animal in Groups II
and III, indicative of reperfusion.

Figure 1. Hemispheric lesion fractions (HLFs) based on abnormal
values on acute apparent diffusion coefficient (ADC) maps (‘acute
diffusion’), acute mean transit time (MTT) maps (‘acute perfusion’)
and follow-up T2-weighted images (‘follow-up T2’), respectively, in
Groups I–III (meanþ sd). *Po0.05 versus acute perfusion-based HLF;
yPo0.05 versus Group I follow-up T2-based HLF.

Detection of salvageable tissue after stroke
MJRJ Bouts et al

1077

& 2013 ISCBFM Journal of Cerebral Blood Flow & Metabolism (2013), 1075 – 1082



Prediction of Infarction
The five predictive algorithms were trained with Group I data and
subsequently applied to Group I, II, and III data. Figure 2 shows
examples of resultant infarction probability maps in Group I, II, and
III animals. Based on AUCroc, AUCpr, sensitivity, and specificity
values, all algorithms predicted actual infarction approximately
equally well in (training) Group I (Figure 3). The size of overlap
between the 50% risk-thresholded predicted infarction and actual
infarcts on follow-up was similar for all algorithms (mean
DSI¼ 0.77±0.11; P¼ 0.99), which was also the case for the areas
under the ROC curve (AUCroc¼ 0.88±0.12; P¼ 0.99) and PR curve
(AUCpr¼ 0.82±0.12; P¼ 0.74).

Prediction accuracy in Groups II and III was similar for all
algorithms. In contrast to Group I, however, the volumes of
increased risk of infarction were significantly larger than follow-up
infarct volumes in Groups II and III. This was reflected by
significantly lower model specificity, AUCpr, and DSI in Groups II
and III as compared with Group I (Figure 3).

Infarction probability values within the predicted infarction
volume were significantly different between algorithms (Table 1),
despite similarity in size of the predicted infarction (P¼ 0.83).
Overall, mean infarction probability in predicted infarction volume
was highest for ADA, and lowest for GLM. For all algorithms,
infarction probability values in the predicted infarct volume were
significantly higher in Group I as compared with Groups II and III,
which was associated with a higher degree of perfusion loss (see
also Figure 5). Nevertheless, the infarction probability values of
tissue that actually infarcted were not significantly different
between groups (Table 1).

Differentiation Between Irreversibly Damaged and Potentially
Salvageable Tissue
Table 1 shows that infarction probabilities in the predicted
infarction volume were lower in subsequently salvaged tissue as
compared with ultimately infarcted tissue, which was most
evident for GLM. Infarction probability profiles within the
predicted infarction volumes were further categorized based on

the smallest intraclass and largest interclass variance of areas that
corresponded with eventually salvaged (FP) and eventually
infarcted tissue (TP). Optimization yielded the lowest threshold

Figure 2. Coronal rat brain slices with acute diffusion (apparent diffusion coefficient (ADC) map; hypointensity) and perfusion abnormalities
(mean transit time (MTT) map; hyperintensity) after permanent filament MCA occlusion (MCAo) (Group I) (A); embolic MCAo followed by
vehicle treatment (Group II) (B); and embolic MCAo followed by recombinant tissue plasminogen activator (rt-PA) treatment (Group III) (C).
Color-coded maps overlaid on anatomic template images display predicted risk of infarction (thresholded at 50%) calculated with generalized
linear model (GLM), generalized additive model (GAM), support vector machine (SVM), adaptive boosting (ADA), and random forest (RF)
algorithms. Predicted infarction in Group I (A) corresponded well with the infarct on follow-up (F/U) T2 map (hyperintensity), whereas infarct
predictions in Groups II (B) and III (C) overestimated the ultimate infarct. Heterogeneity in risk values within the predicted infarction areas was
particularly evident on GLM-based maps in Group III (C), in which the follow-up infarct correlated well with high risk values (green
arrowheads), whereas salvaged tissue had distinctively lower risk values. This was less evident for ADA- or SVM-based predictions.

