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Establishing test-retest reliability of an adapted ['®F]fallypride

imaging protocol in older people

Joel T Dunn'?, Chloe Clark-Papasavas®®, Paul Marsden’, Stacey Baker', Marcel Cleij', Shitij Kapur®, Robert Kessler*, Robert Howard?

and Suzanne J Reeves?

['®FIfallypride is a high-affinity dopamine D2/3 receptor tracer with the ability to reliably quantify D2/3 receptor sites in both striatal
and corticolimbic regions. The translational potential of ['®Flfallypride imaging is, however, limited by the lengthy scanning sessions
(60-80 minutes duration over a total of 3-4 hours) required by current protocols. The aims of our study were to adapt ['®Flfallypride
imaging for use in clinical populations with neurological and neuropsychiatric disorders, by reducing the duration of individual
scanning sessions; and to establish the reproducibility and reliability of our adapted protocol in healthy older people. Eight
participants (five male and three female; mean age = 75.87 + 4.39 years) were scanned twice, 4-6 weeks apart. ['®FIfallypride
binding potential was determined from image data collected during three sampling times: 0-30; 60-90; and 210-240 minutes post
injection. High reproducibility and reliability (test-retest variability <8%; intraclass correlation coefficient >0.8) were observed in
all but the prefrontal regions, and remained so when sampling times were reduced to 20 minutes (0-20; 70-90; 220-240 minutes).
The adapted protocol is feasible for use across neuropsychiatric disorders in which dopamine has been implicated and is sufficiently
sensitive to detect within-subject changes between 2.7% and 5.5% in striatal and limbic regions.
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INTRODUCTION

Since dopamine D2/3 receptors were first visualized in vivo in
humans,’ positron emission tomography (PET) tracers that target
dopamine D2/3 receptors have provided crucial insights into the
pathophysiology and treatment of psychiatric and neurological
disorders.>® Such tracers have been instrumental in guiding
treatment strategies in schizophrenia, by establishing a
‘therapeutic window’ of striatal D2/3 receptor occupancy by
antipsychotic drugs.*®> More recently, the development of high-
affinity D2/3 receptor tracers such as ['®Flfallypride® and
["'CIFLB4577 has shifted the focus of D2/3 receptor imaging
toward extrastriatal regions where receptor density is 10-100
times lower than the striatum.® This has allowed the clinical
relevance of corticolimbic D2/3 receptor occupancy to be
explored, has raised important questions regarding the
contribution of temporal cortical occupancy to therapeutic
response,”'® and remains a focus of investigation across a range
of atypical antipsychotic drugs.

Another major development in imaging technology has been
the use D2/3 PET tracers to image endogenous neurotransmitter
release. The observation that D2/3 tracers compete with
endogenous dopamine for receptor sites has been used in
imaging paradigms to investigate the sensitivity of the dynamic
system after pharmacological or behavioral challenge.'" High-
affinity D2/3 receptor tracers are increasingly used in this respect
as they offer the opportunity to explore the role of corticolimbic

dopamine release in human behavior'>'® and in a range of

neurological and psychiatric illnesses including schizophrenia-
spectrum disorders'* and Parkinson’s Disease."®

["®FIfallypride is unique among D2/3 receptor tracers, as it can
provide stable estimates of both striatal and extrastriatal receptor
availability within the same scanning session.® However,
techniques currently used to quantify ['®Flfallypride binding
involve multiple sampling periods (each lasting 60-80 minutes)
over a total scan duration of 3-4 hours, to allow tracer uptake to
achieve a plateau within the striatum where receptor sites are
more densely concentrated.>'® These imaging protocols are not
feasible for use in many clinical populations, particularly older,
cognitively impaired individuals or those with movement
disorders. Adapting ['®Flfallypride imaging for use in clinical
populations who are unable to tolerate lengthy scanning sessions
would widen its potential for use in understanding disease
mechanisms, drug occupancy, and dopamine release in response
to pharmacological and behavioral challenge.

