
Kurt Manal1
e-mail: manal@udel.edu

Thomas S. Buchanan

Delaware Rehabilitation Institute,

Department of Mechanical Engineering,

University of Delaware,

Newark, DE 19716

An Electromyogram-Driven
Musculoskeletal Model of the
Knee to Predict in Vivo Joint
Contact Forces During Normal
and Novel Gait Patterns
Computational models that predict internal joint forces have the potential to enhance our
understanding of normal and pathological movement. Validation studies of modeling
results are necessary if such models are to be adopted by clinicians to complement
patient treatment and rehabilitation. The purposes of this paper are: (1) to describe an
electromyogram (EMG)-driven modeling approach to predict knee joint contact forces,
and (2) to evaluate the accuracy of model predictions for two distinctly different gait pat-
terns (normal walking and medial thrust gait) against known values for a patient with a
force recording knee prosthesis. Blinded model predictions and revised model estimates
for knee joint contact forces are reported for our entry in the 2012 Grand Challenge to
predict in vivo knee loads. The EMG-driven model correctly predicted that medial com-
partment contact force for the medial thrust gait increased despite the decrease in knee
adduction moment. Model accuracy was high: the difference in peak loading was less
than 0.01 bodyweight (BW) with an R2¼ 0.92. The model also predicted lateral loading
for the normal walking trial with good accuracy exhibiting a peak loading difference of
0.04 BW and an R2¼ 0.44. Overall, the EMG-driven model captured the general shape
and timing of the contact force profiles and with accurate input data the model estimated
joint contact forces with sufficient accuracy to enhance the interpretation of joint loading
beyond what is possible from data obtained from standard motion capture studies.
[DOI: 10.1115/1.4023457]
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Introduction

The medial compartment of the knee is most commonly affected
in those with osteoarthritis (OA). Mechanical factors are believed
to contribute to the genesis and progression of knee OA [1,2] and
therefore methods which can predict changes in joint loading and
how these forces are distributed between the medial and lateral
compartments of the knee are of great interest to clinicians and
researchers. It is not possible to measure joint forces in vivo except
for a select few individuals who have undergone total knee arthro-
plasty with an instrumented prosthesis. In lieu of direct recordings,
computational models have been used to predict joint loading dur-
ing a variety of isometric and dynamic tasks [3–7].

The electromyogram (EMG) is a recording of the neuromuscular
signal associated with muscle contraction. Muscle forces are the
primary contributors to knee joint loading [7,8] and consequently
how individuals activate their muscles has a direct impact on the
pattern and magnitude of knee compressive forces. Patient popula-
tions including individuals with knee OA and those with anterior
cruciate ligament (ACL) deficiency often use muscular coactivation
to stabilize the knee [9–11] and in doing so exhibit altered loading
[12,13]. For this reason, and because no two individuals activate
their muscles exactly the same way, our approach has been to mea-
sure subject specific neuromuscular activation patterns and to use
these as inputs when predicting muscle forces. We have used an

EMG-driven musculoskeletal model of the knee to predict muscle
and joint contact forces for healthy individuals [14,15], patients
with ACL deficiency [13,16], OA [12], and following stroke [17].

Computational models, including our EMG-driven model, can
lend insight into the mechanical environment of the knee and
other structures. Despite this potential, many clinicians remain
skeptical of modeling results in part due to poor communication
between the research and clinical communities. It is imperative
that methodological details be presented in a clear and concise
manner so that one can appreciate the inherent assumptions and
limitations of a given model. Furthermore, and perhaps more
importantly, validation studies are generally lacking, making it
difficult to critically evaluate the accuracy of a model, especially
if model results are to be used to assist with patient planning and
rehabilitation. It is exactly these reasons which motivated us to
participate in the 2012 Grand Challenge to Predict in vivo Knee
Forces. Newly added to this year’s challenge was the opportunity
to submit revised contact force estimates after original blinded
predictions were submitted. Participants were provided the
implant measured contact forces and these were used to guide
adjustments to the model and/or model inputs.

