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Abstract
Searching for rare genetic variants associated with complex diseases can be facilitated by
enriching for diseased carriers of rare variants by sampling cases from pedigrees enriched for
disease, possibly with related or unrelated controls. This strategy, however, complicates analyses
because of shared genetic ancestry, as well as linkage disequilibrium among genetic markers. To
overcome these problems, we developed broad classes of “burden” statistics and kernel statistics,
extending commonly used methods for unrelated case-control data to allow for known pedigree
relationships, for autosomes and the X chromosome. Furthermore, by replacing pedigree-based
genetic correlation matrices with estimates of genetic relationships based on large-scale genomic
data, our methods can be used to account for population-structured data. By simulations, we show
that the type I error rates of our developed methods are near the asymptotic nominal levels,
allowing rapid computation of P-values. Our simulations also show that a linear weighted kernel
statistic is generally more powerful than a weighted “burden” statistic. Because the proposed
statistics are rapid to compute, they can be readily used for large-scale screening of the association
of genomic sequence data with disease status.
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Introduction
Large-scale genomic technologies, such as assays used for genome wide association studies
(GWAS), whole exome sequencing, or whole genome sequencing, provide rich resources to
screen for genetic variants associated with complex diseases. Recent efforts have focused on
the potential role of rare variants influencing disease, such as variants with minor alleles
having a frequency of less than 5%. Rare variants are likely to have a prominent role in the
etiology of some complex traits, a role found true for a number diseases [Azzopardi et al.,
2008; Cohen et al., 2004; Hershberger et al., 2010] and supported by population genetic
principles [Bodmer and Bonilla, 2008; Dickson et al., 2010; Pritchard, 2001]. To enrich for
affected subjects likely to carry rare variants, pedigrees with multiple affected subjects are a
good choice [Bodmer and Bonilla, 2008; Teng and Risch, 1999], particularly because of
widely available resources from past linkage mapping efforts. Many of such collections have
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multiple affected pedigree members, perhaps with some unaffected members. It is not
unusual to use these types of collections as a source for sampling cases (one per family), to
compare with a set of unrelated controls. To make full use of such pedigree data with
multiple cases, and possibly unrelated controls, we developed broad classes of statistics to
account for pedigree relationships, allowing a mixutre of related and unrelated cases and
controls. To understand our proposed methods, it is worthwhile to review recent
developments of “burden” tests and kernel tests for association testing of multiple genetic
variants with disease status.

Because they are sparse, it is nearly impossible to evaluate individual rare variants. Hence, a
popular strategy is to combine rare variants into groups, to increase the group sizes and
hence power. The grouping could be at the gene level, or a set of genes composing a
biochemical pathway. Most strategies are based on combining the minor alleles across
multiple variant sites into a single test statistic, either without weighting [Li and Leal, 2008;
Morgenthaler and Thilly, 2007; Zawistowski et al., 2010], or with fixed weights based on
allele frequencies [Madsen and Browning, 2009; Sun et al., 2011], or with data-adaptive
weights [Lin and Tang, 2011; Liu and Leal, 2010]. Variations on these strategies are data-
adaptive thresholds to include or exclude some variants [Hoffmann et al., 2010; Pan and
Shen, 2011; Price et al., 2010]. The strengths and weaknesses of these methods have been
reviewed and compared [Asimit and Zeggini, 2010; Bansal et al., 2010; Basu and Pan,
2010]. A simplistic view of this overall strategy is the creation of a variant-sum “burden” for
each subject, where the variant-sum is the total, across all variant sites, of the minor allele
dosages (possibly weighting each variant site with either fixed weights or data-adaptive
weights, and possibly weights of zero to exclude some variants). The variant-sum can be
used in regression models, possibly as a score-statistic, to test the association of the variant-
sum with a trait. From this perspective, these methods can be viewed as testing whether the
variant-sum influences the mean of the trait. For case-control studies, this is analogous to
testing the difference in the mean of the variant-sums between cases and controls. These
combined approaches are sensitive to when the minor alleles across all sites have effects in
the same direction (i.e., all risk variants or all protective variants).

