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Abstract
We present a novel framework for integrative biomarker discovery from related but separate data
sets created in biomarker profiling studies. The framework takes prior knowledge in the form of
interpretable, modular rules, and uses them during the learning of rules on a new data set. The
framework consists of two methods of transfer of knowledge from source to target data: transfer of
whole rules and transfer of rule structures. We evaluated the methods on three pairs of data sets:
one genomic and two proteomic. We used standard measures of classification performance and
three novel measures of amount of transfer. Preliminary evaluation shows that whole-rule transfer
improves classification performance over using the target data alone, especially when there is
more source data than target data. It also improves performance over using the union of the data
sets.
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1. Introduction
Molecular profiling data is used extensively to learn classifiers, such as rule models, and
discover biomarkers for early detection, diagnosis and prognosis of diseases. Biomarkers are
also critical for furthering understanding of disease mechanisms and creating treatments.
The aim in biomarker discovery is to find a small set of measured variables that can be used
to accurately predict a disease state. This is particularly challenging because typically we
must choose among tens or hundreds of thousands of variables, representing molecules in
complex mixtures, often with high measurement error. Also, data sets are typically very
small, usually tens or hundreds of patients in a study. All these factors make statistical
analyses more error-prone.

© 2011 Elsevier Inc. All rights reserved.
*Corresponding author: phil.ganchev@gmail.com (Philip Ganchev), vanathi@pitt.edu (Vanathi Gopalakrishnan).

Conflict of interest
The authors declare that there are no conflicts of interest.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Biomed Inform. Author manuscript; available in PMC 2013 July 09.

Published in final edited form as:
J Biomed Inform. 2011 December ; 44(0 1): S17–S23. doi:10.1016/j.jbi.2011.04.009.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fortunately, there are often multiple similar studies, each producing a data set. In order to
draw on all the available data, researchers typically analyze each data set separately, then
compare the biomarkers discovered [1, 2]. However, this is sub-optimal because the analysis
is still done on the separate small data sets. A simple way to combine the data is to use the
union of the data sets. But such attempts are typically confounded by variability in sample
processing and by systematic measurement error specific to each data set. For example, the
same numerical measurement might mean a high abundance of some protein in one data set
but low abundance in another data set.

We propose a novel framework for transfer learning, called Transfer Rule Learner (TRL),
that is particularly well-suited to biomarker discovery. Transfer learning is the use of data
from one learning task to help in learning another task [3]. Pan and Yang [4] offer a survey
of transfer learning. Various methods for transfer learning have been applied to various
domains, such as part-of-speech tagging [5] and leaf classification [6]. Transfer learning for
biomarker discovery is promising because previous studies have found reproducibility of
information collected in different experimental sessions when using the same protocols [1,
2]. Unfortunately, many transfer learning frameworks typically produce classifiers that are
difficult for human users to understand or that use many variables [3, 5], which makes them
less useful for biomarker discovery. Unlike other transfer learning methods, TRL transfers
knowledge in the form of modular, interpretable classification rules, and uses them to seed
learning of a new classifier on a new data set. Rule learning has the advantage that variable
selection is embedded in the learning algorithm, and the new model uses only a few of the
many measured variables to explain the data.

TRL is an extension of the classification rule learning algorithm RL [7], which been used
successfully to solve biomedical problems for more than three decades [8, 9, 10, 11] and in
the past decade has been adapted and used for biomarker profiling [12, 13, 14, 15, 16, 17].

We demonstrate our method on 5 clinical data sets, and find that more often than not,
transfer learning improves performance over using one data set alone, and even more often
over learning on the union of the data sets. We evaluate the methods using standard
performance measures and three novel measures of transfer. To our knowledge, this is the
first effort to apply transfer of rules or rule structure between related biomedical data sets.

2. Materials and Methods
Our transfer learning framework is based on the classification rule learner RL [7]. Models
learned by RL are simple to understand and can represent non-linear relationships. RL
covers data with replacement (see 2.1), which is beneficial when training data are scarce.

Figure 1 shows an overview of our transfer learning approach. A source data set is used to
train a set of prior rules that are then used as seeds for learning on the target data. Section
2.1 provides a brief overview of RL, which is useful in understanding transfer learning with
TRL described in Sections 2.2–2.4.