The purposes of this paper are: (1) to describe our EMG-driven
modeling approach to predict knee joint contact forces, and (2) to
evaluate the accuracy of model predictions for two distinctly dif-
ferent gait patterns against known values for a patient with a force
recording knee prosthesis. The data set is unique as it was
obtained from an active female subject with an instrumented knee
prosthesis allowing medial and lateral compartment forces to be
resolved during dynamic activities. Forces measured by the pros-
thesis allowed us to compare our model estimates of medial and
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lateral loading to known values experienced by the subject during
normal and medial thrust gait. The strengths and weaknesses of
our approach will be discussed and blinded force predictions and
revised contact force estimates will be presented.

Methods

A description of the data collection and instrumentation, and a
repository of the complete data set, can be found at https://simt-
k.org/home/kneeloads. The test subject was an active middle-age
female (78.4 kg, 167 cm) with an instrumented left knee prosthe-
sis. She completed a multitude of gait, strength, and functional tri-
als all of which were available for download. The EMG-driven
model we used to predict medial and lateral contact forces for two
distinct walking patterns (normal walk and medial thrust gait) has
been described in detail elsewhere [18] and thus only a brief sum-
mary of the key steps will be presented.

Step 1: Scale Subject Model. Bones and muscle attachment
points for a nominal SIMM (software for interactive musculoskel-
etal modeling) musculoskeletal model of the left leg and pelvis
were scaled to match the anthropometrics of the test subject deter-
mined from retroreflective markers placed over anatomical sites
on the subject’s pelvis, lower limb, and foot. These data were col-
lected during a standing reference trial. Markers over the anterior
superior iliac spines were used to adjust the width of the nominal
SIMM male pelvis to match the pelvic width of the female test
subject. The model included 12 muscles: sartorious, semimembra-
nosus, semitendinosus, biceps femoris (long and short), tensor fas-
cia latae, gastrocnemii (medial and lateral), rectus femoris, and
three vasti (medial, lateral, and intermedius). The nominal SIMM
model developed by Delp [19] was modified to include knee varus
and valgus about contact points in the medial and lateral compart-
ments, respectively (see step 3).

Step 2: EMG Processing. Recorded EMGs for the normal and
medial thrust gait trials were high-pass filtered (fourth order But-
terworth, cutoff 30 Hz), rectified, and subsequently low-pass fil-
tered (cutoff 4 Hz) to create a linear envelope for each muscle.
The linear envelopes were normalized to peak values obtained
from a series of isometric and dynamic maximum effort trials that
were collected for normalization purposes. The linear envelope
for each muscle ranged between 0 and 1.0 [corresponding to e(t)
in Fig. 1]. EMG for the vastus intermedius was set equal to the av-
erage of the signals for the medial and lateral vasti. EMG for the
semimembranosus and short head of biceps femoris were set
equivalent to linear envelopes for the semitendinosus and long
head of the biceps femoris, respectively. The reader is referred to
Buchanan et al. [18] for details relating the coefficients which
transform normalized EMG for each muscle e(t) into muscle acti-
vation a(t) for use with the musculoskeletal model.

Step 3: Inverse Dynamics. Marker trajectories and ground
reaction force data were imported into Visual3D software to com-
pute joint kinematics and moments. The marker trajectories were
low-pass filtered using a zero-lag, fourth order Butterworth with a

cut-off frequency of 6 Hz; ground reaction force data were low-
pass filtered at 50 Hz. The markers were used to construct segment
coordinate systems and define geometries for the left foot, leg,
and the pelvis. An important consideration when defining the Vis-
ual3D model was to ensure the segment axes and locations of the
joint centers were coincident with the subject scaled SIMM model
described in step 1. The left leg and pelvis had a total of nine rota-
tional degrees of freedom; three each for the left ankle, knee, and
hip. Ankle dorsi/plantar flexion, knee flexion and adduction, and
hip flexion angles specific to each gait trial were used as general-
ized coordinates with the subject scaled SIMM model to compute
musculotendon lengths and sagittal plane moment arms. Segmen-
tal kinematics and ground reaction forces were combined to com-
pute the net knee extensor moment which was used for model
tuning outlined in step 5.