Figure 3. Performance measures of the predictive algorithms for
Groups I, II, and III (meanþ s.d.). AUCroc, area under the receiver
operator characteristic (ROC) curve; AUCpr, area under the precision-
recall (PR) curve; SNC, sensitivity; SPC, specificity; DSI, Dice’s
similarity index at a risk threshold of 50%; GLM, generalized linear
model; GAM, generalized additive model; SVM, support vector
machine; ADA, adaptive boosting; RF, random forest. *Po0.05 versus
Group I; fPo0.05 versus GLM.
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for GLM (74±1.0%, Po0.05 versus all other algorithms). For ADA,
the threshold value was highest (82±1.4%). Figure 4 depicts
density profiles of calculated infarction probabilities in Groups II
and III. Infarction probability difference between potentially
salvageable and irreversibly damaged tissue was largest for GLM
(20±6.9%) and GAM (21±5.0%), which was significantly higher
than the difference (13±4.3%) calculated with ADA (Po0.05).
Absolute values of acute MRI parameters in contralateral gray
matter and potentially salvageable and irreversibly damaged
ipsilateral tissue are presented in Supplementary Table 1.

Figure 5 shows that in all groups, acute CBF, MTT, and Tmax

values were significantly different in the predicted irreversibly
damaged and potentially salvageable tissue as compared with
contralateral, indicative of critical perfusion loss. The ADC values
were significantly lowered in potentially salvageable tissue, but

ADC values of predicted irreversibly damaged tissue were lower
(Po0.001). T2 values were also significantly different in the
predicted irreversibly damaged and potentially salvageable tissue
as compared with contralateral. Furthermore in Group II, T2 was
slightly elevated in irreversibly damaged tissue compared with
salvageable tissue. These changes are reflective of progressive
tissue injury.

The overlap (expressed as DSI and depicted in Figure 6)
between acutely predicted infarction volume and actual infarct
volume at follow-up revealed that GLM and RF recognized
potentially salvageable tissue best with highest overlap of
predicted salvageable and actually salvaged tissue (TN), and
lowest overlap of acutely predicted irreversibly damaged tissue
but salvaged tissue at follow-up (FP). The TN DSI values for GLM
and RF corresponded with the degree of overlap between the
acute perfusion-diffusion mismatch volume and noninfarcted
tissue at follow-up (DSI¼ 0.82±0.12). The FN DSI values for
GLM and RF were also comparable to DSI between the
perfusion-diffusion mismatch and subsequently infarcted tissue
(DSI¼ 0.05±0.08).

Support vector machine performed worst with lowest overlap
for TN, and highest overlap of FP. Additionally, overlap
of predicted irreversibly damaged and ultimate infarction at
outcome (TP) was also lowest for SVM.

DISCUSSION
This study tested five different algorithms for early prediction of
poststroke tissue outcome, by evaluating accuracy in predicting
brain infarction, and efficacy in differentiating potentially salvage-
able tissue from irreversibly damaged tissue. All algorithms
performed equally well in acutely predicting the extent of tissue
that infarcted chronically after permanent filament MCAo in rats.
In a rat model of embolic stroke with subsequent spontaneous or
rt-PA-induced reperfusion, it was shown that differences in the
distribution of acutely predicted infarction risk values, particularly
with GLM and RF algorithms, could be exploited to differentiate
salvageable tissue from irreversibly damaged tissue.

Previous predictive modeling studies have speculated on the
use of differences in spatial distribution of calculated infarction
probabilities as a tool for selecting stroke patients eligible for
therapeutic intervention12 and for estimating potential treatment
responsiveness.30 It has, for instance, been suggested that the
level of predicted infarction risk provides insight in the likelihood
of reperfusion.30 Our data show that tissue salvageability on
reperfusion is associated with the degree of infarction risk, which
depends on the level of acute ischemic injury.

Algorithms were first trained in a model of permanent MCAo
(Group I) to predict infarction when cerebral ischemia is sustained,
i.e., without reperfusion that could reverse the progression of
ischemic tissue injury. Animals in Groups II and III benefited from
early spontaneous or rt-PA-induced reperfusion, which prevented
lesion growth. Consequently, in contrast to Group I, follow-up
infarctions were significantly smaller than the volume of acute
perfusion loss. This allowed us to retrospectively identify
potentially salvageable tissue from the acute MRI data set, which
we compared against the calculated probability of infarction
modeled in Group I, i.e., if reperfusion would have been absent.
Although algorithms were not perfect in predicting the final
infarct (DSIo1.0), for each algorithm the calculated infarction
probability of tissue that indeed became infarcted, which was not
significantly different between the three groups (Table 1), showing
the sensitivity and specificity of infarction probability calculation
on underlying tissue status, with relative independence on
differences in stroke models (e.g., filament versus embolic MCAo),
anesthesia (e.g., fentanyl citrate and fluanisone versus isoflurane),
and MRI settings (e.g., small variations in imaging parameters). In
all groups infarction probability values reflected the degree of

