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Abstract
Tumor hypoxia develops heterogeneously and affects radiation sensitivity and development of
metastases. Prognostic information derived from the in vivo characterisation of the spatial
distribution of hypoxic areas in solid tumors can be of value for radiation therapy planning and for
monitoring early treatment response. Tumor hypoxia is caused by an imbalance between the
supply and consumption of oxygen. Tumor oxygen supply is inherently linked to its vasculature
and perfusion which can be evaluated by dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) using the contrast agent Gd-DTPA. Thus we hypothesize that DCE-MRI data may
provide surrogate information regarding tumor hypoxia. In this study, DCE-MRI data from a rat
prostate tumor model were analysed with a Gaussian Mixture Model (GMM)-based classification
to identify perfused, hypoxic, and necrotic areas for a total of ten tumor slices from six rats, of
which one slice was used as training data for GMM classifications. The results of pattern
recognition analyses were validated by comparison to corresponding Akep maps defining the
perfused area (0.84±0.09 overlap), hematoxylin/eosin (H&E) stained tissue sections defining
necrosis (0.64±0.15 overlap), and pimonidazole-stained sections defining hypoxia (0.72±0.17
overlap), respectively. Our preliminary data indicate the feasibility of a GMM-based classification
to identify tumor hypoxia, necrosis, and perfusion/permeability from non-invasively acquired, in
vivo DCE-MRI data alone, possibly obviating the need for invasive procedures, such as biopsies,
or exposure to radioactivity, such as in PET exams.
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INTRODUCTION
In vivo imaging of the tumor microenvironment provides critical and detailed prognostic
information about the response to treatment. Non-invasive methods for the detection and
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localisation of hypoxic areas in tumors are of great interest, as hypoxia is related to
prognostic outcome due to the resistance of these cancer cells to treatment [1–3] and their
inherently poorer outcome. Thus, non-invasive imaging of the tumor microenvironment
could provide critical information for treatment planning, and facilitates the early
assessment of treatment response before actual tumor shrinkage occurs.

A conventional method for detecting tumor hypoxia involves the invasive insertion of
polarographic electrodes to measure the partial pressure of oxygen (pO2). The development
of non-invasive hypoxia imaging methods is an active research area, as these methods will
enable total volume coverage as well as longitudinal studies of tumor oxygenation before
and after treatment [4–14]. Positron Emission Tomography (PET) using 18F-
fluoromisonidazole (18F-Fmiso) is a potential method to detect tumor hypoxia, as 18F-Fmiso
binds selectively to hypoxic regions, and its uptake in cells can be detected with in vivo PET
[15–17]. A recent study in an animal tumor models suggests that the initial 18F-Fmiso
uptake may be dominated by perfusion of the tumor, necessitating the dynamic monitoring
of uptake for accurate assessment of tumor hypoxia [18, 19]. However, the longer
acquisition time required for dynamic monitoring of tracer uptake (when compared to static
image acquisition) is a hindrance for practical application in the clinic along with poorer
image resolution compared to MRI. Measurements of pO2 using electron paramagnetic
imaging and Overhauser-enhanced MRI are other candidate methods [20–23]; the former
requires a high frequency microwave source, has low resolution, requires a magnet of
appropriate size and field strength and a injection of an expensive EPR tracer, which may
limit its clinical applicability.

Tumor hypoxia is caused by an imbalance between the supply and the consumption of
oxygen [24]. Therefore, the structure and functionality of tumor vasculature as well as the
degree of angiogenesis can be significant factors in the development of hypoxia in solid
tumors [25–27]. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is
used clinically and preclinically to investigate leaky tumor vasculature [28, 29]. This
technique enables the dynamic measurement of signal changes after bolus administration of
a T1 contrast agent (CA). The T1 values of tissue water decrease when the paramagnetic CA,
such as Gd-DTPA, leaks through the vessel wall into the interstitium. The CA diffuses at a
faster rate and in larger concentrations in well-perfused permeable regions. Thus, the MR
image displays a characteristic time signal intensity change related to the contrast agent
concentration in the tumor tissue. The DCE-MRI data measures tumor vasculature/perfusion
and permeability and can be acquired in ~10 min without the need for ionizing radiation.