Two additional Visual3D and SIMM models were constructed;
one each defining the medial and lateral compartments of the
knee. The center of each compartment was fixed at 625% of the
tibial plateau width relative to the midpoint between the markers
positioned over the femoral condyles. These points were assumed
to represent the medial and lateral points of contact between the
femur and tibial plateau and were specified in the SIMM and Vis-
ual3D models. Muscle moment arms in the frontal plane about the
medial and lateral contact points were computed using SIMM.
Knee adduction moments about the medial and lateral contact
points were calculated using Visual3D. These data in addition to
muscle forces described in step 4 were then applied to a frontal
plane moment balancing algorithm in step 6 to distribute the total
joint contact to the medial and lateral compartments.

Step 4: Muscle Force Model. The force generating element in
our EMG-driven model is a Hill-type muscle fiber in series with
an elastic tendon. The muscle fiber has a contractile component in
parallel with an elastic element as seen in Fig. 2. Individual mus-
cle fibers comprising a muscle-tendon unit are assumed to be
identical in structure as other fibers and thus the force a muscle
generates is a scaled-up version of a single muscle fiber (Fig. 2).
The state variables in our implementation of the Hill model
included muscle activation and fiber length.

The force generated by a muscle Fm is a function of the
muscle’s activation (a), fiber length (lm), velocity (vm), and penna-
tion angle (Ø). All of these variables change as a function of time
(t). Muscle force is also dependent on musculoskeletal parameters
that are assumed not to change with time: optimal fiber length
(lm

o ), tendon slack length (lts), and maximum isometric muscle
force (Fm

o ),

Fm tð Þ ¼ f a tð Þ; lm tð Þ; vm tð Þ;[ tð Þ; lm
o ; l

t
s;F

m
o

� �
(1)

Time invariant parameters are initially set to average values
obtained from the literature [20] and time varying variables are
computed dependent on the joint kinematics the relevant muscle
spans. Coefficients which transform normalized EMG e(t) to mus-
cle activation a(t) are initialized with zero electromechanical
delay and a linear relationship (see Buchanan et al. [18]). That is,

Fig. 1 Transformation of raw EMG to muscle activation a(t) as an input to the EMG-driven model (from [18])
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the coefficients are initialized such that muscle activation is equiv-
alent to normalized EMG. The tendon excursion method [21] is
used to compute sagittal plane moment arms which are then multi-
plied by the corresponding muscle forces and summed to yield a
model-computed net extensor moment. The modeled moment is
of course sensitive to the initial values chosen for muscle parame-
ters and activation coefficients and these values are adjusted as
described in step 5.

Step 5: Model Tuning. The purpose of model tuning is to
identify a set of muscle parameters and coefficients which gener-
ate muscle forces that when multiplied by their respective moment
arms sum to yield a model predicted moment that is in close
agreement with the moment computed from inverse dynamics.
Considering the model is initialized with average values from the
literature, it is not surprising it does not closely match at the out-
set. Note that model tuning does not manipulate the modeled-
moment curve directly, but rather it adjusts the muscle forces by
changing parameters and coefficients such that the squared differ-
ence between the model predicted moment and the moment from
inverse dynamics is minimized. Initial values for the muscle pa-
rameters and activation coefficients are adjusted iteratively using
a simulated annealing algorithm [22]. Muscle parameters are
allowed to vary within 62 SDs of values reported in the literature
and the value for electromechanical delay is constrained between
0 and 70 ms. A schematic of the tuning process is shown in Fig. 3.
The normal walk and medial thrust gait were tuned at the same
time resulting in one set of muscle parameters. Tuning the EMG-
driven model to the knee extensor moment does not ensure a
unique distribution of muscle forces. Penalty functions were
applied to eliminate unrealistic solutions in which a muscle gener-
ates large passive forces or does not generate force even though
the muscle is actively contracting as indicated when e(t) is greater
than 0. Constraints on optimal fiber length and tendon slack length
are enforced by penalty functions to maintain normalized fiber
length between 0.6 and 1.2 and to prevent negative tendon strains.

