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A Multiscale Approach
to Modeling the Passive
Mechanical Contribution
of Cells in Tissues
In addition to their obvious biological roles in tissue function, cells often play a signifi-
cant mechanical role through a combination of passive and active behaviors. This study
focused on the passive mechanical contribution of cells in tissues by improving our
multiscale model via the addition of cells, which were treated as dilute spherical
inclusions. The first set of simulations considered a rigid cell, with the surrounding ECM
modeled as (1) linear elastic, (2) Neo-Hookean, and (3) a fiber network. Comparison
with the classical composite theory for rigid inclusions showed close agreement at low
cell volume fraction. The fiber network case exhibited nonlinear stress–strain behavior
and Poisson’s ratios larger than the elastic limit of 0.5, characteristics similar to those of
biological tissues. The second set of simulations used a fiber network for both the cell
(simulating cytoskeletal filaments) and matrix, and investigated the effect of varying rela-
tive stiffness between the cell and matrix, as well as the effect of a cytoplasmic pressure
to enforce incompressibility of the cell. Results showed that the ECM network exerted
negligible compression on the cell, even when the stiffness of fibers in the network was
increased relative to the cell. Introduction of a cytoplasmic pressure significantly
increased the stresses in the cell filament network, and altered how the cell changed its
shape under tension. Findings from this study have implications on understanding how
cells interact with their surrounding ECM, as well as in the context of mechanosensation.
[DOI: 10.1115/1.4024350]
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1 Introduction

Understanding the mechanics of biological and bioengineered
tissues is difficult; unlike synthetic composite materials (e.g. lami-
nates), tissues are comprised of different components (cells,
fibrous protein networks, proteoglycans) that are distributed inho-
mogeneously, exhibit nonlinear mechanical behavior [1,2], and
can be highly anisotropic. In particular, cells play a complex role
in the mechanics of native and bioengineered tissues. In addition
to a passive component of cells as inclusions within an extracellu-
lar matrix (ECM), active mechanical contributions also exist from
the interactions between cells with the surrounding ECM (e.g.,
compaction, remodeling).

Early phenomenological and continuum modeling approaches
to understand tissue biomechanics (e.g., Refs. [1,3]) considered
both the cell and the matrix as continuous materials. Evolution of
such models has generally involved incorporation of microstruc-
tural detail and/or cellular phenomenon to develop improved con-
stitutive laws, e.g., models that incorporate fiber orientation
distributions to capture anisotropic behavior of the ECM sur-
rounding the cells [4–6], incorporation of “anisotropy tensors” to
account for cell orientation within a tissue [7–10], or a mathemati-
cal model motivated by localized variations in the pericellular
region [11,12]. In addition, multilevel finite element approaches
have been used to account for tissue inhomogeneity by discretiz-
ing cells from the surrounding ECM to consider cells as separate

entities [13]. While such models have had some success in
predicting tissue mechanics, the lack of microstructural detail in
their formulation limits their ability to explore the respective con-
tributions and interactions between different components within a
tissue. In contrast, structural approaches attempt to understand tis-
sue biomechanics by incorporating microstructural details directly
into the model to elucidate composition-structure-function rela-
tionships in biological tissues. One such model is the tensegrity
approach by Ingber and coworkers [14–17], who proposed that
cytoskeletal filaments and the ECM form a tensegrity structure in
combination with one another. The cellular solid model consid-
ered the cytoskeletal filaments as struts forming the edges of a
cubic cell that can bend and stretch under deformation [18–20].
Biopolymer models [21,22] utilize flexible polymer theories by
treating the single segments of the network as wormlike chains;
Boyce and co-workers extended the concept to create an eight-
chain volume-averaged network model [23]. The above men-
tioned models, while beginning to incorporate network micro-
structure detail into the model formulation, contain simplified
network representations that assume ordered periodicity within
the network.

Research in our group focuses on developing a comprehensive
model to predict the mechanical behavior of biological and bioen-
gineered tissues via a multiscale approach, with the fibrillar com-
ponents of the ECM represented as large random interconnected
networks. Multiscale modeling allows integration of the micro-
structural details of different components into the modeling
framework; hence capturing better the structural and mechanical
complexities that exist in a tissue, and relating structure and
mechanics on the microstructural level to overall tissue mechanics
at the macroscopic level. Recent efforts in extending this model
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have focused on the ECM, with the fibrous material (e.g. collagen)
represented by a fiber network and other nonfibrous components
(e.g. proteoglycans) represented as a solid Neo-Hookean material.
This framework has been successfully used to model tissues and
tissue equivalents, e.g., arteries [24], collagen–agarose cogels
[25,26], as well as model tissue damage [27]. A significant gap in
this model, however, is the absence of cells, which are integral
components in most tissues. The current work represents an
improvement of the multiscale model via the addition of cells, and
investigates the passive mechanical contribution of cells to overall
tissue mechanics. As such, it constitutes an extension of our early
study on passive cellular contribution based on Hashin’s solution
[28] for a composite of rigid inclusions in a homogeneous, linear,
and isotropic elastic matrix.