Although testing of the variant-sum on the mean of a trait has significant advantages in a
regression framework, allowing for covariate adjustment (such as eigenvectors for
population stratification), it will have limited power when the variants are a mixture of both
risk and protective variants. Methods to overcome this limitation have been proposed
[Ionita-Laza et al., 2011; Neale et al., 2011], with powerful methods that allow covariate
adjustment based on kernel regression [Kwee et al., 2008; Lee et al., 2012a, b; Wu et al.,
2011]. Some important aspects of the kernel regression approach are: (1) kernel regression
can be formulated as a mixed model, with the adjusting covariates treated as fixed effects
and the genetic factors treated as random effects; (2) the random effects are assumed to have
a covariance structure that is determined by σ2H, where H is an n × n kernel matrix of
specified structure that summarizes the genetic similarity between pairs of subjects; (3)
under the null hypothesis of no association of the genetic data with a trait, the genetic
similarity between pairs of subjects is not associated with trait similarity between pairs of
subjects, so the scalar parameter σ2 = 0 under the null hypothesis of no association. The
resulting score statistic for testing Ho : σ2 = 0 can be efficiently computed by the quadratic
form Q = (Y – Ŷ)′ H(Y – Ŷ), where Y is a vector of length n for the trait values of n
subjects, and Ŷ is the covariate-fitted value of Y. Note that for quantitative traits, Q is

typically scaled by dividing by , where  is the maximum likelihood estimate of the
residual variance [Kwee et al., 2008].

A key assumption of the kernel association test, when applied to unrelated subjects, is that
the residuals, (Y – Ŷ), are assumed to be uncorrelated. To extend the kernel association test
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for autosomes to quantitative traits of pedigree data, Schifano et al. [2012] and Chen et al.
[2012] allowed for residual correlations among family members by assuming that the
random effects, denoted by the vector b, have a multivariate normal distribution under the
null hypothesis of no genetic-trait associations, with mean 0 and covariance matrix

. The matrix K contains diagonal elements Kii = 1 + hi, where hi is the
inbreeding coefficient for subject i, and off-diagonal elements Kij = 2ϕij . The parameter ϕij
is the kinship coefficient between individuals i and j, the probability that a randomly chosen
allele at a given locus from individual i is identical by descent to a randomly chosen allele
from individual j, conditional on their ancestral relationship. For autosomes, the genetic
correlation between subjects i and j is Kij = 2ϕij. By combining variation from the random
effects with the residual error variation, they were able to construct a null variance matrix

that accounts for correlations induced by pedigree relationships: . The

unknown parameters are replaced with their maximum likelihood estimates, ,
and this is used in the quadratic association statistic to account for correlations induced by
pedigree relationships: Q = (Y – Ŷ)′ V ̂–1 HV̂–1 (Y – Ŷ). The mixed model provides a
framework to separate the variance components into a part attributed to pedigree
relationships and a part due to random error. This is especially useful for quantitative traits,
but statistically more challenging for binary traits due to complications with generalized
linear mixed models [Breslow and Lin, 1995; Lin and Breslow, 1996]. An important
assumption of these methods is that the pedigrees were randomly ascertained. Without
random sampling, it is critically important to account for the ascertainment process (e.g.,
sampling according to trait values of some pedigree members) [Epstein et al., 2002].
Without proper adjustment for ascertainment, the estimated variance components are biased,
influencing the Q statistic.

Recently, Ionita-Laza et al. [2013] developed a family-based association test (FBAT) for the
kernel statistic, following the approach of others [Rabinowitz and Laird, 1999] by specifying
the distribution of offspring genotypes conditional on their phenotypes and their parental
genotypes (or the sufficient statistic when parental genotypes are not available), treating the
offspring genotypes as random. Although this approach is robust to population stratification,
there is a high price in terms of loss in power by the conditioning process. For example,
moderate-sized pedigrees sampled for multiple affected subjects with older age of onset
often have little information for the sufficient statistic because only affected subjects in the
lowest generation are available. Furthermore, this approach ignores between-family
information, which dramatically decreases power [Ionita-Laza et al., 2007; Van Steen et al.,
2005], and makes it impossible to use unrelated controls.