Table 1. Predicted hemispheric infarction fractions and infarction
probability

Model Group Hemispheric
fraction

Infarction probability

PIV Infarcted
tissue

Salvaged
tissue

GLM
I 0.58±0.13 84±8 91±5 69±7
II 0.41±0.17w 70±8* 87±9 67±7
III 0.31±0.14*,w 72±3 89±9 68±6
Overall 75±9 89±8 67±6

GAM
I 0.59±0.15 87±6 96±4 73±9
II 0.38±0.17*,w 77±5 96±4 75±6
III 0.28±0.13*,w 78±4 95±6 74±9
Overall 81±7 96±4 74±7

SVM
I 0.60±0.15 90±2 95±2 83±4
II 0.40±0.16*,w 83±5* 96±2 81±5
III 0.30±0.11*,w 84±5* 95±4 81±8
Overall 86±5 95±3 82±5

ADA
I 0.56±0.15 94±4 99±0 82±8
II 0.36±0.18w 86±4* 99±2 85±5
III 0.25±0.12*,w 87±5 97±7 85±9
Overall 89±5 98±4 84±7

RF
I 0.59±0.14 87±5 94±3 74±8
II 0.40±0.17w 72±5* 91±5 73±5
III 0.31±0.10*,w 75±7* 91±10 73±9
Overall 79±8 92±6 73±7

Ultimate infarct
I 0.61±0.22
II 0.13±0.08*
III 0.12±0.11*

ADA, adaptive boosting; GLM, generalized linear model; GAM, generalized
additive model; RF, random forest; SVM, support vector machine.
Hemispheric fractions reflect the portions of ipsilateral tissue that was
predicted to become infarcted (at 50% risk threshold) as calculated with
GLM, GAM, SVM, ADA, and RF, and that ultimately turned out to be
infarcted (on follow-up T2 maps). Infarction probability (%) was calculated
in the entire predicted infarction volume (PIV), and in the portions that
were ultimately infarcted and salvaged at follow-up. Values are shown as
mean±s.d. for Groups I, II, and III, and averaged over all groups (‘Overall’).
Overall mean infarction probability in the predicted infarction volume was
significantly different between all algorithms (Kruskall–Wallis test:
Po0.001). *Po0.05 versus Group I; wPo0.05 versus ultimate infarct fraction.
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acute ischemic injury, expressed by perfusion reduction (high
probability of infarction was associated with lowered CBF, and
prolonged MTT and Tmax) and tissue impairment (high probability
of infarction was associated with lowered ADC and prolonged T2).

In earlier studies, the findings of different correlations between
acute brain tissue ADC37 or perfusion,5 and subsequent
infarction—reflective of the complex, heterogeneous and dynamic
nature of stroke pathophysiology—have raised the question
whether nonlinear relations of acute tissue status and eventual
outcome can be sufficiently captured with linear algorithms like
GLM.12,15,25 To that end, SVM and GAM have previously been
introduced, and the current study adds ADA and RF, as potentially
more effective models for nonlinear relationships.15,16

Our study shows that the level and distribution of calculated
infarction probability values can differ significantly between these
types of predictive algorithms. Where SVM and ADA provided
relatively smooth infarction probability maps, the distribution of
risk values was more heterogeneous with GLM, GAM, and RF.
These differences may be related to the underlying method for
discriminating infarcting from noninfarcting tissue. Regression
models (GLM and GAM) and RF define a more direct relation of
the training samples to the corresponding outcome. In ADA, and
particularly in SVM, however, this relation is more indirect
and aimed at iteratively optimizing the margin (dividing plane)
that optimally separates infarcted from noninfarcted tissue in the
training samples.27 Furthermore, SVM, originally a binary classifier,

requires an additional conversion step to obtain probabilistic
values, which may impose less accurate approximation of
probability.27

Nevertheless, the lack of significant differences between linear
and nonlinear algorithms in predicting the extent of infarction at
follow-up, which is in line with previous studies in experimental
settings16 and in human patients,38 challenges the advantage of
complex (nonlinear) predictive algorithms for improved stroke
outcome prediction. Our study suggests that the use of such
algorithms may impose loss of additional information that could
be of importance for further differentiation of heterogeneous
tissue conditions. The distribution of infarction probabilities
calculated with GLM, GAM, or RF was better linked to different
tissue outcome, i.e., irreversibly damaged or salvaged.
Nevertheless, it remains questionable whether any of these
algorithms can fully capture the complexity of poststroke tissue
dynamics within a single algorithm, particularly when timings of
stroke onset and reperfusion vary. We speculate that multiple or
hierarchically arranged algorithms, each describing a different
aspect of tissue outcome, might provide improved prediction
estimates.25,27 Careful selection of training data,17 and incorpora-
tion of additional imaging or nonimaging biomarkers, such
as tissue pH,39 oxygen extraction fraction,40 artery occlusion
site,41 or time after stroke onset may further contribute to voxel-
based stroke outcome predictions without increasing diagnostic
complexity.25