2 Materials and Methods

2.1 Multiscale Model Formulation. Cells were modeled as
dilute, noninteracting spherical inclusions embedded within a
fibrous ECM network. Cells were assumed to be dilute and nonin-
teracting, such that they could be considered as organized in a per-
iodic lattice (Fig. 1(a)). As such, a simplified mesh geometry
containing a sphere in a box was sufficient to describe the cell-
matrix system. Finite element mesh generation was performed in
ABAQUS (Dassault Systèmes Americas Corp., Waltham, MA); the
cell was represented by an eighth of a sphere contained within a
cube, with three symmetry planes as shown in Fig. 1(b). Three
mesh geometries, corresponding to 5, 10, and 15% cell by volume,
were created. For each case, tensile tests of up to 10% stretch in
the 1 direction were simulated by imposing displacement of 0.5%
stretch per step on the positive 1 face over 20 steps; stress free
boundary conditions were prescribed on the positive 2 and 3 faces
by allowing compaction on these faces (Fig. 1(b)).

Our multiscale model couples the macroscopic scale (i.e. finite
element mesh representing the tissue level) with the microscopic
scale (representing the fibrous ECM network) via volume averag-
ing; a summary of the methodology is described here, with more
detailed description found in Refs. [29,30]. Briefly, each of the
eight Gauss points in every element is associated with a unique
representative volume element (RVE) comprised of a network
of randomly oriented fibrils (Fig. 1(b)), with the fibrils intercon-
nected at crosslinks represented by freely rotating pin joints. Ini-
tial guesses for the displacements of each RVE boundary are
determined by linear interpolation of the nodal displacements to
every Gauss point within the element; in turn, these nodal dis-
placements are determined by the imposed macroscopic boundary
conditions as described in Fig. 1(b). Force balances within each
RVE are solved instead of a constitutive equation at each Gauss

point. At static equilibrium, the vector sum of forces exerted by
fibrils connected at each crosslink is zero, and the macroscopic
(averaged) RVE Cauchy stress tensor, rmacro

ij , can be computed by
the forces exerted by the fibrils on the RVE boundaries

rmacro
ij ¼ 1

V

ð
V

rmicro
ij dV ¼ 1

V

X
boundary
crosslinks

xiFj (1)

where V is the RVE volume, xi is the ith component of the coordi-
nate where the fibril intersects the boundary, and Fj is the jth com-
ponent of the force acting on the boundary by the fibril. rmicro

ij is
the microscopic stress tensor of individual fibrils in the network;
for a single fiber intersecting with a boundary,

þ
dV

rmicro
ij nidS ¼ Fj (2)

where Fj is as defined above, and ni is the unit normal of the
boundary intersected by the fibril in question. The force exerted
by each fibril, F, is governed by the exponential constitutive equa-
tion [31,32]

F ¼ A

B
exp BEf

� �
� 1

� �
(3)

In the above equation, A and B are material constants for each
individual fibril. The constant A is a measure of fibril stiffness,
and B captures the degree of nonlinearity in mechanical behavior
of individual fibrils. Ef is the fibril Green strain computed from
the fibril stretch ratio, kf:

Ef ¼
1

2
k2

f � 1
� �

(4)

At small strains (i.e., as kf ! 1), a Taylor series expansion around
Ef¼ 0 reduces Eq. (3) to a linear elastic fibril. The components of
this force in each direction (Fj in Eq. (1)) are computed by multi-
plying the force F (in Eq. (3)) with the respective directional
cosines for each fibril. Solving the macroscopic force balance
yields the following expression for the divergence of the macro-
scopic Cauchy Stress tensor

rmacro
ij;i ¼ 1

V

þ
dV

rmicro
ij � rmacro

ij

� �
uk;inkdS (5)

where uk is the RVE boundary displacement and nk is the unit nor-
mal vector, and rmacro

ij defined in Eq. (1); Eq. (2) allows calcula-
tion of the integral of rmicro

ij in terms of the boundary forces. The
final deformation of each RVE at each Gauss point is dependent
on the solution of Eq. (5) upon convergence.