We developed statistical methods to analyze pedigree data for binary traits, which could
include unrelated subjects (e.g., multiple cases from pedigrees and unrelated controls), for
both the kernel statistic and the burden statistic. To do so, we took the perspective that the
ascertainment process for pedigrees enriched for multiple affected subjects is difficult to
define and model, leading us to a retrospective view that treats the traits as fixed and the
genotypes as random, in contrast to others who consider prospective random sampling,
treating the trait as random and the genotypes as fixed. This allowed us to account for
complex and undefined ascertainment of pedigrees [Kraft and Thomas, 2000; Schaid et al.,
2010], typical of pedigrees selected for linkage studies. We then evaluated the type I error
rates of our developed methods by simulations, as well as compared the power of the burden
and kernel statistics. Based on our simulations, we propose guidelines on choice of statistic
for testing the association of multiple variants with disease status.
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Methods
To derive the kernel association statistic and the burden statistic for data that includes
related subjects, we take a retrospective view of sampling, with the genotypes considered
random. Key aspects of our derivations are the first two moments of the random matrix of
genotypes. First consider genotypes measured on the autosomes. We use G to denote an n ×
m matrix of genotype scores with elements gil having values of 0, 1, or 2 for the number of
minor alleles for the lth marker (l = 1, . . . , m) of the ith subject. Under the null hypothesis
of no association of genotypes with traits, the expectation of matrix G has elements Eo[gil] =
2pl, where pl is the minor allele frequency for the lth marker. The null covariance of
elements of matrix G, Covo(gik, gjl), are influenced by how subjects are related (captured by
identity by descent coefficients) and how the genetic markers are correlated within subjects
due to linkage disequilibrium. We assume that we can obtain unbiased estimates of the
correlations among markers, perhaps from unrelated subjects or through use of estimating
equations with related subjects [Olson, 1994]. Let R denote an m × m correlation matrix of
genotype scores, with item Rkl for markers k and l, and let Ω denote an n × n matrix of
genetic correlations for all n subjects. For autosomes, the elements of Ω are twice the kinship
coefficients, Ωij = 2ϕij. For outbred pedigrees, the diagonal elements of Ω are 1, but for
inbreeding, the diagonal elements are Ωii = 1 + hi, where hi is the inbreeding coefficient for
subject i. For the X chromosome, discussed later, the genetic correlations are not as simple.
The covariance of the genotype codes in matrix G for subjects i and j, and markers k and l,
can be expressed as

(1)

A compact way to express the entire covariance structure of G is to stack the columns of the

matrix G on top of each other, into an nm × 1 vector, , so that
 where Vp is an m × m matrix with elements

 and the symbol ⊗ denotes the Kronecker matrix
product. When there are no cryptic relationships among subjects from different pedigrees,
the matrix Ω is block diagonal, with pedigree-specific kinship matrices filling in the blocks.

Kernel Statistic for Pedigree Data
Let Y′ = (y1, . . . , yn) denote a vector of disease status indicators for n subjects, with yi
having values of 1 or 0 for affected and unaffected, respectively. The quadratic kernel
association statistic can be expressed as Q = (Y – Ŷ) H(Y – Ŷ), where (Y – Ŷ) is the vector
of residuals, after adjusting for covariates, perhaps by use of logistic regression models, and
H is an n × n kernel matrix H (assumed to be positive semidefinite). Although the kernel
matrix, used to measure genetic similarity between all pairs of subjects, can be formulated in
many different ways [Schaid, 2010a, b; Wu et al., 2011], we derive the moments of Q under
the null hypothesis of no association based on a weighted linear kernel. The weighted linear
kernel has the form H = GWWG′, where G is the matrix of genotype scores, described
earlier, and W is a diagonal matrix with weights for each marker along the diagonal. We
make this restriction because of the wide use of the linear kernel [Lee et al., 2012a, b; Wu et
al., 2011], and the straight-forward way this kernel is amenable to the derivations we
present.
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By assuming a weighted linear kernel, the elements of the kernel matrix can be expressed as