The aims of the study were as follows:

(i) To adapt ['®FIfallypride imaging by reducing the length of
individual scanning sessions to 30 minutes.
(i) To establish the test-retest reliability of the adapted protocol
in healthy older people.
(iii) To investigate whether sampling times could be further
reduced to 20-minute sessions without reducing reliability.
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MATERIALS AND METHODS
Sample

Eight healthy older adults (five male and three female; mean
age =75.87 £4.39 years) were recruited to the study. Participants were
‘healthy controls’ identified from the Dementia Case Register database
within the South London and Maudsley (SLaM) NHS Trust, funded by the
National Institute of Health Research (NIHR Biomedical Research Centre).
All participants gave written informed consent. The study was approved by
the Joint South London and Maudsley and the Institute of Psychiatry NHS
Research Ethics Committee. Permission to administer [18F]fallypride was
given by the Administration of Radioactive Substances Advisory Commit-
tee. Before their involvement, a full medical and psychiatric history was
taken from participants, including dementia screening using the Mini-
Mental State Examination.!”” Exclusion criteria included (i) current or past
neurological or psychiatric illness, including drug and substance abuse;
(i) Mini-Mental State Examination score <26; (iii) history of any
cerebrovascular event; (iv) use of estrogen replacement therapy or other
medications, which may have affected brain dopamine activity; (v) needle
phobia; and (vi) other medical conditions that might affect the ability to
tolerate a brain scan, such as significant cardiorespiratory disease or severe
kyphosis. Structural imaging (T1-weighted magnetic resonance imaging
(MRI)) was carried out at the Centre for Neuroimaging Sciences to exclude
intracranial abnormalities.

PET Imaging Procedure

Participants were scanned twice at rest, 4-6 weeks apart, on a GE
(GE Healthcare, Hatfield, UK) VCT Discovery PET-CT camera (FWHM 5 mm),
at St Thomas' PET Centre. A molded head rest and straps were used to
minimize head movement and an external webcam was used to detect
significant head movements that could degrade the quality of image data.
["®FIfallypride was administered via a single bolus intravenous injection of
250 MBg. Each scanning session consisted of three dynamic scans in three-
dimensional (3D) mode, each lasting 30 minutes, and preceded by a low-
dose computed tomography scan for attenuation correction. Image data
were collected during three scanning sessions, determined from previous
["®Ffallypride studies in young adults;'®'®'® 0-30 minutes to provide an
input function to model a reference region approach; 60-90 minutes to
capture peak tracer binding within extrastriatal regions; and 210-
240 minutes to ensure that tracer binding had achieved a plateau in the
striatum of all participants (in a small proportion of people, the tracer may
take up to 210 minutes to achieve equilibrium)® and to achieve a good
model fit. The initial 3 minutes of the first scanning session acquired frames
with short duration (1 x 10seconds, 10 x 5seconds, 6 x 10seconds,
3 x 20 seconds). The remaining 87 minutes of scanning were acquired
using frame lengths of 1 minute.

Image Analysis

Data were analyzed using a simplified reference tissue model®' and the
cerebellum as a reference region. This approach has been previously
validated for the quantification of ['®Flfallypride BPyp®2 and found to have
good reproducibility and reliability.”® Preprocessing was performed using
SPM8 (www fil.ion.ucl.ac.uk/spm/software/spm8/) and all other analyses
using Matlab (www.mathworks.com). ['®FIfallypride images were
processed using SPM8 in Matlab. Non-attenuation corrected, fully 3D
iteratively reconstructed PET scans (GE ‘VuePoint’ reconstruction algorithm,
4 ierations, 28 subsets, 4.8 mm Hanning 3D-filter) were used for frame-by-
frame realignment. These transformations were then applied to
attenuation-corrected (AC) filtered back projected (Fourier-rebinned 2D
reconstruction, with geometric, deadtime, scatter, and random correction,
4.8 Hanning Transaxial filter, GE Scanner) PET images, which were used for
quantification, and AC-VuePoint PET images (4 iterations, 28 subsets,
4.8mm Hanning 3D-filter) used for warping atlases. All images were
reconstructed to 128 x 128 x 47 voxels with dimensions 2 x 2 x 3.27 mm®.