2.2 Model Specification

2.2.1 Rigid Cell. Cells were first modeled as rigid inclusions
by fixing all the nodes in the spherical region of the mesh. These
simulations were motivated by our previous work on fibroblast-
populated collagen gels, which compared experimental data to an
analytical solution of an inclusion-based model [28]. While we
acknowledge that cells are generally deformable, this set of simu-
lations allowed for direct comparison between our multiscale
model predictions and this analytical solution. Developed by
Hashin, this theory of linear elastic spherical inclusions embedded
in an elastic, homoegeneous, isotropic matrix gave analytical
expressions for approximating the composite bulk modulus
(K*) and shear modulus (G*) from material constants of the inclu-
sion (Kp, Gp), matrix (Km, Gm, Poisson’s ratio �m), and volume
fraction of inclusions (c). In the limit of rigid inclusions (i.e., Kp,
Gp!1), these expressions reduce to [33]

Fig. 1 (a) Schematic representation of cells within a tissue
organized in a periodic lattice, based on the assumption that
cells are dilute, noninteracting, and spherical in shape. (b)
Finite-element mesh showing boundary conditions and three
symmetry planes. In the multiscale formulation, each Gauss
point in every element is associated with a unique representa-
tive volume element (RVE) comprised of a random, intercon-
nected network.
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K�

Km
¼ 1þ 3 1� �mð Þc

1þ �mð Þ 1� cð Þ (6)

G�

Gm
¼ 1þ 15 1� �mð Þc

2 4� 5�mð Þ 1� cð Þ (7)

Three different cases were considered for the surrounding ECM:
(1) linear elastic material (Hookean), (2) hyperelastic material
(Neo-Hookean), and (3) a network of fibers, using our multiscale
model as described above. Simulations for these three ECM cases
were performed with rigid cell volume fractions of 0%, 5%, 10%,
and 15%. In the no cell case (i.e., 0% cell volume fraction), results
for the linear elastic and Neo-Hookean matrix cases were obtained
directly from their respective constitutive equations (Eqs. (8) and
(9) below); for the case of the ECM containing a network of fibers,
the mesh for 5% cell volume fraction was used, with all elements
(including the cell elements) assigned as ECM elements. The linear
elastic matrix was governed by Hooke’s law

rmatrix
ij ¼ 2Gmeij þ

2Gm�m

1� 2�mð Þ ekkdij (8)

where eij is the small strain tensor. These simulations were run in
MATLAB (The Mathworks, Inc., Natick, MA) using a custom code.
The form of the Neo-Hookean equation used is [24,34]

rmatrix
ij ¼ Gm

J
Bij � dij

� �
þ 2Gm�m

J 1� 2�mð Þ ln Jð Þdij (9)

where J is the determinant of the deformation tensor Fij : @xi/
@Xj, and Bij is the left Cauchy–Green deformation tensor given by
Bij¼FikFjk. For these elastic models, the matrix shear modulus
was set at Gm¼ 4.2 kPa, similar in magnitude to the value used to
model the nonfibrillar matrix of the arterial wall [24,35]. While
soft tissues typically exhibit high Poisson’s ratios in tension, often
values greater than 1 [36–38], Eqs. (6)–(9) are governed by elas-
ticity theory and are only valid for Poisson’s ratios ranging
between �1 and 0.5; as such, the matrix Poisson’s ratio was set at
�m¼ 0.3 for these models.

For an ECM comprising of a fibrous network, a Voronoi net-
work of fibrils was used, generated from Voronoi tessellation
about random seed points. Voronoi networks have a connectivity
of four at each crosslink, similar to experimental observations of
average connectivity in acellular collagen gels from confocal
microscopy [39]. In addition, Voronoi networks have been used
successfully to predict network mechanics in collagen gels [40].
All Voronoi networks generated contained approximately 350
fibrils; each element was assigned a unique Voronoi network
(with this same network for all 8 Gauss points within that element)
randomly chosen from a set of 100 different networks. Hence, all
8 RVEs in each element have the same microstructure. Three sim-
ulations were made for the case of a network of fibers, which a
different pool of 100 Voronoi networks used for each run. Values
for materials constants A and B were 340 nN and 2.5 respectively,
obtained from previous experimental result for pure collagen gels
[41]. For the Neo-Hookean and network cases, simulations were
run using a 128 processor cluster at the Minnesota Computing
Institute, with wall times on the order of 12 h.

2.2.2 Cell Containing Network of Filaments. To include cell
deformability, the filamentous structures on the cell were modeled
using the same Voronoi networks as described above, with the
same governing Eq. (3) for individual filaments. In addition, cells
were assumed to be incompressible in the short term (e.g., during
the duration of a tensile test). To impose incompressibility, a
hydrostatic pressure term, p, was added to Eq. (1) to compute the
Cauchy stress in the cell elements

rcell
ij

D E
¼ 1

V

X
boundary
crosslinks

xiFj � pdij (10)

where p is the (uniform) pressure in the cell. This pressure, acting
similarly to a Lagrange multiplier, represents the effect of the
cytosol (i.e., intracellular fluid) on the cell, and was varied to
allow the cell to maintain constant total volume. Individual
elements within the cell were not required to maintain volume,
representing the ability of water to move within the cell but not
across the cell membrane at the time scale of interest. The relative
stiffness between the cell and matrix regions was changed by
altering the value of the material constant A in Eq. (3):