Recently, a combination of in vivo DCE-MRI, 18F-Fmiso PET and ex vivo
immunohistochemical and histological information validated that the Akep value, which is a
measure of tumor perfusion/permeability derived from DCE-MRI data analysis, is able to
distinguish well-perfused from necrotic tumor tissue [19]. However, the in vivo
identification of hypoxic areas required the additional acquisition of dynamic 18F-Fmiso
PET [19] in the animal model. An inverse relationship between the hypoxic fraction of a
tumor and its microvessel density has been shown in studies using histologically-based
methods [30, 31]. In a rat prostate cancer model, a negative correlation between the
perfusion parameter (Akep) obtained from DCE-MRI data and the tumoral uptake of the
hypoxia PET tracer 18F-Fmiso has also been shown [19]. Thus, DCE-MRI may have the
potential to provide valid surrogate information regarding tumor hypoxia and may
complement existing dynamic PET methods.

Conventional interpretations of uptake curves in DCE-MRI are based on various parameters
obtained from multi-parameter, non-linear fittings of contrast agent uptake curves. Fitted
parameters, such as tumor perfusion, microvascular vessel wall permeability and
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extravascular-extracellular volume fraction are obtained from fittings using pharmacokinetic
models [32–37]. Pharmacokinetic models are advantageous because they enable the fitted
parameters to be assigned to model-based physiological parameters and offer valuable
information regarding tumor microenvironments. However, the non-linear fittings of
multiple parameters based on a specific model may be limited by underlying assumptions, or
may restrict the ability to relate a voxel-specific contrast uptake curve in an in vivo DCE-
MRI voxel to its characteristic tumor microenvironment. The latter is probably because
thresholding a specific, model-based parameter is limited in differentiating the tumor
microenvironments when the parameter values between tumor microenvironments overlap
significantly. In addition, the requirement for an arterial input function (AIF) in various
models is demanding, as reliable AIF measurement is well known to be challenging both
clinically and preclinically [38–40].

In this study, we used a Gaussian Mixture Model (GMM)-based classification scheme to
identify the diverse tumor microenvironments from the time-signal uptake curves of
individual DCE-MRI voxels. The advantage of this approach is that it is simple and data-
driven which does not involve the complicated physical modelings, those are typically used
in quantitative analyses of DCE-MRI data. Heterogeneous uptake curves in DCE-MRI
datasets were classified into three representative categories based on GMM classification.
Each category was then assigned to a specific tumor microenvironment and maps of
spatially resolved regions featuring perfused, hypoxic and necrotic areas were generated.
The results were compared to previously obtained results in which necrotic and hypoxic
areas were identified respectively from hematoxylin/eosin (H&E)- and pimonidazole-stained
tissue sections, while well-perfused areas were identified from Akep maps of in vivo DCE-
MRI data [19, 33].

This paper reports the feasibility of the in vivo identification of tumor microenvironments,
including but not limited to areas of hypoxia, based on the GMM classification of voxel-
wise DCE-MRI uptake curves.

Materials and Methods
A. Tumor model, in vivo DCE-MRI, and ex vivo Tissue processing

The experiments were performed as described in detail previously[19].

Briefly, animal studies were carried out in compliance with protocols approved by the
Institutional Animal Care and Use Committee of Memorial Sloan-Kettering Cancer Center
(MSKCC). The R3327-AT rat prostate cancer cell line was cultured in DME (Dulbecco’s
Modified Eagle’s) medium, supplemented with penicillin and streptomycin (1%), under
sterile conditions at 37°C in a humidified atmosphere (95% air and 5% CO2). The cells were
harvested when they reached around 70% confluence. A concentration of 2×106 per 0.1 mL
was injected subcutaneously in the right hind leg of 6- to 8-week-old Copenhagen rats.