2.1. Rule Learning with RL
RL is a classification learning algorithm that outputs a rule-based classifier. RL’s input is a
set of training data instances, where each instance is a vector of values for the input
variables, and a class value. The learned classifier comprises a set of rules of the form:

IF <antecedent> THEN <consequent>
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where the antecedent consists of a conjunction of one or more variable-value pairs
(conjuncts), and the consequent is a prediction of the class variable. For example, a rule
learned from proteomic mass spectra might be:

IF ((mz_2.05 = High) AND (mz_9.65 = Low)) THEN Class = Control

which is interpreted as “if the variable for m/z 2.05 kilo Daltons (kDa) has a value in the
High range and the m/z 9.65 has a value in the Low range, then predict the class value
Control.” Values such as Low and High represent intervals of real numbers that result from
discretizing the variables before training with RL. (See Section 2.2.) A rule is said to cover
or match a data instance if each variable value of the instance is in the range specified in the
rule antecedent. RL covers data with replacement, which means that multiple rules are
allowed to cover the same training instance. This is unlike most other classification rule and
tree learning algorithms, such as C4.5 [18] and CART [19], which cover data without
replacement, so that each data instance is covered by only one rule. In small sample size
data sets, covering with replacement allows RL to utilize more of the available evidence for
each rule when computing the generalizability of the rule.

The classifier also includes an evidence gathering method for breaking ties when the
antecedents of several rules are met but their consequents are different. We use the default
evidence gathering method: voting weighted by the rules’ certainty factor values.

RL is shown in Algorithm 1. The input is a set of data instance vectors and a set of values
for the learning parameters specified by the user. The parameters define constraints on the
acceptable rules in terms of a number of quantities defined with respect to a rule and a data
set. The constraints are minimum coverage, minimum certainty factor value, maximum false
positive rate, and inductive strengthening. Coverage is the fraction of training examples for
which the rule antecedent is satisfied. An additional parameter is the certainty factor
function. The Certainty factor function (CF) is a measure of the rule’s accuracy; several
alternative certainty factor functions are defined and implemented in RL, and the specific
function to use can be specified as a parameter to the algorithm. As a CF function, we used
the true positive rate: the number of examples the rule predicts correctly divided by the
number of examples it matches. False positive rate is the number of examples the rule
predicts incorrectly divided by the number of examples it matches. Inductive strengthening
is a bias toward training new rules that cover uncovered training instances. Specifically, the
parameter specifies the minimum number of previously uncovered examples that a proposed
rule must cover. The smaller this number, the larger the overlap of instances covered by
different rules. Because RL covers data with replacement, using some non-zero inductive
strengthening helps to learn a more generalizable model. Maximum conjuncts is the
maximum number of variable-value pairs allowed in the antecedent of any rule.

The algorithm proceeds as a heuristic beam search through the space of rules from general to
specific [20]. Starting with all rules containing no variable-value pairs, it iteratively
specializes the rules by adding conjuncts to the antecedent. It evaluates the rules and inserts
promising rules onto the beam, sorted by decreasing certainty factor value. Beam search is
used to limit the running time and space of the algorithm.

2.2. Transfer of Rules
The transfer scheme we propose is to load the prior rules into the beam along with the initial
rules, before the first evaluate-specialize iteration. Figure 2 illustrates the algorithm.
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RL’s input data must be discrete, that is, each variable has a small number of values in the
data. Many molecular profiling methods create real-valued data, so these data must be
discretized before use with RL; that is, for each continuous (real-valued) variable, we must
partition the set of real numbers into some small set of intervals, and substitute each
observed value of the variable by its corresponding interval. What intervals are chosen in the
partition affects the usefulness of the variable in predicting the class variable. Because the
variable might have a different distribution in the source data than in the target data, the
optimal discretization in each case might also differ. However, it is important for rule
transfer that a variable in a prior rule has the same number of intervals in the target data as in
the source data. This is because in this case there is a clear mapping between the two sets of
intervals: the interval “Low” in the source data corresponds to “Low” in the target data, and
so on. The end-points of corresponding intervals might differ, due to the different
distribution of values in the two data sets; but this does not matter because transfer learning
aims to make use of the commonalities between the two distributions.