(a) Acell¼ 340 nN, Amatrix¼ 3400 nN – matrix ten times stiffer
than the cell

(b) Acell¼ 3400 nN, Amatrix¼ 340 nN – cell ten times stiffer
than the matrix

(c) Acell¼ 340 nN, Amatrix¼ 340 nN – same stiffness for cell
and matrix

Case (c) did not reduce to a simple box with fibrils of similar
properties throughout because of the incompressibility of the cell
region. Because of the computational cost of running these multi-
scale simulations, a coarser 10 vol. % finite element mesh contain-
ing 608 elements was used; mesh refinement was checked against
a finer mesh containing 1812 elements, which resulted in a mean
difference of less than 3% in the stress–strain response for case
(c). Similar to the rigid cell case with the ECM represented by a
network of fibers, each element contained a unique Voronoi net-
work randomly selected from a pool of 100 different networks;
for each case, three simulations were run using a different pool for
each run. To quantify the orientation of the networks, the network
orientation tensor was calculated as

X ¼ 1

ltotal

X
li

cos2 ai cos ai cos bi cos ai cos ci

cos ai cos bi cos2 bi cos bi cos ci

cos ai cos ci cos bi cos ci cos2 ci

2
64

3
75 (11)

where ltotal is the total length of all fibers in the network, li is the
length of fiber i, and cos ai, cos bi, and cos ci are the directional
cosines of fiber i with respect to the 1, 2, and 3 axis directions,
respectively. For an isotropic network, X11¼X22¼X33¼ 1/3, and
all off diagonal components are 0.

2.3 Statistical Analysis. Statistical analyses were done using
the commercial statistical package in ORIGIN (OriginLab Corpora-
tion, Northampton, MA). Comparisons of material properties
between two groups were performed using a two tailed unpaired
t-test. For multiple groups, a 1-way ANOVA F-test, coupled with
multiple comparisons using the Bonferroni procedure, was used.

3 Results

3.1 Rigid Cell. Plots of the undeformed meshes, as well as
Cauchy r11 stress distributions after 10% stretch, are shown in
Fig. 2, with the rigid cell removed for clarity. As expected, higher
stresses were observed with increasing cell volume in all matrix
cases, as the proportion of the infinitely stiff cell component
increased. Stress concentrated in the matrix at the leading edge of
tension in front of the cell, where the effect of the rigid cell was
most felt. The largest stresses around this leading edge were
observed for the network material cases; in contrast, in the matrix-
only regions above the cell, the network material exhibited lower
stresses than the linear elastic and Neo-Hookean matrix cases.
These results demonstrate the highly nonlinear mechanical behavior
of the Voronoi networks compared to the Hookean and Neo-
Hookean models: larger stresses in the matrix elements near the cell
were contrasted with smaller stresses in the matrix-only region
above the cell. It should be emphasized that this effect of large
stress gradients within the composite arises from the degree of non-
linearity in the network model, and not from the relative stiffness of
the fiber network compared to the constitutive models. Since the
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Hookean and Neo-Hookean models have a linear dependence on
Gm, changing Gm will alter the magnitude of the stresses developed
in the composite; the stress distributions, however, within the com-
posite will be unchanged. In comparison, the high degree of nonli-
nearity in the network model will still produce larger differences in
stresses within the composite (compared to the Hookean and Neo-
Hookean models), with much higher stresses in the leading front of
the cell contrasted with smaller stresses in the cell-free region above
the cell. Similar stress gradients to our network model may be
observed if constitutive models with higher degrees of nonlinearity
are used, e.g., the Ogden model. Similarly, it is expected that
increasing the fiber stiffness parameter A (in Eq. (3)) will increase
the magnitude of the stresses developed, while increasing the degree
of nonlinearity (parameter B) will alter the stress gradients devel-
oped within the composite.

This nonlinear stress–strain behavior of the network material,
similar to the mechanical behavior of soft tissues [1,2], is also
shown in Fig. 3. In contrast, the linear elastic and Neo-Hookean
matrix cases showed relatively linear stress–strain characteristics
that largely coincided with each other at all cell proportions.
While lower stresses were observed in the network material com-
posites for 0, 5, and 10% cell volume cases, rapidly increasing

stress in the network material for the 15 vol. % cell case resulted
in the overall composite stress overtaking the linear elastic and
Neo-Hookean matrix cases at 10% strain. Unlike the smooth stress
distributions in the linear elastic and Neo-Hookean matrix cases,
greater variations were observed in the network matrix cases,
attributed to the different Voronoi networks used for each ele-
ment: slight differences in network mechanical behavior exist
within the set of unique networks even though all networks had
approximately the same number of fibers.