When the tumor size reached 500–2500 mm3, the rat tail-vein was catheterized to facilitate
the i.v. injection of the contrast agent (CA) Gd-DTPA (0.2 mM Gd/kg, 0.045ml/s, 10~12s
injection time, Magnevist; Berlex Laboratories, Inc., Wayne, NJ) for the DCE-MRI study.
The animal was anesthetized with isoflurane (2.5%) mixed in with oxygen and placed in the
magnet with the tumor-bearing leg positioned in the MR coil, as previously described[19].

A series of T1-weighted, i.e., fast low-angle shot (FLASH), MR images were acquired to
monitor the rapid increase in signal intensity due to the shortened T1, caused by the uptake
of paramagnetic Gd-DTPA into the extracellular-extravascular space (EES) of the tumor.
DCE-MRI data were acquired using the FLASH sequence, with the repetition interval (TR)
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= 41.775 ms, echo time (TE) = 3.1 ms, number of repetitions (NR) = 256, number of
averages (NA) = 4, slice thickness (ST) = 0.79 mm, field of view (FOV) = 3.5 cm × 3.5 cm,
matrix size = 128 × 128, flip angle = 30°, resulting in an in-plane resolution of 273 μm ×
273 μm and a temporal resolution of 5.347s [19]. T2-weighted MR images (RARE, TR =
2000 milliseconds, TE = 30 milliseconds, NR = 1, NA = 1, ST = 0.79 mm, FOV = 3.5 cm x
3.5 cm, matrix = 128 × 128) were acquired for the boundary visualization of the tumor.

After the in vivo DCE-MRI scan, the hypoxia marker pimonidazole was injected i.v. and the
tumor was excised, embedded in OCT (Tissue-Tek O.C.T. Compound, Sakura Finetek
U.S.A., Inc., Torrance, CA) and frozen at −80°C until processed [19].

The frozen OCT-embedded tumors were sectioned on a Microm HM500 cryostat microtome
(Microm International GmbH, Walldorf, Germany) into 8-μm thick sections at 0.79-mm
increments across the tumor using the fiduciary markers to align the tissue sections with the
in vivo MR image slices of the tumor [19]. Tissue sections were stained with a fluoroscein
isothiocyanate conjugated anti-pimonidazole monoclonal antibody (Chemicon, Temecula,
CA) as well as Hematoxylin and Eosin (H&E) [19] Images of stained tumor sections were
acquired using an Olympus BX40 fluorescence microscope (Olympus, America, Inc.,
Melville, NY) [19].

To validate the ability of classified GMM mixtures of DCE-MRI uptake curves to
characterize different tumor microenvironments, necrotic, hypoxic, and perfused regions
were identified using relative thresholding on tissue sections (necrotic, hypoxic) and in vivo
Akep maps (perfused), respectively.

Briefly, pimonidazole-positive (hypoxic) areas were selected by setting the threshold at 5–6
fold of the background level (necrotic area) and a binary hypoxia mask (black/white) was
generated from the RGB-converted image of pimonidazole-stained section. For necrotic
area, the image of H&E stain was also converted to RGB and a separate binary mask for
tumor necrosis was generated by thresholding elevated intensity area in the same manner,
where the level of the background staining intensity was set based on levels in well-perfused
areas. Perfused tumor areas were identified in vivo from the dynamic build-up curves in the
DCE-MR images that were fitted for each voxel using the Hoffmann model [33]. The
Hoffmann model is a two-compartment model that assumes a linear relationship between the
MR signal and the concentration of the CA in the tissue. In the model, an amplitude (A)
corresponds to the relative signal enhancement while the exchange rate (kep) corresponds to
the velocity of signal increase. The magnitude of Akep is proportional to the slope of the MR
signal over time and thus reflects the vascular flow or perfusion and vascular permeability of
the tumor tissue. Akep values were calculated for each individual voxel from the dynamic
build-up curves. Binary perfusion masks were obtained for each tumor slice by setting a
threshold of the corresponding Akep maps. Voxels with Akep values larger than ~0.006 (1/s)
were defined as well-perfused regions of the tumor area, and assigned to 1 in the binary
perfusion masks, otherwise voxels were considered ill-perfused and assigned to 0 in the
binary perfusion masks.