Step 6: Medial and Lateral Contact Forces. Knee adduction
moments and moment arms about the medial and lateral contact
points defined in step 3 and muscle forces from step 5 were input
to a frontal plane moment balancing algorithm to determine the
unknown medial and lateral contact forces. The method can be
summarized as follows with more specific details provided by
Winby and colleagues [23]. The external knee adduction moment
about the lateral contact point computed from inverse dynamics

must be balanced internally by muscle forces relative to the lateral
point of contact and an unknown medial contact force acting at
one half the width of the tibial plateau. The distance between the
contact force and the opposite point of contact will be referred to
as the lever arm (labeled “d” in Fig. 4). This process is repeated at
every time step during the gait cycle. Tensile forces from collat-
eral ligaments and the joint capsule were not required to balance
the moment in the frontal plane since both compartments were
assumed to remain in compression throughout stance. This was
subsequently verified using the knee implant data. Moments in the
transverse plane were not considered based on the assumption that
only forces perpendicular to the tibial plateau or those which
generate an adduction moment about the knee contribute to joint
compressive force aligned with the long axis of the tibia. The
same approach was used to determine lateral contact forces.

Results

The EMG-driven model captured the general shape and timing
for all contact force patterns, most notably for the medial thrust
gait (Fig. 5). These data represent our blinded model predictions
of forces recorded by the instrumented knee implant. There are
several interesting observations that warrant attention. First, the
model predicted medial contact force for the medial thrust gait
matched extremely well (R2¼ 0.92) with negligible differences in
peak loading (<0.01 BW). Peak force for the lateral compartment
was overestimated by approximately 0.6 BW, and the model cap-
tured the shape and timing of the contact force profile. An oppo-
site trend was noted for the normal walking trial. That is, the
model successfully predicted peak lateral contact and there was a
strong positive relationship (R2¼ 0.44) between the predicted and
measured data. Peak medial force for the normal walking trial was
underestimated by approximately one half bodyweight and once
again the model captured the general shape and timing of the load-
ing profile. Descriptive statistics for the blinded model predictions
are reported in Table 1. Model predictions were best for the
medial compartment during medial thrust gait and for the lateral
compartment during normal gait.

Revised contact force estimates for the two gait patters are
shown in Fig. 6. Note how we use the term estimates in place of
predictions as these data reflect changes to the model that were
made in part based on knowledge of the forces recorded by the
implant. Revisions to the model included: (1) use of an accurate
measure of tibial plateau width, (2) allowing the medial and lat-
eral contact points to vary slightly from previously defined loca-
tions, and (3) separate tunings for normal and medial thrust gait

Fig. 2 Schematic of a Hill-type muscle fiber. The musculotendon unit (shown on the left) has a muscle fiber in
series with tendon. The musculotendon length lmt is the sum of the fiber length lm, adjusted for pennation angle
Ø, and the tendon length l t . The muscle fiber shown on the right is comprised of an active contractile element in
parallel with a passive elastic element. F m

a is the force developed by active mechanisms (i.e., length-tension and
force-velocity relationships). F m

p represents the passive force contribution when the muscle fiber is at a length
beyond optimal (i.e., passive portion of the length-tension curve). The active and passive forces sum to yield the
fiber force F m , and when adjusted for pennation angle is equivalent to the force acting through the tendon F t .
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were conducted. How these modifications were implemented will
be addressed in the Discussion. Two improvements are immedi-
ately apparent. First, the model-estimated medial contact force for
the normal gait pattern is now in close agreement with the force
measured by the implant. Second, the difference between peak lat-
eral contact for the medial thrust gait dropped from 0.59 to 0.13
BW and agrees much more closely with the force recorded by the
implant. This was the largest difference in peak loading with all
other differences less than 0.05 BW. Descriptive statistics for the
revised contact force estimates are included in Table 1.