Method 1

Image data collected over the three sampling times (0-30; 60-90; and 210-
240 minutes) were used to quantify binding of ['®Flfallypride to dopamine
D2/3 receptors, expressed as BPyp>* The cerebellar reference region was
defined using the Automated Anatomical Labeling atlas** and included all
cerebellar regions apart from the vermis. Regions of interest (ROI) in areas
with specific binding were defined using the Tzioritzi atlas®® and included
the caudate, putamen, medial and inferior temporal gyri, thalamus,
amygdala, hippocampus, orbitofrontal cortex, and anterior cingulate gyrus.
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In addition to the Tzioritzi atlas, we used a pre-existing template that
defines the striatum in terms of its functional connections, and which has
been previously used to quantify [''C] Raclopride BPyp in people with
Alzheimer's disease.”” The striatal subdivisions were defined in standard
space (Montreal Neurological Institute, MNI), using the parameters
described by Martinez et al?® The boundary between the ventral (limbic)
striatum (inferiorly) and dorsal caudate and dorsal putamen (superiorly)
was defined using the anterior commissure-posterior commissure
transaxial plane. The ventral (limbic) striatum was sampled from the
anterior boundary of the striatum to the level of the anterior commissure
coronal plane. The transaxial plane was used to subdivide the dorsal
caudate and putamen into associative (caudate and putamen rostral to the
anterior commissure and the caudate caudal to the anterior commissure)
and sensorimotor (putamen caudal to the anterior commissure) striatum.

We chose not to coregister MRI with PET data, as our specific aim was to
establish the most widely applicable analysis method that would be
suitable for use in older, cognitively impaired individuals, in whom MRI
may be contraindicated or difficult to tolerate. As an alternative, atlases
(and the striatal functional subdivisions template) were warped to subject
space via a PET [18F]fallypride template in standard (MNI) space. The
['®FIfallypride template was created from six healthy young subjects,®®
using the following method:

1. Structural (MRI) data were spatially normalized to MNI space using the
unified segmentation algorithm in SPM.

2. These transforms were applied to each of the coregistered summed
(3-30 min) AC-VuePoint PET images.

3. A mean ['®Flfallypride template was calculated by scaling each
transformed PET image by the subject global mean, and then taking
the mean of the six PET images.

Method 2

Sampling times were reduced from 30 to 20-minute blocks (0-20; 70-90;
and 220-240 minutes). All other aspects of the image analysis were
identical to Method 1.

Statistical Analysis

All statistical analysis was carried out using SPSS 19 (www.spss.com). A
paired t-test was used to compare the administered dose of ['®Flfallypride
between test (scan 1) and retest (scan 2) scans. The reliability of the test-
retest values was determined by calculating an intraclass correlation
coefficient (ICC)*° for each region sampled. The absolute variability of
test-retest reproducibility was calculated as follows: (2|scan1 — scan2)|/
(scan 1+scan 2)] x 100. Percentage variability in mean BPyp between
Methods 1 and 2 was determined by: ((Method1_scan1-Method2_scan1|/
Method1_Scan1) x 100 and expressed as the mean and s.d. across
subjects. Power calculations were performed using ‘PS’ software®' The
regional percentage change in ['®Flfallypride BPyp detectable in a typical
within-subjects comparison (sample size = 15; paired t-test) was calculated
using a probability (power) of 0.8, and an associated type | error probability
() of 0.05. Percentage variability in mean BPyp was used as an estimate of
within-subject s.d.

RESULTS

Administered dose of ['®Flfallypride was 244.1 7.3 MBq. There
were no significant differences in administered dose between
scan 1 and scan 2 (mean difference =0.5 + 10.8 MBg, P=0.9).

Reliability Analysis

Method 1. Time-activity curves for Method 1 (30-minute
sampling times) are shown in Figure 1 (all ROI defined using the
Tziorotzi atlas), Figure 2 (extrastriatal ROIl, defined using the
Tzioritzi atlas), and Figure 3 (striatal functional subdivisions), and
represent the AC filtered back projected data on which the kinetic
analysis was carried out. Mean percentage test-retest differences
(% variability) and reliability (ICC) of regional ['®Flfallypride
binding for Method 1 are presented in Table 1. Reproducibility
was excellent within the caudate, putamen, amygdala, and
inferior temporal gyrus, where <5% variability was observed.
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Figure 1. Time-activity curves (Method 1) are shown for regions of

interest defined using the Tziortzi atlas and represent ['®Flfallypride
uptake in a single participant.
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Figure 2. Time-activity curves (Method 1) are shown for extrastriatal

regions of interest and represent ['®Flfallypride uptake in a single
participant.

All of the other regions examined showed high reproducibility
(< 8% variability), with the exception of the orbitofrontal cortex
(15.04% variability) and anterior cingulate gyrus (28.84% varia-
bility). Reliability (ICC) ranged from 0.804 (limbic striatum) to 0.988
(inferior and middle temporal gyri).