, where wl is the weight for marker l, and the quadratic statistic can be
expressed as

where vector Z has elements . By the central limit theorem, Z has
an asymptotic multivariate normal distribution (although we should divide Z by n for this
asymptotic result, n would cancel in later derivations so we ignore it here). An advantage of
the multivariate normal distribution is that the moments of a quadratic form are well known.
That is, if Z ~ N(μ, VZ), then E [Z′ AZ] = tr(AVZ) + μ′ Aμ and Var(Z′ AZ) = 2tr(AVZAVZ)
+ 4μ′ AVZAμ, where tr(A) is the trace of matrix A (sum of diagonal elements). We use this
to derive the moments of Q under the null hypothesis (using subscript o to denote null

hypothesis). The first moment of vector Z has elements .
The elements of the covariance matrix of Z can be expressed as

where Covo(gik, gjl) is obtained from expression (1). This makes it clear that Covo(Zk, Zl)
depends on how the genotype scores are correlated, both within subjects (due to linkage
disequilibrium) and between subjects (due to kinship).

If the data contains pedigrees of known structure, including pedigrees of size 1 for singleton
subjects (e.g., unrelated controls or unrelated cases), then Ω is block-diagonal with block
sizes depending on the size of each pedigree. For this situation, the calculation of Covo(Zk,
Zl) simplifies because we only need to sum over the contributions from each pedigree. For
example, with D pedigrees, and the size of the dth pedigree denoted nd,

By rearranging terms, this covariance can be expressed as

where

The factor cZ depends only on relationships among subjects, and is constant over all
markers. This means that the covariance matrix for vector Z can be expressed as VZ = cZ *
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ff′ ○ R, where f is a vector with elements , matrix R is the correlation
matrix of the m markers, the symbol * denotes multiplication of the scalar cZ times all
elements in the adjacent matrix, and the symbol ○ denotes element-wise matrix
multiplication. By computing VZ in this manner, the factor cZ only needs to be computed
once, making efficient computation of matrix VZ when the number of markers is large.

Now, because Q = Z′Z, we can use the null moments of Z to determine the null moments of
Q: Eo[Q] = tr(VZ), Varo(Q) = 2tr(VZVZ). Asymptotically, the Q statistic is distributed as a
mixture of independent χ2 statistics. Alternatively, the distribution of Q can be approximated
by a Satterwaite approximation for the distribution of quadratic forms [Kwee et al., 2008;
Liu et al., 2008; Wu et al., 2011]. We estimate the distribution of Q by a scaled χ2

distribution with the scale and degrees of freedom estimated by the first two moments of Q.
That is, the scale was estimated as δ = Varo(Q)/(2Eo[Q]), the degrees of freedom as d =

2Eo[Q]2/Varo(Q), and P-values were computed by assuming .

Burden Test for Pedigree Data
A burden test can be formulated as follows. For the ith subject, compute a weighted average

of the genotype scores, . Under the null hypothesis, these summed scores are
not correlated with the trait, so a burden test can be constructed as L′S, where L is a mean-
zero function of the trait. For example, as discussed elsewhere [Thornton and McPeek,
2010], the Armitage trend test uses the contrast vector L = (Y – Ȳ). To adjust for covariates,
one could use L = (Y – Ŷ), the vector of residuals, after adjusting for covariates. The statistic
for this type of burden test is

The elements of matrix VS depend on Covo(gik, gjl), resulting in

where

Because cS is constant over all pairs of subjects, it needs to be computed only once. This
means that VS = cSΩ. Hence,

For large samples, T has an approximate χ2 distribution with 1 degree of freedom.
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Our proposed T statistic is similar in form to the statistics derived by Thornton [Thornton
and McPeek, 2010], yet with some notable differences. First, Thornton's statistic was for a
single marker at a time, not a burden test. Second, Thornton et al. considered pedigrees of
known structure as well as relationships estimated from large-scale genomic data. This
would be simple to do for our proposed statistic, by replacing the genetic correlation matrix
Ω with a matrix of estimated relationships. For example, if a large number of genetic
markers are available on the subjects, say m markers, then an estimate of the elements of Ω
proposed by Thornton et al. is

If markers are missing on some subjects, Thornton et al. adjusted this estimate by summing
over nonmissing pairs of subjects and dividing by the number of terms in the sum.