B. GMM classification of DCE-MRI data
The GMM classification was applied to the analysis of DCE-MRI uptake curves with the
aim of separating tumor microenvironments based on the characteristics of contrast agent
uptake curves alone without having to revert to ex vivo analyses.

A GMM classification is a well-known statistical tool for approximating any arbitrary
probability density function (pdf) by a weighted sum of multiple Gaussian densities with
several parameters, such as the mean vector, covariance matrix, and mixture weight [41–44].
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Let M be the number of groups (classes) in the data. The target mixture density function can
be defined as

(1)

where x⃗ is a D-dimensional measurement or observation vector, wi, i=1,…, M are the

mixture weights that satisfy 0 ≤ wi ≤1 and , and Pi,(x⃗) is a D-variate Gaussian
density for the ith mixture as given by the equation:

(2)

where μ⃗i is the ith mean vector and Ci is the ith covariance matrix of size M × M. The
complete Gaussian mixture density function is parameterised by the mixture weights, mean
vectors and covariance matrices from all Gaussian densities, and is represented by the
notation:

(3)

This set of parameters, i.e., λ, are estimated for the GMM-based classification by the
expectation-maximisation (EM) algorithm [45], which is further explained in the Appendix
section.

Here, using a representative tumor (training tumor 3, slice 1), we tested first the applicability
of the GMM classification system to the heterogeneous DCE-MRI contrast uptake curves
resulting in a set of Gaussian component probability density functions (pdfs) categorizing
tumoral contrast uptake behavior. The analysis of the training tumor using vector
quantization and the EM algorithm (Appendix) led to multiple pdfs. This set of pdfs was
assigned to either the hypoxia, perfused, or necrotic tumor area based on the respective
binary maps created from pimonidazole, Akep and H&E maps, respectively, and an
assignment rule was developed. To reduce the computation time for the GMM classification
as well as the observation errors, the images of every five time points were averaged for the
entire time resolved data points (256 time points), reducing the time resolution from 5.347 s
to 26.735 s per image set (4 slices). Signal time curves were corrected for baseline signal
intensity before CA injection, as described previously[19]. For optimal GMM
categorization, the baseline-corrected signal time curves were normalized using SN = (S
−Smin/Smax−Smin), with Smin defining the minimum signal, Smax the maximum signal
intensity value within each voxel, and S the signal intensity value. Starting at time of CA
injection, the normalized signal time curves (SN(t)) served as multi-dimensional input vector
to GMM and optimized classification was achieved.

Based on the training data set, the contrast uptake curves for each of the remaining tumors
were classified into different mixtures and attributed to its respective tumor
microenvironment using the developed assignment rule described in detail in the result
section. Finally, spatially-resolved, GMM classified tumor microenvironments from DCE-
MRI data were compared directly to corresponding masks of perfused, hypoxic and necrotic
areas obtained from the analysis of Akep, pimonidazole, and H&E maps used as the ‘gold-
standard’.
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Results
A T2-weighted MR image of a tumor slice and representative, regional contrast agent uptake
curves that illustrate the spatial heterogeneity of CA uptake in tumors are shown in Fig. 1.
(The signal (S) is normalized with respect to the maximum signal (Smax) in the slice). The
variations in the contrast agent uptake across the solid tumor indicate the presence of a
diversity of tumor microenvironments, which are not readily distinguishable in the T2-
weighted 1H MR image alone. Specifically, in region (a), the small signal increase resulting
from the minimal uptake of CA is characteristic for tumor necrosis [46]. Region (b) shows
delayed CA uptake signal build-up due to reduced vascularisation and permeability, and is
likely to be a hypoxic area. Region (c) shows a fast signal increase with a fast contrast agent
washout, representing a well-perfused area.