Method 2.  Mean percentage test-retest differences (% variability)
and reliability (ICC) of regional ['®Flfallypride binding for Method 2
(20-minute sampling times) are presented in Table 2. Reproduci-
bility remained excellent (<5% variability) in the caudate and
amygdala, and high (< 8% variability) in all but the limbic striatum
(8.25% variability) and prefrontal regions (orbitofrontal
cortex =17.45%; anterior cingulate gyrus=37.35%). Intraclass
correlation coefficient values ranged from 0.794 (anterior cingu-
late gyrus) to 0.986 (inferior and middle temporal gyri). When
regional ‘test’ BPyp values were compared across the two
methods (shown in Table 2) mean variability was 3.19% or less
in all regions sampled apart from the anterior cingulate gyrus
(14.47%) (shown in Table 2).
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Figure 3. Time-activity curves (Method 1) are shown for the striatal

functional subdivisions and represent ['®Flfallypride uptake in a
single participant.

Table 1. Test-retest reproducibility of regional ['®Flfallypride binding
using method 1 (3 x 30 minutes)

Region Test® Retest® Variability %°  ICC

Sensorimotor striatum 19.73 (2.66) 19.70 (2.06) 5.56 (2.69) 0.864
Associative striatum 17.50 (2.39) 17.58 (1.77) 5.05 (5.33) 0.845
Limbic striatum 16.90 (2.83) 17.04 (2.00) 7.12 (7.37) 0.804
Putamen 21.19 (2.82) 21.50 (2.15) 4.99 (3.76) 0.879
Caudate 16.57 (2.77) 16.71 (2.29) 3.44 (3.87) 0.961
Amygdala 1.77 (0.41) 1.76 (0.38) 4.08 (4.64) 0.976
Thalamus 1.48 (0.28) 1.47 (0.24) 6.10 (6.70) 0.903
Hippocampus 0.82 (0.21) 0.79 (0.19) 7.35 (6.40) 0.950
Inferior temporal gyrus 0.57 (0.21)  0.58 (0.20) 4.83 (7.61) 0.988
Middle temporal gyrus 0.39 (0.17) 0.39 (0.17) 6.40 (9.45) 0.988
Orbitofrontal cortex 0.21 (0.10) 0.23 (0.11)  15.04 (15.68) 0.923
Anterior cingulate gyrus 0.18 (0.10) 0.18 (0.09) 28.84 (39.59) 0.822

Abbreviation: ICC, intraclass correlation coefficient.
BPyp given as mean across subjects (s.d.). PAbsolute variance given as
mean across subjects (s.d.) =(|scan 1 —scan 2|/(scan 1+ scan 2)/2)*100.

Power Analysis

The results of a power analysis for a within-subject study design
and a sample size of 15 (paired t-test; «0.05, power=0.8) are
shown in Table 3. This indicates that method 1 would be
sufficiently sensitive to detect changes of 5% or less in all regions
apart from the limbic striatum (5.5%), hippocampus (5.7%),
orbitofrontal cortex (11.7%), and anterior cingulate gyrus
(22.4%). Method 2 could detect changes of 5% or less across
the caudate, putamen, dorsal striatal subdivisions, inferior
temporal gyrus, and amygdala; and larger changes in the other
regions.

DISCUSSION

This study has shown high reproducibility and reliability of an
adapted ['®Flfallypride protocol across the striatum, consistent
with previous test-retest studies on ['®Flfallypride in young
adults, which have used full modeling with arterial sampling®
or a simplified reference tissue approach®® to image analysis.
["®FIfallypride BPyp was also highly reproducible in the amygdala,
temporal cortex, thalamus, and hippocampus, comparable with
previous data on ['®F]fallypride.®** In contrast, reproducibility in
prefrontal regions was poor, particularly in the anterior cingulate
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Table 2. Test-retest reproducibility of regional ['®Flfallypride binding using Method 2 (3 x 20 minutes)

Region Test® Retest® Variability %" IcC Method 1 versus method 2°
Sensorimotor striatum 19.82 (3.04) 19.70 (2.06) 6.37 (3.70) 0.839 1.77 (1.13)
Associative striatum 17.55 (2.64) 17.56 (1.84) 5.80 (5.91) 0.837 1.66 (0.93)