A difficulty arises if the number of intervals differs between source and target, because in
that case a value in a prior rule does not have a clear meaning in the target data. For
example, suppose a variable A has intervals High, Middle and Low in the source data but
only High and Low in the target data (see Figure 3). How should we transfer a rule that has
A=Middle in its antecedent? To address this issue, we can either apply the same
discretization to both source and target data and transfer whole rules; or we can discretize
the data sets separately, and transfer only the “structure” of the prior rules, without the
variable values (rule structure transfer); this is done by instantiating the new discrete values
for each variable. These approaches are discussed in Sections 2.3 and 2.4 respectively.

For discretizing, we used EBD [21, 17]. EBD is a univariate supervised discretizer that uses
a Bayesian score to evaluate discretizations for each continuous-valued variable, and runs
efficiently on high-dimensional data such as molecular profiling data. EBD performed
favorably compared to Fayyad and Irani’s MDLPC [22], which is efficient and commonly-
used state-of-the-art method [23]. EBD tended to perform better with rule learners such as
RL that learn rules having many attributes in the antecedent. It utilizes a Poisson prior, and
by default we set the Poisson parameter λ = 1, so that the mean and variance of the number
of cut points has an expected value of 1. Having a single cut point is equivalent to having
two intervals, High and Low.

A further consideration is how prior rules will affect RL’s search process. This is discussed
in Section 2.5.

2.3. Whole-Rule Transfer
The simplest way to avoid possible differences in the discretization between source and
target is to ensure that they are discretized identically. Specifically, we discretized the target
data and imposed the same discretization on the source before running RL to compute prior
rules. This guarantees that there is a clear mapping between values in the two data sets, even
if it means that the prior rules will be less accurate on the target data.

2.4. Rule Structure Transfer
As mentioned in Section 2.2, it might not be optimal to apply the same discretization to the
source and target data sets, due to systematic differences between them. For example, two
sets of proteomic mass spectra often have different baseline signals caused by the state of
the measurement equipment. Even after post-processing such as baseline subtraction,
numerical values in one data set might not correspond to numerical values in the other.
Ideally, the data sets can be discretized separately to find an optimal discretization for each
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variable in each data set. However, this might result in a different number of discrete values
for a variable in the two data sets, and therefore no clear mapping between values for
transfer learning.

To address this problem, we instantiate each prior rule with all possible target values for its
variables. In a sense, this means transferring the just the “structure” of the rule without the
variable values.

For example, a prior rule:

IF (mz_7.23 = High) THEN (Group = Cancer)

is converted to a prior rule structure:

IF (mz_7.23 = ?) THEN (Group = ?)

The rule is then instantiated from the target data discretization as:

IF (mz_7.23 = High) THEN (Group = Cancer)
IF (mz_7.23 = Low) THEN (Group = Cancer)
IF (mz_7.23 = High) THEN (Group = Healthy)
IF (mz_7.23 = Low) THEN (Group = Healthy)

We consider all class values in addition to all discrete variable values because that more
completely represents the possible relationships in the target data.

Transferring rule structure has the additional advantage that the source data set is not needed
during the transfer learning. Thus, the prior rules can be used when the source data set is not
available, for example by extracting them from literature. For example, serum amyloid A
(SAA) has been reported as a serum biomarker for lung cancer [24]. Prior rules could be
formulated from known m/z values for this marker, for example by using the EPO-KB data
base of biomarker-to-protein links [25].

2.5. Effect of Transfer on RL’s Search Process
As explained in Section 2.1, to avoid overfitting, RL checks that any new rules added to the
model cover at least δ previously uncovered training instances, where δ is the inductive
strengthening parameter. When prior rules are added to the beam, they may cover some
target data instances that would be covered by better performing rules learned in the absence
of the prior rules. Thus, the prior rules might displace these better rules from the model and
so reduce its classification performance. To reduce this effect, we created a variation of the
algorithm that we called “nc” (for “no-covering”). In this variation, the target data instances
covered by prior rules are not considered as “covered” for purposes of inductive
strengthening. Note that prior rules retained in the classifier can still influence the
predictions, and therefore the performance, of the classifier.