Quantitative comparisons of composite elastic modulus (E*)
and Poisson’s ratio between the different models are shown in
Fig. 4. Comparison of these material properties for the linear elas-
tic matrix case with the Hashin model showed close agreement at
low cell proportions, with larger deviations from the Hashin solu-
tion with increasing cell volume. Consistent with the qualitative
observations of the stress–strain behavior in Fig. 3, the network
material exhibited a nonlinear increase in composite stiffness with
cell volume (Fig. 4(a)), compared to more gradual increases for
the linear elastic and Neo-Hookean matrix cases. These results
were consistent with experimental data from our previous study
which showed increasing stiffness in our cell-seeded collagen gel

Fig. 2 Undeformed meshes, as well as Cauchy stress (r11)
distributions after 10% strain (averaged over three runs for
each), for the cases of a linear elastic matrix, Neo-Hookean
matrix, and a fiber network at rigid cell volume fractions of 5%,
10%, and 15%. The rigid cells were removed for clarity. In gen-
eral, larger stresses were observed with increasing cell volume
fraction. Variations in cell stresses in the fiber network cases
were due to the uniqueness of Voronoi networks used for each
element.

Fig. 3 Cauchy stress r11 versus engineering strain for the lin-
ear elastic matrix, Neo-Hookean matrix, and fiber network cases
at rigid cell volume fractions of 0%, 5%, 10%, and 15%. Stress–
strain curves for the linear elastic and Neo-Hookean matrix
cases appeared linear and largely coincided with each other.
The fiber network case exhibited nonlinear stress–strain behav-
ior, similar to that of soft tissues. Error bands in the fiber net-
work cases are 95% confidence intervals, n 5 3 for each case.

Fig. 4 Plots at 10% stretch of (a) composite elastic modulus E*, (b) composite Poisson’s ratio m*, and (c) composite Poisson’s
ratio normalized with Poisson’s ratio of the matrix, m*/mm, compared with the Hashin model. The * represents statistical
significance at the 95% level. Model results showed close agreement with the Hashin solution at lower volume fractions. Unlike
the linear elastic and Neo-Hookean matrix cases, the Poisson’s ratio for the fiber network case did not decrease with increasing
cell volume fraction. Error bars for the fiber network cases are 95% confidence intervals, n 5 3 for each case.
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tissue equivalents with cell volume fraction [33]. Results for the
composite Poisson’s ratio, �*, showed values for the network
models that were larger than the elastic theory limit of 0.5 for
incompressible materials (Fig. 4(b)). This observation is consist-
ent with our previous studies using these networks [25], and is a
consequence of the looseness of the Voronoi network structure
which allows the ECM to collapse significantly. That the compos-
ite Poisson’s ratio, �*, decreased with increasing cell proportion
for the linear elastic and Neo-Hookean matrix cases (Fig. 4(c))
was expected since the rigid cell resisted compaction. The net-
work material case, however, did not exhibit the same decreasing
trend in �*; in fact, Fig. 4(c) indicated higher Poisson’s ratios for
all cell proportions compared to the matrix only (i.e. 0 vol. %)
case, although the difference was only statistically significant for
the 15 vol. % cell (p¼ 0.047).

3.2 Cell Containing Network of Filaments. Figure 5 shows
plots of the Cauchy stress distributions after 10% stretch for the
compressible and incompressible cell cases, averaged over the
three simulations for each case, with varying relative stiffness for
the cell and matrix components as described in Sec. 2.2.2. Here, a
compressible cell is defined as the case without an intracellular
pressure. The mottled appearance of stresses in these models can
be attributed to variation among the 100 networks randomly
sampled for each element. This phenomenon is especially noticea-
ble in the compressible cell case with equal stiffness values for
both the cell and matrix: even though the composite is effectively
comprised of Voronoi networks prescribed with the same material
properties, the mottled appearance is a consequence of slight dif-
ferences in mechanical behavior between the networks used in
each element. Altering the relative stiffness of the cell and matrix
resulted in different stress distributions in the matrix around the
cell. In the case of a stiffer cell (top row), higher resistance to the
macroscopic stretch from the cellular filament network caused the
matrix ahead of the cell in the stretch direction to bear a larger
proportion of the overall deformation; hence producing higher

matrix stresses around this region compared to the cell free region
above it. Conversely, in the stiffer matrix case (bottom row), the
compliant cell bore a disproportionately larger amount of defor-
mation compared to the matrix ahead of the cell, thereby relieving
stress in the matrix compared to the cell-free region above.