Discussion

Computational models have the potential to lend insight into
normal and pathological movement and complement interpreta-
tions based on findings obtained from standard motion capture
studies. This has motivated us to apply our EMG-driven model to

Fig. 4 Schematic of the moment balancing algorithm to com-

pute medial contact force (F MC). The external adduction

moment about the lateral condyle MLC
external must be balanced by

a moment generated by muscles MLC
model and an unknown con-

tact force F MC acting at distance d equal to one half the width of

the tibial plateau. rLC
i is the moment arm for muscle i relative to

the lateral condyle and Fi is the force generated by the muscle.
Fig. 5 The dark lines represent the EMG-driven model’s pre-
diction of joint contact force and the gray lines are the forces
measured by the instrumented knee implant (eTibia). The model
captured the general shape and timing of the contact force pro-
files with good predictions of medial contact for the medial
thrust gait and lateral contact for normal walking. The largest
difference between the model predicted and measured force
was for the lateral compartment during medial thrust gait.

Fig. 3 EMG for muscle m at time t was transformed into muscle activation a to activate a Hill-type muscle
model (muscle contraction dynamics). The force F for each muscle was then multiplied by its sagittal plane
moment arm r according to the musculoskeletal geometry which is dependent on the joint kinematics for the
particular trial. Individual muscle moments are then summed at each point in time to obtain a model estimated
sagittal plane knee moment. The knee moment was also calculated using inverse dynamics from video-based
motion data and ground reaction forces. EMG-driven model parameters including activation coefficients, opti-
mal fiber length (OFL), resting tendon length (RTL), and the maximum isometric force for each muscle were
adjusted iteratively to minimize the sum-squared difference between the model estimated moment and the
moment computed from inverse dynamics. The process of optimally adjusting model parameters is depicted by
the gray shaded boxes and dashed arrows.
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healthy patient populations to understand muscle and joint contact
forces during activities of daily living and how these forces
change in response to therapy and rehabilitation. Out first goal for
this paper was to describe our modeling framework to predict
medial and lateral knee joint contact forces. The description was
intended as an overview with sufficient detail to understand the
general modeling flow and to appreciate why specific modifica-
tions to the model were considered when revising our estimates of
joint contact force. The reader is directed to Buchanan et al. [18]
for more details and discussion of our implementation of the
EMG-driven musculoskeletal model. The second goal of this

work was to compare our predictions of joint contact forces to
known values recorded for a patient with an instrumented knee
prosthesis, using the data supplied by the Grand Challenge. Stud-
ies of this kind are helpful for the clinical community to recognize
the potential of such models to assist with patient treatment. Fur-
thermore, it is important to evaluate the efficacy of a model not
only under idealized conditions such as normal walking, but also
when the model is applied to novel gait patterns. Model predic-
tions were made for two distinctly different walking styles; nor-
mal and medial thrust gait. Medial thrust gait was developed to
reduce the peak knee adduction moment. The adduction moment
is often used as a surrogate measure of medial compartment load-
ing and a decrease in adduction moment is assumed to correspond
to a decrease in medial joint contact. Walter and colleagues how-
ever have shown that this is not always the case. Using instru-
mented knee data from another patient they showed that a
decrease in knee adduction moment does not guarantee decreased
medial contact force during gait [24].

Examining Fig. 5 and Table 1 it is immediately apparent that
the EMG-driven model did extremely well predicting medial con-
tact force for the medial thrust gait. This novel gait pattern was
designed to reduce peak knee adduction moment and ostensibly
peak medial contact. Interestingly, our EMG-driven model pre-
dicted an increase in medial contact force compared to normal
gait, and this was at first disconcerting considering the adduction
moment for medial thrust gait (data not shown) was smaller than
normal (27 versus 15 Nm). Based on the moment data alone one
might have inferred a decrease in medial contact force. However,
this was not the case and our prediction of increased loading was

Table 1 Descriptive statistics for the original model predic-
tions and revised estimates. Peak diff (BW) is the difference in
peak contact force between the model and the implant reported
in bodyweights. Rmse 5 root mean square error over the entire
stride.