2.6. Experiments
We compared the four transfer methods to the baseline condition of learning on the target
data set alone, based on classification performance. We also compared the four methods
with each other in terms of the three measures of amount of information transferred. Using
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the data sets, we created two experimental setups, namely inter-set transfer and intra-set
transfer. Using cross-validation, we evaluated the methods on three pairs of data sets (see
Table 1): one of gene expression and two of protein profiling using SELDI TOF MS.

Within each pair, each data set was produced from the same overall clinical population and
the same type of clinical samples, and using the same protocols and measurement platform
(e.g. “ProteinChip” type). For the proteomic data, separate samples were accrued at
University of Pittsburgh Cancer Institute (UPCI) and Vanderbilt University, as described in
[2] and [24] respectively. SELDI analysis was done concurrently and with the same
conditions as described in [2], using two types of ProteinChip: WCX and IMAC. Most of
the spectra were generated with replicates, which were averaged before learning.

Discretization was done separately on each step of cross-validation, using EBD [23] with
default parameters, similar to those used in [17]. RL parameter settings were: CF function:
true positive rate; minimum CF value: 85%; minimum coverage: 4 instances; maximum
false positive rate: 10%; inductive strengthening: 1 instance; maximum conjuncts per rule: 5.

The purpose of our transfer learning methods is to evaluate the agreement of new data with
the prior information, and simultaneously learn new information that incorporates as much
of the prior knowledge as useful. High agreement would mean much prior information is
retained and is accurate on the new data set. To evaluate our methods, we measured several
variables: (1) the performance of the learned classifier, namely accuracy, sensitivity,
specificity, and (2) the amount of information transferred, de-fined by three measures of the
amount of transfer: (2a) rr/rp: number of rules retained as a proportion of prior rules; (2b) rr/
rl: number of rules retained as a proportion of rules in the new model; (2c) ar/al: number of
variables in the retained rules, as a proportion of all the variables in the new model. We
recorded these measures for the cross-validation folds and for the final model learned on all
the target data.

We now describe the two experimental setups, intra-set transfer and inter-set transfer.

2.7. Varying the Relative Sizes of the Source and Target Data
An important aim of the study is to clarify what factors affect the performance of classifiers
learned by TRL and the amount of information transferred. This understanding is important
for evaluating the properties of the transfer learning methods developed here, as well as for
designing new methods. In a particular real-world setting, this understanding can suggest
what results can be expected from transfer learning.

To further this understanding, we investigated how the methods perform on data drawn from
the same distribution, and the effect of the relative sizes of the source and target data sets.
We sampled target sets of different sizes at random, and each time used the remainder of the
data as the corresponding source set. We call this experimental setup “intra-set transfer”. We
used the genomic data from [26], which is a well-known data set with a good classification
performance. The learned models are evaluated using 10 times 5-fold cross-validation on the
target data. This provides sufficient statistical support for the results, while leaving enough
training data when the target set contains only 10% of all the available data.

Figure 4 shows the change in performance of whole-rule transfer compared to using only the
target data. As expected, this works well because the source and target data are drawn from
the same data set. Transfer never decreases performance, and significantly increases
performance when the source data set is large compared to the target data, that is when the
source classifier generalizes better than the classifier learned on the target data. The
improvement decreases as the size of the target data increases. An exception to that trend
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occurs with 10% of the target data; in this case, there is no benefit from transfer because the
target data is too small to accurately evaluate the goodness of a classifier, and all the
transferred rules are discarded. In fact, no rules are learned at all on the target data set of 7
examples, regardless of whether or not transfer is used. Rule structure transfer and transfer
with no coverage for prior rules show similar trends.