Alternative ways to estimate  could be based on estimated probabilities of identical by

descent (IBD) sharing, with , where P̂j is an estimate of the probability of
sharing j alleles IBD. Both moment-based [Purcell et al., 2007] and maximum likelihood
estimation [Sun et al., 2002; Weir et al., 2006] procedures have been developed. We have
found maximum likelihood estimates to be closer to pedigree-based expected IBD
probabilities, particularly for third-degree and higher relationships, despite the more time it
takes to compute them. Which procedure is best is worthy of future research, but
nonetheless this estimated genetic correlation matrix would be a way to account for cryptic
relationships for both the kernel association statistic and the burden statistic.

Extensions to the X Chromosome
Because of the asymmetry of males and females with respect to the X chromosome, a
number of modifications are needed to extend the kernel and burden association tests to the
X chromosome. First, expression (1) for the null covariances of elements in the G matrix
changes because of the need to consider the sex of the members of each pair of relatives.
Second, because of X chromosome dosage compensation in females, the power for
association testing with the X chromosome can be improved by coding males as
homozygous females (i.e., 0, 2 instead of 0, 1) [Clayton, 2008; Ozbek, 2012]. To develop
our methods in a general way to code male genotypes for the X chromosome, we use d to
represent the code for males that carry the minor allele, so that males are coded as 0 or d (d
might be 1 or 2), whereas females are coded as 0, 1, or 2 (as for autosomes). Assuming

Hardy-Weinberg equilibrium, the null expected value of the code for females is , and

the null variance for females is . For males, the null mean is  and the

null variance is . The genetic correlation for the X chromosome for a pair of
relatives can be expressed in terms of the probability of sharing 0, 1, or 2 alleles IBD,
denoted ko, k1, k2, respectively [Li, 1976]. The genetic correlations are

(2)

Note that the genetic correlation for a pair of females is computed in the same manner as for
autosomes, because the kinship coefficient is ϕij = k1/4 + k2/2. However, the values of k1
and k2 differ between autosomes and the X chromosome. For example, for a pair of outbred
sisters, the values for autosomes are k1 = 0.5 and k2 = 0.25, yet for the X chromosome the
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values are k1 = 0.5 and k2 = 0.5, because sisters must share the X chromosome from their
father. The genetic correlation for a pair of males depends on the probability of sharing 1
allele IBD, which can be nonzero when there are no males in the ancestral line connecting
the pair of males. The genetic correlation for a female-male pair also depends on sharing 1
allele IBD, but the divisor of  originates from dividing the genetic covariance by the
square-root of the product of genetic variances, and only females have a factor of 2 for their
binomial variance (males have a factor of 1 due to one X chromosome). Note that these
genetic correlations do not change if we code males as 0, d, because the genetic covariance
(numerator) and the square-root of the product of genetic variances (denominator) both
depend on d, which cancels in the correlation. Finally, similar to Thornton et al. [2012], we
define the diagonal terms to be Ωii = 1 + hi for females, where hi is the inbreeding
coefficients for females based on pedigree relationships, and Ωii = 2 for males regardless of
inbred.

With the genetic correlations in expression (2), the elements of the null covariance matrix of
the genotype codes can be expressed as follows, for subjects i and j and markers k and l;

As for the case of autosomes, the above null covariance matrix of the genetic codes can be
used to express the covariance matrix for vector Z as VZ = cZ * ff′ ○ R, but now the
coefficient cZ for the X chromosome is,

where

With the above changes for the X chromosome, the other methods to compute the kernel
association statistic and its approximate asymptotic distribution remain the same as for
autosomes.