A. Number of classifiers and Gaussian density functions
The normalized signal SN(t) at two different time points (vertical lines 1 and 2 in Fig 1B) for
all the voxels in a tumor slice after the injection of Gd-DTPA are shown in Fig. 2C. Each
curve was normalized within tissue segmentation, and thus, the signals of necrotic areas
appear to be centered around 0.5. Perfused (red,’x’), hypoxic (green,’o’) and necrotic (blue.’
+’) areas were selected from the analysis of Akep, pimonidazole, and H&E maps, as
described in the Materials and Methods and corresponding masks were applied to the DCE-
MRI data to generate the scatterplot and histograms shown in Fig. 2. The histograms of
SN(t) at these two time points after CA injection are shown in Fig. 2A and 2B, respectively.
The necrotic voxels (blue points) show low signal intensities for both the earlier and later
time point (520 s and 1150 s respectively). Two time points were chosen to reflect the rising
and falling region of dynamic data. The green points (hypoxic voxels) show an intermediate
signal enhancement at 520 s after CA injection with no significant washout of the CA
detected at the later time point, i.e. 1150 s. The red points (perfused voxels) show the
highest signal intensity at the earlier time point and decreasing signal intensity (representing
CA washout) at 1150 s. Three clusters with some overlap are observed in both the
scatterplot and the histograms. The identified clusters are of skewed and elliptical shapes
with corresponding skewed histograms as shown in Fig. 2C. The skewed elliptical data
distributions in each histogram can be approximated by the mixing of a minimum of two
bivariate Gaussian pdfs that are weighted to accommodate their respective contributions to
fit the corresponding histogram. The asymmetry in the histograms leading to the overlap of
histograms representative of the three different tumor microenvironments implies that there
are voxels which have predominantly one feature (e.g. necrosis) and still a measurable
contribution from a second feature (e.g. hypoxia) resulting in vivo in a volume-averaged CA
uptake curve.

Initially, all the DCE-MRI data were normalized for each voxel and classified using a
mixture of 3,4, and 6 Gaussian pdfs, respectively. Having 6 pdfs captured transitional
pattern between three representative pattern, whereas 3 and 4 pdfs showed many outliers in
each classified mixture. Based on these observations, DCE-MRI data were classified using a
mixture of 6 pdfs to model the boundary data distributions between neighboring classes, for
GMM study presented here.

B. Assignment rule of classifiers to tumor microenvironment
The results of the GMM-based classification using six pdfs are summarized for two
representative slices of two separate tumors in Fig. 3. One tumor slice represents a
heterogenous tumor with hypoxic, necrotic and well-vascularized areas (Fig. 3A, B), while
the second tumor slice is from a homogeneous, well-vascularized tumor (Fig. 3C, D). While
the heterogenous tumor was used to develop the assignment rule, the homogeneous tumor
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demonstrates the validity of the model for tumors presenting only one of the three micro-
environmental features.

In these tumors, the signal time curve for each voxel is assigned to one of six patterns (Fig.
3A, C) using the GMM-based classification. For each pattern (1–6), the corresponding
average signal time curves were calculated from the mean vector of the respective Gaussian
component density (Fig. 3B, D). For the assignment of each pattern to one of the three tumor
micro-environmental features, i.e., perfused, hypoxic or necrotic areas, we developed an
assignment rule based on the area under the mean signal time curve (AUC). The AUC was
divided into 4 quadrants with the lines set at 50% of total time after injection (Fig. 3B-1, red
line) and 50% of Smax (Fig. 3B-1, green line). The ratio of the area of the two left quadrants
to the two right quadrants is defined as Rh, while the ratio of the area of the two upper
quadrants to the two lower quadrants is defined as Rv.

Predominantly perfused areas in the tumor are characterized by a fast uptake of the contrast
agent followed by a fast washout (Fig. 3B-1, B-2), resulting in Rh values close to or larger
than 1. In hypoxic tissues induced by poor perfusion, the CA uptake is slower and
demonstrates very little washout of the CA during the acquisition time because of poor
perfusion (Fig. 3B-3, B-4), resulting in lower Rh values than for well-perfused areas.