In all cases, incorporation of hydrostatic pressure to enforce
incompressibility increased the stresses borne by the filament net-
works in the cell, countered by similar qualitative increases in ma-
trix stresses directly ahead of the cell in the stretch direction, as the
matrix bore a larger proportion of the overall stretch. These higher
stresses in the cell networks were the result of restricted rotation of
the filaments about their cross-links into the direction of stretch due
to the outward pressure exerted against the cell membrane, shown
qualitatively by the selected RVE plots of fiber stretches in Fig.
6(a), and quantified by the lower<X11> values for the incompres-
sible cell case in Fig. 6(b). The added resistance to cell deformation
by the pressure consequently decreased the overall Poisson’s ratio
of the composite in all cases (Fig. 7), but this difference was not
significant at the 95% level for the equal stiffness case. Similar to
the rigid cell cases, no significant differences in �* were observed
across all cases of the compressible cell; for the incompressible
cell, the Poisson’s ratio for the 10� stiffer cell was significantly
higher than that of the 10� stiffer matrix (p¼ 0.0036), and equal
cell and matrix stiffness cases (p¼ 0.0285).

The traction on the cell surface (averaged over three runs) was
plotted for both the compressible and incompressible cell in Fig. 8.
The magnitude of the traction stress from the cell filament network
was computed by ninjrij, where ni and nj both are the unit normal to
each cell surface element, and rij is the averaged Cauchy stress ten-
sor of the cell element. Similar traction stress distributions were
observed for all compressible cell cases: the cell networks developed
large tensile stresses in region facing the 1-direction (i.e., direction
of macroscopic stretch—exemplified by region A in the 10� stiffer
compressible cell), contrasted with smaller stresses in the regions
facing the transverse directions (i.e. regions under the Poisson
effect—regions B and C). Since the transverse surfaces were stress
free, the cell regions B and C were expected to be stress free

Fig. 5 Cauchy stress (r11) distributions at 10% stretch of the 103 stiffer cell (first
row), equal cell and matrix stiffness (second row), and the 103 stiffer matrix (third
row) cases, for both the compressible and incompressible cells (averaged over
three runs for each case). Stress distributions around the cell differed depending
on the relative stiffness of cell and matrix. In all cases, introduction of a cytoplas-
mic pressure to enforce incompressibility increased the stresses borne by the cell
filament networks.

Journal of Biomechanical Engineering JULY 2013, Vol. 135 / 071007-5



regardless of the relative stiffness between the cell and the matrix,
as confirmed by model simulations using a Neo-Hookean formula-
tion for both cell and matrix (data not shown). In the 10� stiffer cell
and 10� stiffer matrix cases, however, these regions exhibited non-
zero tensile stresses. This result is likely a consequence of the asym-
metric mechanical behavior of these networks, which are strong in
tension but very weak in compression; hence producing a net posi-
tive traction even in these transverse regions. Introduction of the
cytoplasmic pressure to render the cell incompressible had the effect
of increasing the tensile stresses in the networks throughout the cell.
While the overall stress state of the cell (“Network Stress–
Pressure” plots in Fig. 8) showed similar stress distributions to those
in the compressible cell cases, addition of pressure had the effect of
increasing the magnitudes of both the tensile and compressive
stresses on the cell, with regions B and C now more evidently under
compression, especially in the 10� stiffer matrix case.

Figures 9(a) and 9(b) show dimensional changes for the cell in
the 1 and 3 directions for the compressible and incompressible cell
cases, respectively, with schematic drawings underneath
(Figs. 9(c)–9(h)) illustrating the differences in cell shape after
deformation, as well as the stresses exerted on the cell surface at
static equilibrium. The normalized ratio of cell dimension to over-
all composite (cellþ fiber matrix) dimension on either axis is a
measure of the relative deformation of the cell compared to that of
the overall composite. On the abscissa, a value greater than 1
means the cell stretch is greater than that of the composite in the 1-
direction. Conversely, on the ordinate axis, a value greater than 1
indicates that the cell contracts less in the 3-direction than the ma-
trix. For the compressible cell cases, the equal stiffness case exhib-
ited little change in cell proportion in both directions under stretch,

Fig. 6 (a) Representative cell filament network at 1%, 5%, and 10% strain for the compressible and incompressible cell cases,
showing the distribution of filament stretches in the networks. Larger filament stretches were observed for the incompressible
cell case. (b) Average filament orientation in the 1- (X11) and 3- (X33) directions versus strain for the compressible and incom-
pressible cell cases. Introduction of a cytoplasmic pressure inhibited filament rotation into the direction of stretch, such that
the filaments were less oriented in the incompressible cell. Error bars are 95% confidence intervals, n 5 112 (total number of cell
elements).

Fig. 7 Composite Poisson’s ratio, m*, at 10% stretch for the
compressible and incompressible cell cases, with different rela-
tive stiffness of cell and matrix. The * and # represent statistical
significance at the 95% level. No significant differences were
observed between the different relative stiffness cases for the
compressible cell. The 103 stiffer cell case had significantly
higher m* than the 103 stiffer matrix (p 5 0.0036) and equal stiff-
ness (p 5 0.0285) cases for the incompressible cell. Error bars
represent 95% confidence intervals, with n 5 3 for each case.