For the burden test, the computation of the numerator remains the same, (Y – Ŷ)′S]2, but the
variance in the denominator, (Y – Ŷ)′VS(Y – Ŷ) is slightly altered. The matrix VS has
elements

where
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To extend the above methods to situations for which relationships are estimated from
genomic data, we propose replacing the genetic correlation matrix Ω with a matrix of
estimated relationships, tailored for the X chromosome. Following ideas from Yang et al.
[2011], the estimated correlations take the form

Simulation Methods
To evaluate the type I error rates and power of our developed statistics, we simulated
genotype data for subjects in pedigrees, as well as unrelated control subjects, as illustrated in
Figure 1. For scenario 1, we simulated genetic markers for 150 pedigrees, each composed of
10 members, and included in the analyses the 3 affected members in the third generation.
These 450 affected subjects were compared with 450 unrelated controls. This scenario
represents a common study design that uses multiple cases of older onset disease from
pedigrees, and compares them with unrelated controls. In contrast, scenario 2 uses only
cases and controls from pedigrees, also from the third generation. These two scenarios
represent extremes, whereas in practice cases and controls are likely to be a mix of unrelated
and related subjects.

To simulate genetic marker data, we first simulated haplotypes, and then randomly sampled
haplotypes to assign to founders of pedigrees (or to unrelated controls). The haplotypes were
randomly assigned to the nonfounders of pedigrees by Mendelian “gene-dropping,”
assuming no recombination within haplotypes, as one would expect for small genomic
regions. For simulations under the null of no associations, the populations of haplotypes
were the same for pedigrees and unrelated controls (scenario 1). For power evaluations
(restricted to scenario 1), separate haplotype populations were created for pedigrees (with
three affected cases per pedigree) and for unrelated controls.

Because we anticipated that a number of features of the haplotypes could influence either
type I error rates or power, we designed a simulation process that would allow us to rapidly
simulate haplotypes, while specifying the number of markers, the minor allele frequencies
(MAF), the amount of correlations among the markers, and—for power—the number of risk
and protective markers, along with their relative risks. To achieve this, we used the methods
of Basu [Basu and Pan 2010], which are based on multivariate normal simulations. For m
markers, a latent vector Z of standard normal random variables was simulated. The latent
vector was transformed to have a specified correlation structure by X = AZ, where the
Cholesky decomposition is given by AA′ = R, and R is an m × m matrix of specified
correlation structure. The latent vector X was transformed to a haplotype vector having
alleles of 0 or 1 by using quantiles of a standard normal distribution based on the MAF of
the genetic markers. For correlation structure, we used a compound symmetric matrix (all
off-diagonal correlations equal to common value of ρ). We chose this to evaluate the impact
of extremes in linkage disequilibrium, with values of ρ = 0, 0.5, and 0.9. For rare variants,
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we do not expect large values of ρ, yet we wanted to force extremes to fully test our
methods. For the total number of markers, we simulated m = 50 and 100. For MAF, we
chose values of MAF = 0.01, 0.05, and 0.10, keeping MAF constant across all m markers for
each evaluation. Each simulation was based on 1,000 simulated datasets. For the weights,

we used the Madsen-Browning weights [Madsen and Browning, 2009], ,
where p̂l was the naïve minor allele frequency estimate based on gene counting. Because p̂l
can be unstable for rare variants, we estimated it by the pool of all simulated data, not just
the controls, as suggested by others [Lin and Tang, 2011]. The elements of the correlation
matrix, R, were also based on gene-counting, a method that has been shown to provide
consistent estimates even when relationships among pedigree members are ignored [Olson,
1994].

To compare the power of the kernel Q statistic vs. the burden T statistic, we simulated a total
of m = 50 markers. In one set of simulations, we set the number of risk variants to be 10, 20,
or 40, with no protective variants (all risk variants having the same relative risk). In another
set of simulations, we set an equal number of risk and protective variants, with
risk:protective counts of variants as 5:5, 10:10, and 20:20.