Necrotic areas are typically characterized by no CA uptake (Fig. 3B-6) or slowly increasing
CA uptake (Fig. 3B-5), the first resulting in Rh values close to 1, the latter in Rh values
below 0.5 (i.e., when the area of the left two quadrants is smaller than that of the right two
quadrants by a factor of 2 or more). Necrotic areas characterized by a lack of CA uptake
(Fig. 3B-6) cannot be distinguished from perfused areas by the Rh value alone. However in
such cases, SN(t) does not change significantly over time, resulting in low Rv values, while
perfused and hypoxic areas with their SN(t) changing over time demonstrate larger Rv
values.

Based on these characteristics, we categorized each voxel depending on its Rh or Rv value
of the corresponding average signal time curve as summarized in Table 1.

Based on Table 1, the patterns in Fig. 3B-1 and 3B-2 are classified as being perfused,
patterns in 3B-3 and 3B-4 as being hypoxic, and patterns in Fig. 3B-5 and 3B-6 as being
necrotic. The resulting spatial distribution of the perfused (red), hypoxic (yellow), and
necrotic (blue) areas are depicted for the heterogeneous tumor in Fig. 3B-7.

The specificity of the assignment rule to identify correctly the predominant tumor
characteristics for tumors presenting only one of the three micro-environmental features is
demonstrated on a well-perfused tumor (Fig. 3C, D). Here the GMM analysis with six pdfs
resulted in six similar patterns that all fell into the same micro-environmental category
(perfused voxels) and the resulting spatial distribution is shown in Fig. 3D-7.

C. Validation & Specificity of GMM-based classification of the tumor microenvironment
In Fig. 4 A-C, Akep, pimonidazole, and H&E maps are shown for the same heterogeneous
tumor slice as shown in Fig. 1, 2, and 3A, 3B (Same slice is shown for the consistency of the
procedure description in this work). This slice data has been presented previously [47] and
are reproduced with permission for the new analyses. Based on the relative threshold
method described in Materials & Methods, perfused, hypoxic, and necrotic areas were
identified and the resulting spatial distributions are displayed in Fig. 4A-1,4B-1 and 4C-1.
An overlay image combining the spatial distributions obtained by thresholding is shown in
Fig. 4D. For comparison, the spatial distributions of the perfused, hypoxic, and necrotic
areas identified from the GMM analysis are displayed again in Fig. 4E, and which resemble
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qualitatively areas identified by masks from the corresponding immunohistochemistry and
histology slices.

To evaluate the efficacy of the GMM-based classification, we compared the spatial overlap
between perfused, hypoxic, and necrotic regions identified by the GMM-based classification
with the corresponding spatial distribution identified from ‘standard’ methods, i.e. from
Akep, pimonidazole, and H&E images (Figs. 4F-1,4F-2 and 4F-3). The percent overlaps
between DCE-GMM classifications and standard (thresholding) methods have been
calculated for each segmentation, i.e. perfusion, hypoxia and necrosis as follows: The
number of overlapping voxels for each segmentation was divided by the total number of
voxels covering the segmented area either obtained by thresholding from ‘standard images’
(overlap 1, OL1) or obtained by GMM classification (overlap 2, OL2). It is noted that tumor
voxels that were not assigned to any of the three microenvironments by the relative
threshold methods (Fig. 4D, dark blue within the tumor) demonstrate typically very low
Akep values (no significant CA uptake) and no significant pimonidazole staining, indicative
of tumor necrosis or dying cells that could not be clearly identified on the corresponding
H&E-stained section by thresholding methods. This unassigned region based on
thresholding reduces the overlap between the necrotic area obtained by DCE-GMM
classification and the one obtained by thresholding methods of ‘standard’ images (Fig. 4D,
4F-3). Based on these observations, unassigned voxels from perfusion (Akep) and
pimonidazole images were designated to be necrotic and an extended necrotic area was used
for the following overlap analysis (Fig. 4F-4).