Normal gait Medial thrust

Prediction Medial Lateral Medial Lateral

Peak diff (BW) Original �0.55 þ0.04 < 0.01 þ0.59
Revised þ0.03 < 0.01 þ0.05 þ0.13

R2 Original 0.92 0.44 0.75 0.66
Revised 0.95 0.03 0.84 0.55

rmse (BW) Original 0.28 0.18 0.41 0.42
Revised 0.16 0.22 0.34 0.37

Fig. 6 The dark lines represent the revised force estimates for the EMG-driven model and the
gray lines are the forces measured by the instrument ted knee implant (eTibia). The revised
model captured the general shape and timing of the contact force profiles with good agreement
in peak values. The largest difference between the model predicted and measured force was
0.13 BW for the lateral compartment during medial thrust gait. All other difference in peak
values were less than 0.05 BW.
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confirmed by data from the instrumented knee implant (Fig. 5).
Medial thrust gait for this patient increased medial loading by
approximately 0.6 BW even though adduction moment was
greatly reduced. Our model predicted exactly this increase and the
difference between peak medial loading and the force measured
by the instrumented knee was negligible (<0.01 BW). Also note
the model successfully predicted a second peak medial force and
there was excellent temporal alignment between the predicted
force and medial contact measured by the instrumented knee.

Model predictions for lateral contact force are shown in Fig. 5.
Although the model did capture the general shape and timing of
the lateral contact profile, peak force was overestimated by 0.59
BW. This difference is significant considering the peak force
recorded by the knee prosthesis was 1.73 BW. It is interesting to
note exactly when the opposite trend was observed when predict-
ing medial and lateral forces for the normal walking trial. That is,
the EMG-driven model underestimated medial loading and pre-
dicted peak forces for the lateral compartment quite well. Peak
loading for the medial compartment during normal gait was
approximately 390 N less than recorded by the implant. The peak
difference for the lateral compartment was negligible (þ0.04 BW)
and qualitatively the shape of the curve followed the pattern for
the measured forces with an R2 of 0.44, corresponding to a strong
positive correlation of 0.66 (see Table 1).

While we are pleased with the results, there are several sources
of error that should be addressed so that the model can be evaluated
and future improvements can be made. There are many small sour-
ces of noise and/or error that influence the calculation of joint
moments including: marker measurement error, soft tissue move-
ment error, EMG quality, incorrectly aligned joint and segmental
axes, and small errors in the center of pressure. Individual muscle
forces contributing to the net extensor moment were obtained from
the model tuning process and thus inaccuracies when calculating
joint moments will map into errors in muscle force and subsequent
predictions of joint contact. These errors can be difficult to trace,
especially considering the data were not collected in our laboratory.
Larger sources of error are more concretely identified and were the
focus of our revised model estimates. Furthermore, a decision was
made regarding which parameters to adjust in the optimization and
we decided only to consider model inputs that could be determined
from patient and experimental data without explicit information
from the knee prosthesis. As such our revised estimates were not
merely a curve fitting exercise. The three modifications incorpo-
rated in our revised estimates were: (1) more accurate measure of
tibial plateau width, (2) allowing the medial and lateral contact
points to vary slightly relative to the originally defined locations on
the tibial plateau, and (3) separate tunings for the normal and
medial thrust gait. We will focus the following discussion on how
these three factors improved our model estimates without describ-
ing exactly why predictions that were good to begin with remained
relatively unchanged.

The first modification and the most important was using an
accurate measure of the tibial plateau width. Our initial estimate
was too large and this had a direct effect on the location of the
medial and lateral contact points. As a result the muscle moment
arms about the medial and lateral contact points and the lever arm
for the medial and lateral contact forces were too large. The actual
implant width of 0.074 m was obtained from the implant geometry
and this was approximately 50% smaller than the width we esti-
mated from the motion capture data. The data provided by the
Grand Challenge did not include all of the measurements that are
usually recorded in our lab which are designed to minimize these
errors, so we had to improvise. By not accounting for skin and
adipose tissue thickness and other unknowns including marker di-
ameter and the manner in which the markers were attached (e.g.,
adhered to the skin directly or mounted on small posts), we were
required to estimate some values in the absence of actual data.
When possible we measure the width of the tibial plateau from
long cassette X-rays, but there are times when estimates are based
on motion capture data from markers over the distal femur. When