We recognize that our simulations might not reflect real population data, as one might
simulate by a coalescent process, such as the popular COSI software [Schaffner et al., 2005].
Our intent, however, was to have more control over parameters that might influence the
properties of our statistical tests, such as MAF, number of variants, and correlation structure,
primarily because these features differ across the genome, and a population average model
of simulation might not reveal critical aspects of our methods.

Results
Simulation results for the type I error are presented in Table 1 for scenario 1 with autosomal
markers, which included 150 pedigrees, each with three affected members, and 450
unrelated controls. These results show that both the kernel Q statistic and the burden T
statistic control the type I error rates at the nominal levels of 0.05 and 0.01. The type I error
rates for scenario 2 with autosomal markers, which used both cases and controls from
pedigree data, are presented in Table 2. In general, the empirical type I error rates are close
to the nominal, yet with a few exceptions that were slightly above the nominal (for 1,000
simulations, the upper 99th binomial percentile of the nominal type I error rates are 0.067
for α = 0.05 and 0.018 for α = 0.01). The results in Tables 1 and 2 were for equal MAF
across all markers. We repeated simulations allowing the MAFs to have an exponential
distribution, truncated to the range of 0.01 to 0.1, so that the MAFs were skewed toward
small values, as one would expected for rare variants. Similar to results in Tables 1 and 2,
the type I error rates were close to the nominal values (results not shown).

For the X chromosome, simulation results for scenario 2 are presented in Table 3. The
empirical type I error rates are close to the nominal for the kernel Q statistic for all the
different parameter settings. The burden T statistic had empirical type I error rates close to
the nominal in most situations, with the exception that it tended to be very conservative
when the MAF was not small (e.g., MAF = 0.10), and genetic markers were simulated
without correlations (ρ = 0). We suspect that this is caused by sampling errors that cause
nonzero estimates of elements of the correlation matrix, making the statistic conservative by
overcorrecting for estimated correlations that would approach zero with larger sample sizes.
This suspicion was validated by using the assumed correlation (identity matrix, because ρ =
0), in place of the estimated correlation, which resulted in simulated type I error rates near
the nominal (results not shown). This suggests that methods to “shrink” small correlations
[Wen and Stephens, 2010] might prove useful when correlations are small. Overall, these
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results suggest that the null distributions of both the kernel Q and burden T statistics are
reasonably approximated by our asymptotic derivations.

Simulation results for power for autosomal markers are summarized in Figures 2–5. For
each of these figures, we present the Q and T statistics, each evaluated at nominal type I
error rates of 0.05 and 0.01. Each figure shows simulations for different values of ρ = 0, 0.5,
and 0.9, as well as the number of risk and protective variants. In Figure 2, the results for
only risk variants with MAF of 0.01, it can be seen that power increases with the number of
risk variants, but decreases as correlation ρ increases. Figure 3 illustrates similar patterns, for
MAF = 0.05. Surprisingly, the burden T statistic has little power advantage over the kernel
Q test, even as the number of risk variants increases.

Figures 4 and 5 illustrate power when there are an equal number of risk and protective
variants. Not surprisingly, the burden T statistic performs poorly, due to the canceling of
effects in the weighted sum of variants per subject. Because the magnitude of relative risk
for the protective variants was set as the inverse of the relative risk for the risk variants, we
can compare Figures 4 and 5 with Figures 2 and 3, to see that power results are similar for
the kernel Q statistic, indicating that the direction of effect has little impact on power, as
expected.

Discussion
Our proposed methods to evaluate the association of multiple genetic variants with disease
status when subjects are related provide a sound basis for analyzing pedigree data, with
particular emphasis on rare genetic variants that benefit from analyzing groups of variants,
instead of individual variants. Because our statistical methods are simple to compute, and
the nominal type I error rates are reasonably approximated by our developed methods, it is
feasible to use the proposed statistics on large scale data, such as whole exome sequence
data.