The same overlap analysis was performed for nine slices out of six rats, whose tumor size
ranged from 500~2500 mm3 and encompassed the whole range of tumor manifestations
from well-perfused (Fig. 5A, 5B) across heterogeneous (Fig. 5D-H) to predominantly
necrotic (Fig. 5I) tumors. The resulting percent overlaps are summarized in Table 2. The
mean OL1 (number of overlapping voxels for each mask)/(total number of thresholded
voxels from standard images for each mask)) values between the GMM-based classification
and the thresholding methods of Akep, pimonidazole, and H&E images were
0.83±0.09,0.64±0.16, 0.72±0.17, respectively. These values represent how well the GMM-
classified masks matched expected tumor microenvironments obtained from standard
thresholding methods. Corresponding mean OL2 (number of overlapping voxels for each
mask)/(total number of GMM-classified voxels for each mask)) were 0.72±0.23–0.48±0.16–
0.34±0.19, respectively. The lower overlaps, i.e. overestimations of GMM-classified area,
were observed for both hypoxia and necrosis, and were due to the significant contributions
of unassigned regions (voxels) from standard thresholding methods. When unassigned
voxels from perfusion and pimonidazole thresholding were designated for necrosis, the
numbers of overlapping voxels were seen to increases for necrosis, as shown in Fig.
5C-5~5I-5. This observation suggests that the unassigned voxels from the thresholding
methods are likely to be from dying cells in areas without significant functional vascular
supply and not yet apparent as necrosis on H&E. On the other hand, for slice1 of tumor 5,
GMM-classification was seen to overestimate hypoxia that was in close vicinity to a
perfused region, where negligible pimonidazole staining is observed as marked with a
yellow box in Fig. G-3. When unassigned voxels from thresholding method were designated
as hypoxia in this case, the number of overlapping voxels was seen to increase for hypoxia,
as shown in Fig G-6. This observation suggests that the overestimated region from GMM-
classifications in this slice may represent a hypoxic area lacking trapping of sufficient
amounts of pimonidazole to be identified as hypoxic areas.

Next, the distribution of Akep values of the three different tumor microenvironments was
evaluated. The Akep distribution of the perfused, hypoxic and necrotic areas from both,
standard thresholding methods and GMM classifications, are shown in Figs. 6A-1~6A-3 and
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Figs. 6B-1~6B-3, respectively. The distribution patterns of Akep for each segmentation were
similar for the two methods (thresholding vs. GMM classifications), confirming the
accuracy/consistency of GMM classifications with respect to independent thresholding from
immunohistochemistry and histology. Median Akep values of the perfused, hypoxic and
necrotic areas were 0.010/0.0037/0.0017 (p<0.00001, Student’s T test) respectively, based
on GMM classification and were 0.012/0.0030/0.0018 (p<0.00001, Student’s T test),
respectively, based on thresholding from ‘standard’ images as summarized in Table 3. On
the other hand, significant overlap of Akep values between each segmentation distribution,
highlights the difficulty in setting relevant threshold Akep values to solely distinguish
different tumor microenvironments from a single parameter.

Standard parameters of DCE-MRI such as Ktrans and IAUC(60) (IAUC of the first 60s after
contrast agent arrival) maps [48, 49] were generated and corresponding distributions were
evaluated for GMM-classified tumor segmentations of perfused, hypoxic and necrotic areas.
Ktrans and IAUC (60) maps of tumor 3 (slice1) are shown in Figs. 7A, 7B, and those of
tumor 4 (slice1) are shown in Figs. 7C,7D, respectively. For the Ktrans calculations, an
arterial input function (AIF) curve shape was taken from a direct measurement in another
DCE-MRI study [50] and temporally resampled to match the time resolution of the current
DCE-MRI data. The AIF amplitude was then adjusted using a muscle ROI as a reference
tissue region [50]. Different Ktrans distributions with overlap of parameter values between
each GMM-classified segmentation were observed. Especially, larger overlap of Ktrans

values between hypoxic and necrotic areas for tumor 4 (slice1) was observed, in consistency
with significant overlap trend of Akep values in Table 3 for the same tumor slice. IAUC(60)
distributions showed more severe overlap between hypoxic and necrotic area as
characterized by close median values between hypoxic and necrotic areas for both tumors.