Limbic striatum 16.94 (3.06) 16.99 (2.06) 8.25 (6.97) 0.802 1.56 (0.89)
Putamen 21.27 (3.19) 21.49 (2.21) 5.68 (4.86) 0.857 1.69 (0.98)
Caudate 16.62 (3.06) 16.68 (2.35) 443 (4.43) 0.946 1.72 (0.90)
Amygdala 1.76 (0.42) 1.75 (0.38) 4.70 (5.30) 0.967 1.02 (0.74)
Thalamus 1.47 (0.29) 1.46 (0.23) 6.60 (7.25) 0.890 1.13 (0.74)
Hippocampus 0.81 (0.21) 0.79 (0.18) 7.67 (7.84) 0.935 1.38 (1.11)

Inferior temporal gyrus 0.56 (0.21) 0.57 (0.20) 5.28 (9.96) 0.986 2.89 (2.60)

Middle temporal gyrus 0.38 (0.18) 0.38 (0.17) 7.94 (10.47) 0.986 3.19 (2.76)
Orbitofrontal cortex 0.21 (0.10) 0.22 (0.11) 17.45 (14.23) 0.915 2.70 (2.41)
Anterior cingulate gyrus 0.17 (0.11) 0.17 (0.09) 37.35 (54.16) 0.794 14.47 (20.50)
Abbreviation: ICC, intraclass correlation coefficient.

“BPyp given as mean across subjects (s.d.). PAbsolute variance given as mean across subjects (s.d.) = (|test — retest|/(test + retest)/2)*100. 9Given as mean
percentage difference between Method 1 and Method 2 test BPyp (s.d.) = ((Method1_test — Method2_test|/Method1_test) x *100.

Table 3. Regional detectable within-subject (%) change in
[18F]fallypride binding®
Region Method 1 Method 2
Sensorimotor striatum 43 5.0
Associative striatum 3.9 4.5
Limbic striatum 55 6.4
Putamen 3.9 44
Caudate 2.7 34
Amygdala 3.2 37
Thalamus 4.7 5.1
Hippocampus 5.7 6.0
Inferior temporal gyrus 38 4.1
Middle temporal gyrus 5.0 6.2
Orbitofrontal cortex 1.7 13.6
Anterior cingulate gyrus 224 29.1
?n=15; power = 0.8; o = 0.05.

cortex, where a higher mean and wider range of variability was
observed compared with the other regions sampled. These
findings are consistent but more marked than those of Cropley
et al,>® who similarly reported a high variability in the anterior
cingulate (21.8+3.8%) in healthy young adults. This is not
unexpected, given the relatively low signal to noise ratio of
['®FIfallypride in this region and the additional impact of age upon
D2/3 receptor availability in our sample,®*? which is more
pronounced in the anterior cingulate than other cortical
regions.>> Reducing individual sampling times to 20 minutes
produced the same pattern of reproducibility across striatal and
extrastriatal regions and increased test-retest variability minimally
in all but the prefrontal regions.

A ["®Flfallypride imaging technique that requires only brief
periods in the scanner could significantly enhance the transla-
tional potential of ['®Flfallypride imaging across a range of
neuropsychiatric disorders in which dopamine has been impli-
cated, including patients with dementia, Parkinson’s disease,
movement disorders, and disorders of impulsivity. Our primary
interest in adapting ['®Flfallypride imaging was to develop a
technique suitable for use in D2/3 receptor occupancy studies in
older and/or cognitively impaired patients. Older people are
extremely susceptible to antipsychotic side effects, including
extrapyramidal symptoms, falls, sedation, and increased cerebro-
vascular mortality.3*** The potential mechanisms underpinning
this heightened sensitivity are poorly understood, although
several theories have been proposed, including alterations in

© 2013 ISCBFM

central pharmacokinetics and reduced D2/3 receptor reserve in
the ageing brain.>® It has been suggested that the ‘therapeutic
window’ of striatal D2/3 receptor occupancy may be lower in older
people,®® but this has not been tested robustly using a within-
subject approach, nor has it been extended to extrastriatal
regions, such as the temporal cortex, that have been implicated in
treatment response in young psychotic adults.’