Figure 4. Density plots of acute infarction probabilities calculated with generalized linear model (GLM), generalized additive model (GAM),
support vector machine (SVM), adaptive boosting (ADA), and random forest (RF) in Groups II (A) and III (B). The plots show the distribution of
infarction probability values (0% to 100%) in ipsilateral normal-appearing tissue (‘normal’), potentially salvageable tissue (‘salvageable’), and
irreversibly damaged tissue (‘irreversible’). Based on retrospective comparison between acute and follow-up tissue status, risk thresholds were
determined that optimally differentiated between ‘normal’ and ‘salvageable’ (green dashed lines), and ‘salvageable’ and ‘irreversible’ (red
dashed lines). GLM, GAM, and RF allowed for larger differentiation between acutely predicted salvageable tissue and irreversibly damaged
tissue than SVM and ADA. For GLM, GAM, and RF, the percentage of voxels that were actually salvaged and acutely predicted as salvageable
(i.e., true negatives) was positively balanced compared with the percentage of voxels acutely derived as irreversibly damaged (i.e., false
positives) (percentages at top of each facet). In contrast, ADA and SVM revealed a negative balance. ROI, region of interest.
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In conclusion, we observed that different predictive algorithms
are similarly effective in depicting tissue at risk of infarction.
However, these algorithms had varying efficacy in differentiating
between areas that were irreversibly damaged versus areas that
could be salvaged after reperfusion. Our experimental stroke
study allowed direct comparison between acute infarction

predictions and ultimate tissue outcomes, and showed that
multiparametric MRI-based predictive modeling—with GAM, RF,
and particularly GLM algorithms—enables discrimination between
irreversibly damaged and potentially salvageable tissue. These
predictive models performed equally well in identifying tissue
amenable to reperfusion as compared with the perfusion-diffusion
mismatch model. Added value of the statistical algorithms is
provided by the quantitative information on infarction probability
on a voxelwise basis. Where assessment of tissue viability based
on single indices and a single threshold is challenging (particularly
in heterogeneous clinical settings), predictive algorithms give a
quantitative likelihood of infarction or salvageability based on
multiple parameters where each parameter describes a different
aspect of the pathophysiologic condition. This may contribute to
more confident treatment decision making and subsequent
monitoring in the early stages of ischemic stroke. These predictive
algorithms, which are readily applicable in preclinical and clinical
settings, therefore provide promising means for treatment
decision making and treatment efficacy monitoring after acute
ischemic stroke.
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Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J
Med 2008; 359: 1317–1329.

2 Davis SM, Donnan GA, Parsons MW, Levi C, Butcher KS, Peeters A et al. Effects of
alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic
Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol
2008; 7: 299–309.

3 Donnan GA, Baron J-C, Ma H, Davis SM. Penumbral selection of patients for trials
of acute stroke therapy. Lancet Neurol 2009; 8: 261–269.

4 Hjort N, Christensen S, Sølling C, Ashkanian M, Wu O, Røhl L et al. Ischemic
injury detected by diffusion imaging 11 minutes after stroke. Ann Neurol 2005; 58:
462–465.

5 Sorensen AG, Copen WA, Ostergaard L, Buonanno FS, Gonzalez RG,
Rordorf G et al. Hyperacute stroke: simultaneous measurement of relative cerebral
blood volume, relative cerebral blood flow, and mean tissue transit time.
Radiology 1999; 210: 519–527.

6 Schellinger PD, Bryan RN, Caplan LR, Detre JA, Edelman RR, Jaigobin C et al.
Evidence-based guideline: The role of diffusion and perfusion MRI for the
diagnosis of acute ischemic stroke: report of the Therapeutics and Technology
Assessment Subcommittee of the American Academy of Neurology. Neurology
2010; 75: 177–185.

7 Kidwell CS, Alger JR, Saver JL. Beyond mismatch: evolving paradigms in imaging
the ischemic penumbra with multimodal magnetic resonance imaging. Stroke
2003; 34: 2729–2735.

8 Sobesky J. Refining the mismatch concept in acute stroke: lessons learned from
PET and MRI. J Cereb Blood Flow Metab 2012; 32: 1416–1425.

9 Hjort N, Butcher K, Davis SM, Kidwell CS, Koroshetz WJ, Röther J et al. Magnetic
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