doing so we account for offsets associated with the markers and
also include an estimate of subcutaneous fat and other tissues
based on skin-fold caliper measurements. Additionally, our esti-
mate for the plateau width was based on markers positioned over
the femoral condyles. The width of the distal femur is approxi-
mately 5%–10% greater than the width of the tibial plateau and
this too contributed to our using too large a value. When the Visu-
al3D and SIMM models were modified to account for the actual
width of the tibial plateau, several noteworthy and predictable
changes resulted. Obtaining an accurate estimate of tibial plateau
width is important when computing medial and lateral contact
forces using methods outlined in this study.

The second modification was to allow the medial and lateral
contact points to vary slightly relative to the originally defined
locations on the tibial plateau. It was observed that the adduction
moment about the medial and lateral contact points for the two
gait patterns all decreased in magnitude. The largest change was a
55% decrease in adduction moment for the medial compartment
when walking with a medial thrust gait. The smaller moment
about the medial contact point required less lateral contact force
to balance the moment even though the lever arm was shorter.
This was possible because the decrease in the moment about the
medial contact point was greater than the change in the lever arm.
Less important, but beneficial nonetheless, was that we shifted the
lateral contact point laterally by approximately 3 mm correspond-
ing to 4% of the tibial plateau width. The percent change was
determined iteratively until a qualitative fit of the model better
matched the force recorded by the implant. The revised and
improved estimates are shown in Fig. 6 and described in Table 1.

The third modification was that separate parameter adjustments
were made for the normal and medial thrust gait. After viewing
the actual results from the instrumented knee we observed that the
peak loading for the medial and lateral compartments during
medial thrust gait occurred during weight acceptance in early
stance. The quadriceps contract eccentrically during this time cre-
ating a net extensor moment that controls knee flexion during
weight acceptance. The peak extensor moment for the medial
thrust gait was approximately 110 Nm while the peak moment for
normal walking was only 20 Nm. The objective of the model tun-
ing process described in step 5 was to converge on a set of muscle
parameters and coefficients which minimized the difference
between the model-computed knee extensor moments and the
moments computed from inverse dynamics. The medial thrust and
normal walking trials were tuned at the same time and although
we did attempt to weight the objective function for large differen-
ces in knee extensor moment magnitude, the simulated annealing
optimization was biased towards fitting the larger moment associ-
ated with the medial thrust gait. To improve our revised estimates
we tuned the trials separately. This had little effect on muscle
forces for the medial thrust gait because of the original bias when
the trials were tuned simultaneously. However, this resulted in
two sets of muscle parameters and activation coefficients. This is
less than ideal and clearly nonphysiologic. Nonetheless a goal of
the revised estimates was to identify aspects of our model that
could be adjusted to promote better agreement with the forces
measured by the implant. We observed that the reason separate
tunings benefited the normal walk trial was related to the large dif-
ferences in magnitude between the medial thrust and normal
walking gaits. From this we learned that combined tunings of
widely disparate moment curves can bias the selection of muscle
parameters and activation coefficients favoring the trial with the
larger moment. We are evaluating different weighting functions to
more effectively tune widely different joint moments at the same
time to obtain an optimal set of muscle parameters and activation
coefficients. This is important towards our long-term goal of
developing high-quality patient specific models by measuring as
many parameters as possible and allowing the optimizer to select
those that cannot be measured.

Computational models that predict internal forces have the
potential to enhance our understanding of normal and pathological
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movement. A perfect example of this was seen when applying our
model to the medial thrust gait. This walking pattern was designed
to reduce the knee adduction moment and it did so effectively.
The adduction moment dropped significantly and from this one
might have inferred that medial compartment loading also
decreased. However, our model correctly predicted exactly the
opposite and this was validated by data from the instrumented
knee. This demonstrates the value of our modeling approach. It
is our sincere hope that clinicians will recognize the insight
computational models can provide. For patient populations that
use altered neuromuscular activation patterns, we suggest that
models account for those changes using EMGs or other measures
of neural command.
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