Our adapted protocol is sufficiently sensitive to detect small
percentage changes in all but the prefrontal regions, and is
therefore a suitable approach to establish the relative contribution
of limbic versus striatal occupancy in elderly patients during
antipsychotic treatment. This includes patients with schizophre-
nia-like illness, who are prescribed very low doses (1/10th of the
dose used in young adults) of antipsychotic medication®® and in
whom a relatively low regional receptor D2/3 receptor occupancy
might be anticipated. The fact that the length of individual
scanning times can be reduced to 20 minutes without significantly
compromising reliability increases its feasibility for use in patients
with dementia. It could be argued that patients with cognitive or
neurological impairment are likely to have more variable data than
healthy older participants and that longer scanning sessions may
be necessary to obtain data of sufficient quality. However, we
anticipate that shorter sessions will maximize patient cooperation
and reduce head movement confounds. The next stage of our
research will be to pilot the protocol as a pretreatment (baseline)
protocol in people with dementia who are about to begin
antipsychotic medication, both to assess tolerability and the
quality of the data collected over 30- versus 20-minute sampling
times. We also aim to adapt and optimize an interrupted scanning
protocol, which will be suitable for use post antipsychotic
treatment, as occupancy by antipsychotic medication will reduce
the number of available D2/3 receptor sites and shorten the time
taken to achieve equilibrium, particularly within striatal
regions.'®'® Similar considerations will need to be taken into
account when adapting the protocol for other types of
pharmacological interventions, which may alter tracer kinetics
and affect times of peak uptake and washout.

The decision not to use MRI data for coregistration with PET
images was based on our previous experience of imaging older
participants, particularly those with cognitive impairment,®” in
whom a multiple scan approach is more challenging and
tolerance for confined spaces is generally poor. As an
alternative, regions that were predefined on an atlas were
warped to participants’ PET images using a ['SFlfallypride
template and an automated procedure. This method is similar
to the approach previously used to quantify [''C] Raclopride BPyp
in people with Alzheimer's disease’” and has the advantage of
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removing any subjectivity in the placing of ROIs. However, the fact
that the templates originated from structural and functional
imaging data on healthy young adults could have impacted upon
the warping process. Although high tracer signal forms the key
component of the process, the accuracy of warping, particularly in
smaller, noisier regions, may have been reduced. Partial volume
effects, particularly relevant in an older sample,*® are also likely to
have affected the accuracy of tracer quantification. These factors
are likely to have contributed to the high test-retest variability in
the anterior cingulate gyrus. However, the method of image
analysis does not appear to have affected the pattern of
reproducibility across other brain regions, as our findings are
consistent with previously conducted test-retest studies that used
the participant’s MRI*®> or PET-MR coregistered images® to define
ROI. A further consideration is the fact that the sampling times
used to quantify cortical and striatal BPyp were based upon
['®FIfallypride studies carried out in young adults. Given that time
to achieve peak tracer binding is dependent upon receptor
density, and may be affected by age-related factors including
peripheral clearance, regional cerebral blood flow, and blood brain
barrier transport, it remains possible that the adapted protocol did
not optimally capture the peak in all participants. These
methodological limitations are less important for within-subject
study designs, but will need to be addressed to maximize the
potential of the protocol for use in between-subject comparisons,
or to correlate regional BPyp with behavioral measures.

In addition to receptor occupancy, we wanted to establish the
sensitivity of our protocol to detect changes in endogenous
dopamine after pharmacological or behavioral intervention.
Amphetamine displacement studies carried out in young adults
have found that ['Flfallypride is less sensitive to changes in
cortical dopamine levels than other high-affinity tracers such as
["'CIFLB457, because of its relatively low signal to noise ratio in
these regions.3® A sufficiently robust effect has, however, been
demonstrated across striatal and limbic (hippocampal and
amygdala) regions.'*'®#* A power calculation, using a standard
sample size of 15 (previous studies have included 10-25
subjects),'#'31>1939 indicates that our adapted protocol will be
sufficiently sensitive to detect within-subject changes between
2.7% and 5.5% within striatal and limbic regions using method 1,
and between 3.4% and 6.4% using method 2. As discussed earlier,
we have not yet established whether these findings will generalize
to cognitively or neurologically impaired populations, and this
issue is particularly relevant for studies that aim to quantify
endogenous dopamine release, where small changes in BPyp are
anticipated. Given the fact that sensitivity to detect within-subject
change is crucial for studies of this type, it may be advisable to
collect data over the longer (30 minute) sampling times used in
method 1 to image endogenous neurotransmission.

We have successfully adapted ['®Flfallypride imaging, using an
interrupted scanning protocol that considerably shortens scan-
ning times. The high reproducibility and reliability of this protocol
means that it could be applied not only to D2/3 receptor
occupancy studies but also to image endogenous neurotransmis-
sion in striatal and limbic regions. Future work will aim to pilot the
protocol in clinically relevant populations and to refine the image
analysis method to maximize its potential for use in between-
subject study designs.
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