The amount of transfer (Figure 5) shows similar trends; the measures rr/rl and ar/al are high
when the target data set is small, and low when it is large compared to the source data. This
is because the source data allows the learning of many good rules, and most of the rules
learned on the target data are derived from prior rules. By contrast, the proportion of rules
retained out of all prior rules, rr/rp, had a peak around 50%. This means that to maximize
retention of prior rules the sizes of the source and target should be roughly equal. This
observation agrees with expectation bcause at one extreme, when the target data is large, the
source data is very small and the learned rules are not accurate; few rules are learned and
even fewer are retained during transfer, leading to a small fraction rr/rp. At the other
extreme, when the target data set is very small, it is insufficient for evaluating the learned
prior rules accurately; thus again few rules are retained. We also examined the sizes of the
antecedents of the learned rules (not shown). In this experimental setup, all rules had one
conjunct in their antecedents.

2.8. Comparison of the Transfer Methods
Using the target data alone performed better than the union of the data sets, so we use it as
the baseline. Figures 6 and 7(a) compare the performance of all 4 variants of transfer rule
learning. The results in each figure are averaged over 10-fold cross-validation for each
experimental setting. The final learned (non cross-validation) rules had at most 4 conjuncts
in their antecedents (not shown in the diagrams).

Each column of Figure 6 shows the proportion of datasets that each method improved and
worsened compared to using the target data alone. We see that the whole-rule transfer
methods (“tr” and “tr nc”) improved accuracy in 75% of the cases, while structure transfer
methods (“ts” and “ts nc”) only in 0–26% of the cases. Similarly, whole-rule transfer
improved sensitivity in 75–100% of the cases, while structure transfer only in 25–50%.
Specificity decreased more often than it increased, with all methods.

These trends are visible also in Figure 7(a), which shows the mean changes in performance
across all our experiments. Overall, transfer of whole rules performed better than transfer of
structures. Moreover, whole-rule transfer with “no coverage” (tr nc) was better on average
for sensitivity and accuracy, while the basic rule transfer (tr) was slightly better for
specificity. The decrease for structure transfer was due to a dramatic decrease when
transferring lung cancer IMAC UPCI to IMAC V and. Without that experiment, the mean
performances are markedly greater, and are positive for most measures, though still lower
for structure transfer than whole-rule transfer.

That whole-rule transfer performed better than structure transfer is surprising because
structure transfer was intended as a way to overcome the difference in discretization
between the source data and target data, and thus make prior rules more generalizable on the
target data. Recall that structure transfer instantiates the prior rule variables with all possible
target data values, and adds all those instantiated rules to the beam for evaluation and further
specialization. Thus, this result suggests that the benefit gained from more accurate
discretization of the prior rules comes at the cost of adding less accurate rules to the final
classifier, which more often than not mis-classify target examples. This could be because the
large number of instantiated rules are displacing from the beam other rules that would be
more accurate if they survived to be specialized; therefore if the beam was big enough,
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structure transfer should outperform whole-rule transfer. Another hypothesis is that structure
transfer performed poorly because of the way RL learns rules, which is not geared towards
learning rule structure (see Section 3).

Another trend in the results is that the no-coverage (“nc”) transfer conditions show a less
pronounced change than transfer where prior rules affect the coverage of examples. This is
interesting because with the no-coverage condition, prior rules do not interact with other
rules via covering during learning. However, rules do interact in this way during inference.
Thus, the result suggests that it is beneficial to take account of these coverage interactions
between all rules while training, rather than ignore them.

3. Discussion
In this paper, we introduced a simple novel paradigm for transfer learning with interpretable
rules. We demonstrated that this method is effective for mass spectrometry and gene
expression data, and is particularly helpful when there is a relative abundance of source data
compared to target data. In addition to the basic framework, we also demonstrated a novel
method to transfer only the rule structure, and this can also be used to transfer knowledge
from the literature to a new data set.

An interesting line of future research is to investigate why structure transfer performed
poorly. One hypothesis is that structure transfer adds too many instantiated prior rules to the
beam and those rules are likely to displace other promising rules whose specializations
would have proved more accurate. If the beam is large enough, such rules should not be
displaced. To test this hypothesis, we could experiment with a much larger beam. But
because a large beam makes the search intractable for practical use, we could also
investigate two new transfer methods that avoid unnecessary combinatorial instantiation of
variables, yet allow for different distributions between data sets. In particular, both methods
would discretize a variable on the source data if this yields the same number of discrete
values as discretizing on the target data; only if the number of values differs would we either
impose the target data discretization or instantiate the target data values when that variable
appears in a prior rule.