Fig. 8 Cell surface traction at 10% stretch of the 103 stiffer
cell (first row), equal cell and matrix stiffness (second row), and
the 103 stiffer matrix (third row) cases, for both the compressi-
ble and incompressible cells (averaged over three runs for each
case). In the compressible cell cases, large tensile stresses
were observed in the direction of tension (region A). The cell
surface region under the Poisson effect (regions B and C) did
not exhibit large compressive stresses. Addition of pressure
increased the surface traction from the cell filament network,
and slightly increased the overall compressive stress in
regions B and C.
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a result that was as expected. The 10� stiffer matrix case showed
an increase in cell proportion in the 1-direction, but it did not pre-
dict a similar increase in cell deformation in the compressive 3-
direction, a result that reinforced the idea that these networks,
while strong in tension, had little compressive strength. While the
10� stiffer cell showed expected higher resistance to deformation
in both directions, the above result strongly suggested that the
increased resistance to compression was not due to a direct
increase in cell compressive stiffness, but a consequence of lesser

rotation into the direction of stretch due to increased tensile stiff-
ness, which prevented compaction of the cell by inhibiting the col-
lapse of the cell’s filament network. In the compressible cell cases
(Figs. 9(c), 9(e), and 9(g)), matrix tension in the 1-direction was
always balanced by cell tension. For the stiff cell (Fig. 9(c)), the
matrix pushed in on the cell, whereas for the stiff matrix, r22 was
positive for the cell, indicating that the cell was being pulled out
by the matrix. Enforcing cell incompressibility (Figs. 9(d), 9(f),
and 9(h)) had the effect of increasing the stresses of the

Fig. 9 (a)–(b): Normalized ratio of cell dimension to composite dimension in the 3-direction
versus the 1-direction. Addition of pressure increased the cell proportion in the 3-direction for
all cases. (c)–(h): Schematic drawings showing differences in cell shape, and the stresses
exerted on the cell surface at equilibrium; dotted lines represent the equal cell and matrix stiff-
ness case without pressure. In the compressible cell cases (c), (e), (g), matrix tension in the 1-
direction was always balanced by cell tension. In the incompressible cell cases, (d), (f), (h), the
outward-exerting pressure pushed out against the cell to increase cell proportion in the 3-
direction.
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filamentous networks in all cases; this increase in filamentous
stress was countered by the cytoplasmic pressure pushing outward
against the cell surface, such that the net effect was an increase in
cell dimension in the 3-direction in all cases. In the 1-direction,
this pressure exerted stress on the cell surface in the same direction
as the matrix in tension, but did not cause the cell to elongate in
this direction in all cases; in fact, cell dimension decreased for
both the 10� stiffer cell and 10� stiffer matrix cases (albeit only a
slight decrease in the latter). This observation could be explained
by the fact that the intracellular pressure preserves volume by
resisting changes to the overall cell shape. Hence, the net effect of
this pressure is that the cell bears a smaller proportion of the over-
all deformation in both the tensile and compressive directions
(compared to the case without pressure), as shown from compari-
son of Figs. 9(a) and 9(b). As a result, the filamentous network
develops larger tensile stresses (due to restricted rotation into the
direction of stretch, shown in Fig. 6) that counters the effect of in-
tracellular pressure working in tandem with the ECM tension.

4 Discussion

This study represented a major improvement to our multiscale
model to understand soft tissue biomechanics by incorporating a
major component of such tissues: cells. We acknowledge, however,
that several critical assumptions were used in the model develop-
ment. First, the cell matrix interface was modeled as continuous
even though cells are known to attach to the matrix via discrete
focal adhesions [42,43]; Guilak and Mow [12] asserted that such an
assumption was not unreasonable based on experimental evidence
of numerous focal adhesion points for chondrocyte attachment to
its pericellular matrix from confocal and electron microscopy
[44,45]. In addition, the microstructural representations of both the
ECM and cell were simplified to contain only a network. In reality,
the ECM is generally comprised of other biomacromolecules (e.g.
proteoglycans) which exist within the network interstitium, and
which alter the overall mechanics of the tissue. For the cell, this
reduced representation comprised entirely of a network of cytos-
keletal filaments was chosen based on studies showing that the cy-
toskeleton was predominantly responsible for structural integrity
and stiffness in a cell [46], and hence is a reasonable first approxi-
mation for modeling the passive mechanical contribution of cells.
The current model also accounts for equilibrium mechanical prop-
erties only, ignoring the viscoelastic behavior of both the cell and
ECM. Nevertheless, development of this model helped gain signifi-
cant insight into the cellular mechanical microenvironment, and
laid the groundwork for future work incorporating further micro-
structural and mechanical details for the cell and ECM.