A critical feature of our approach was viewing the sample collection as a retrospective
study, which means conditioning on phenotypes, treating the genotype data random. This
approach seems reasonable for pedigrees sampled because of multiple affected members,
such as those collected for past linkage studies. This overcomes the problem of modeling the
ascertainment process, which would be particularly challenging for highly enriched
pedigrees. Although conditioning on traits in a retrospective likelihood tends to be less
efficient than treating traits as random variables in a prospective likelihood, there tends to be
little loss in efficiency for binary traits [Kraft and Thomas, 2000]. In principal, this approach
could be extended to quantitative traits, by conditioning on the quantitative traits of all
pedigree members. This might be of value when pedigrees are highly selected according to
quantitative traits of the pedigree members, or when subjects to sequence are sampled
according to extreme phenotypes to increase power to detect rare variants [Barnett et al.,
2012].

Through simulations, we showed that the linear weighted kernel Q statistic had more power
than the weighted burden T statistic, even in situations that would seem to favor the burden
statistic. This suggests that the kernel Q statistic would be the method of choice. An
advantage of the weighted kernel is that a wide variety of weights could be used, such as
those based on the β density function or based on functional information [Wu et al., 2011].
Although our methods were based on additive allele dosage, scoring genotypes as 0, 1, and 2
for the number of minor alleles, it is possible to generalize the scoring, such as for dominant
effects (scores of 0, 1, and 1) or for recessive effects (scores of 0, 0, and 1). However, it can
be shown that the genetic correlations for dominant and recessive scoring are no longer as
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simple as twice the kinship coefficient (for autosomes), but rather depend on the minor allele
frequencies. Furthermore, because our methods were proposed to analyze multiple genetic
markers for a gene, it is not clear that scoring all markers as dominant, or all as recessive, or
even a mix of these scores, would offer much advantage over the simple additive scoring for
all markers.

We chose a linear kernel, which is rapid to compute and facilitated our derivations. It might
be worthwhile to evaluate other types of kernels (e.g., Gaussian kernels, or a kernel-based
local identical by descent for the evaluated gene), although nonlinear kernels complicate the
computations of the moments of the Q statistic. To illustrate the complications, consider the
popular Gaussian radial basis kernel [Schaid, 2010a], which has the form

, where σ2 is a specified scale parameter that governs how
rapid the kernel function diminishes to 0. An approach to derive the moments of Q would be
to use Taylor-series expansion to “linearize” the kernel into a polynomial function of the
genotype scores. Expanding this function about 0 (assuming that the scale parameter σ2 is

chosen large enough), this kernel can be approximated as .

With this in hand, the Q statistic can be expressed in terms of gil, , gjl, and , and product
terms, gilgjl. The covariances among these pieces can be determined in a manner similar to
our derivations for Covo(gi,k, gj,l), but requiring third and fourth moments, because of terms

like . The third and fourth null moments for pedigree data can be challenging to compute,
because they no longer depend solely on kinship coefficients. Rather, pedigree-based
simulations by “gene-dropping” would likely be required. At this computational cost, it
would seem better to use gene dropping (including random assignment of alleles to
unrelated controls) to compute P-values for nonlinear kernels. For these reasons, and the
computational speed of the weighted linear kernel, we favored the linear kernel.
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Figure 1.
Scenarios for simulations. Each scenario has 450 affected subjects and 450 unaffected
subjects with simulated genotype data. The “+” symbol indicates subjects included in
analyses.
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Figure 2.
Simulated power for MAF = 0.01 with risk variants having relative risk of 2, and no
protective variants. Nominal type I error rate in parentheses.
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Figure 3.
Simulated power for MAF = 0.05 with risk variants having relative risk of 1.5, and no
protective variants. Nominal type I error rate in parentheses.
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Figure 4.
Simulated power for MAF = 0.01 with an equal mix of risk:protective variants. Relative risk
for risk variants was 2, and relative risk for protective variants was 0.5. Nominal type I error
rate in parentheses.
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Figure 5.
Simulated power for MAF = 0.05 with an equal mix of risk:protective variants. Relative risk
for risk variants was 1.5, and relative risk for protective variants was 0.67. Nominal type I
error rate in parentheses.
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