Another hypothesis to explain the poor performance of structure transfer is that the way RL
learns rules is not geared toward learning structure. We would like to experiment with
structure transfer using BRL [17], a rule learner based on RL that uses Bayesian scoring and
learns a single rule structure with all possible variable-value instantiations.

It would also be interesting to explore transfer between different types of data, such as
between proteomic and genomic data, by creating a mapping between them. Another
extension of the algorithm is to allow it to correct errors in variable naming (such as m/z
shift in mass spectrometry), by constructing compound variables during the search.
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Figure 1.
The TRL framework.
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Figure 2.
Illustration of the TRL algorithm.
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Figure 3.
Illustration of discretization issues. Variable A has the same number of discrete values, in
the source data and the target data; although the intervals have different endpoints, there is a
clear mapping between these sets values. Variables B and C have different numbers of
values, and so pose a challenge for transfer.
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Figure 4.
Intra-set whole-rule transfer on the gene expression data [26]. Horizontal axes: proportion of
data set used as target. Vertical axis: change in predictive performance compared to training
only on the target data. The results are averages of 10 × 5-fold cross-validation.

Ganchev et al. Page 14

J Biomed Inform. Author manuscript; available in PMC 2013 July 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Intra-set whole-rule transfer on the gene expression data [26]. Horizontal axes: proportion of
data set used as target. Vertical axis: amount of information retained during transfer
learning; rr/rp: number of rules retained as a proportion of prior rules; rr/rl: number of rules
retained as a proportion of rules in the new model; ar/al: number of variables in the retained
rules, as a proportion of all the variables in the new model. The results are averages of 10 ×
5-fold cross-validation.
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Figure 6.
Number of improvements, ties and decreases in performance compared to training on the
target data set alone. The results are averages over 10-fold cross-validation over the four
protein profiling data sets.
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Figure 7.
Inter-set transfer with the four variations of the algorithm (horizontal axes). (a) Mean change
in predictive performance compared to training on the target data alone. (b) Mean amount of
information retained during transfer learning; rr/rp, rr/rl and ar/al have the same meaning as
in Figure 5. The results are averages of the two pairs of protein profiling lung cancer data
sets, using each data set once as target data in turn and the other one as source, and 10-fold
cross-validation over the target data.
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Table 1

Data sets used in the experiments. Horizontal lines delimit pairs of data sets where each data set was used once
as the target when the other one was the source. “Size” is number of clinical samples from each class.

Type Disease Name Size Ref.

Genomic Leukemia Train 27+11 [26]

Genomic Leukemia Test 20+14 [26]

Proteomic Lung cancer WCX UPCI 95+90 [2]

Proteomic Lung cancer WCX Vand 114+88 [2]

Proteomic Lung cancer IMAC UPCI 95+90 [2]

Proteomic Lung cancer IMAC Vand 114+89 [2]
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Algorithm 1

TRL. Differences from RL are underlined. Function import() takes a list of prior rules and removes from them
any variables that do not appear in the data set. satisfies() checks if the rule satisfies the user-specified
constraints. The second call to satisfies() checks only the minimum-coverage constraint because coverage of
any specialized rule will be equal or smaller. specialize() creates all non-redundant specialized rules by adding
to the original rule antecedent single variable-value pairs from the data set.

Input: data, a set of training instance vectors

 Input: priorRules, a list of prior rules

Parameters: constraints, constraints on acceptable rules

Parameters: minCoverage, minimum-coverage constraint

beam ← import(priorRules) + [∅ ⇒ class1, ∅ ⇒ class2…];

beam ← sort(beam);

model ← [];

while beam is not empty do

  beamnew ← [];

  for each rule ∈ beam do

   if satisfies(rule, constraints, data) then

    model ← model + [rule ];

    beamnew ← beamnew + specialize(rule);

   else if satisfies(rule, minCoverage, data) then

    beamnew ← beamnew + specialize(rule);

   end

   beam ← sort(beamnew);

  end

end

Return model
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