Comparison of the inclusion based model of Hashin with our fi-
nite element model results showed close agreement at low cell
volume fractions; deviation at higher cell concentrations were
expected since the Hashin model is only relevant at low inclusion
densities. While our previous work on cell-seeded collagen gels
showed close agreement of Young’s modulus predicted by the
Hashin model with experimental data at low cell volume fractions
[33], such models are unable to generate the highly nonlinear
stress–strain behavior of soft tissues. In addition, elastic theories
preclude Poisson’s ratios larger than 0.5, while many tissues have
been shown to exhibit Poisson’s ratios with values much higher
than this elastic limit in tension. The ability of our multiscale net-
work simulations to generate nonlinear stress–strain behavior (as
shown in Fig. 3) and Poisson’s ratios beyond the elastic limit dem-
onstrates a more viable and accurate model for application
towards soft tissue biomechanics.

The multiscale model predicted similar composite Poisson’s
ratios regardless of the volume fraction of rigid cell. This unex-
pected result suggests that the composite Poisson’s ratio is
dependent only on the collapse of the network in the matrix
above the cell, caused by fiber rotation about their crosslinks.
Across all volume fractions of rigid cell, the matrix-only region
(above the cell) experiences the same amount stretch—hence the

same degree of network collapse—to produce similar Poisson’s
ratios.

The model assumption that cells are incompressible is reasonable,
validated by experimental data on single chondrocytes where an
apparent Poisson’s ratio of 0.49 was reported, although this value
was shown to decrease with increasing axial strain [47]. Modeling
the cell as compressible and incompressible, however, generally rep-
resents two extreme cases of the effect of the intracellular fluid; in
reality, a cell is likely to be “moderately” compressible and depend-
ent on the time scale of observation. In such cases, we hypothesize
that our results would lie between our extreme cases of the com-
pressible and incompressible cells. The resistance to filament rota-
tion into the direction of stretch due to the pressure (Fig. 6) would
cause the network to stretch to an intermediate extent, thereby pro-
ducing stresses bounded by the current results. Similarly, the intra-
cellular pressure would resist cell compression, though to a smaller
extent than the incompressible cell case shown in Fig. 9(b).

In a tissue under tension, the tensile stress on the cell by the
fibrillar matrix has the effect of elongating the cell into the direc-
tion of stretch; such changes in cell shape and alignment are simi-
lar to experimental observations of contact guidance of cells,
where cells preferentially elongate with the underlying matrix
fibrils aligned under stretch [48,49].

Model results from this study show complex effects of relative
cell and matrix stiffness, as well as cytoplasmic pressure, on the
overall cellular mechanical microenvironment, which has implica-
tions on understanding cellular mechanosensation. That cells
respond differently to varying substrate stiffness has been exten-
sively studied, in terms of various cell properties and processes
such as cell attachment [50] and morphology [51], proliferation
[52], stem cell differentiation [53], and migration [54]. The justifi-
cation for modeling the three different scenarios for the relative
stiffness between the cell and the matrix was based on experimen-
tal results on different cell types showing a wide range of cell
stiffness, e.g., from �0.2 kPa in fibroblasts, to 42 kPa in cardiac
myocytes [46]. From our previous studies, the elastic (tangent)
modulus of 2 mg/mL acellular collagen gels was found to be on
the order of 10 kPa [41]; compacted gels would exhibit signifi-
cantly higher modulus. Hence, our three scenarios were designed
to qualitatively cover a wide combination of cell types entrapped
in different ECM. The current work shows that the stiffness of the
matrix relative to that of the cell can also affect the qualitative and
quantitative nature of strain transfer from the tissue to the cell.
Even in the compressible cell case, the net transverse stress acting
on a cell can be tensile or compressive depending on the relative
stiffness of the cell and matrix. When the cell is incompressible,
the existence of the cytoplasmic pressure can cause significant fil-
amentous tension even in the transverse directions, which might
be expected to be in compression or nearly stress free. To the best
of our knowledge, there are no published experimental data on
detailed stress and/or strain fields of cells entrapped in a matrix
under tension, for comparison with our model predictions.
Recently developed techniques, however, have the potential of
quantifying cell/matrix stresses and strains in tissues under ten-
sion, e.g., measurement of three-dimensional traction forces
exerted by cells entrapped in a hydrogel [55], and generation of
three-dimensional strain maps of cells with their surrounding
matrix [56]. The combination of these experimental techniques
with computational modeling can provide a clearer picture of the
cellular mechanical microenvironment in tissues. Such findings
can have implications on improving tissue engineering design, in
terms of providing the optimal level of mechanical signaling to
promote desired growth and remodeling by the cells.
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