To further verify the possibility of simple thresholding of standard Ktrans and IAUC(60) for
the spatial segmentation of tumor microenvironments, midpoint values between the three
peaks of the distributions in Figs. 7A-1,-2,-3 were set as two thresholds. Two threshold
values were then used to classify maps into 3 (perfused, hypoxic and necrotic) regions, and
the spatial overlap of each region with respect to corresponding ‘standard’ segmentation
(such as pimonidazole and H&E) was shown in Figs. 7A-4~7A-7 and Figs. 7C-4~7C-7,
respectively for two different tumors. Reasonable overlaps of tumor 3 (slice1) suggest that
with relevant threshold values (obtained from GMM-classification in this case) and with
minimal overlap of Ktrans values, a simple thresholding method of standard Ktrans parameter
may spatially classify different tumor microenvironmental regions reasonably well.
However, observed lower overlap values (OL1, OL2) of maps from Ktrans thresholding
method compared to those from GMM classification for both tumors, especially for hypoxic
and necrotic regions for tumor4 (slice1), suggest that a simple thresholding method may be
problematic when the overlap of Ktrans parameter is large. The data-driven GMM
classification utilizes the dynamic behavior of DCE-MRI data in its entirety and appears to
provide larger overlap values (OL1, OL2) with respect to ‘standard’ images (such as
pimonidazole and H&E) for both tumors, in distinguishing subtle hypoxic regions where
significant overlap of physical parameters exist. Overlap studies from IAUC(60)
thresholding method resulted in much worse overlap values (OL1, OL2) compared to those
from Ktrans thresholding and were shown in Figs. 7B-4~7B-7 and Figs. 7D-4~7D-7 for both
tumors for the comparisons. The results of overlap comparisons of GMM classifications and
Ktrans/IAUC thresholding methods to ‘standard’ maps of perfused, hypoxic and necrotic
areas were summarized in Table 4.
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Conclusions and discussion
This study shows the feasibility of applying a GMM-based classification of tumor
microenvironments using spatially-resolved uptake curves from DCE-MRI data.
Heterogeneous uptake curves of DCE-MRI data for solid tumors may be categorised with
pattern recognition techniques, because a characteristic uptake curve inside the tumor should
reflect similar microenvironments. Direct comparisons with respect to
immunohistochemistry and histology data confirm the feasibility of GMM classifications of
DCE-MRI data for the characterisation of tumor microenvironments such as perfusion,
hypoxia and necrosis. The micro-environmental characteristics could be reliably identified
in homogeneous and heterogeneous tumors from in vivo DCE-MRI data using a GMM-
based classification.

Another advantage of using the GMM for this application is that it is based on unsupervised
learning. Other classifiers such as artificial neural networks (ANNs) and support vector
machine (SVM) require supervised learning, as training data with true class labels are
necessary to learn the model parameters. However, true class labels are usually unavailable.
In most medical pattern recognition problems, class labels are usually provided by well-
trained physicians. However, measured patterns for the diagnosis are not clear when they are
close to the decision boundary. The performance of classifiers with supervised learning is
strongly dependent on the accuracy of the given class labels. The GMM does not require any
labelled training data, and minimises human intervention. As a result, optimised GMM
classification performance was obtained for DCE-MRI data by combining the ability to
discriminate multiple dimensions with minimal intervention.

In summary, the present study showed that uptake curves of Gd-DTPA in a prostate tumor
model can be categorised by a simple GMM-based classification from very homogeneous to
heterogeneous tumors. The similarities between the tumor microenvironments identified
GMM categorization of DCE-MRI uptake curves and the independent histology-based
classification are promising. Moreover, significant correlations were found between the
histology-based categorisation and the GMM-based categorisation, including the
identification of hypoxic tumor areas. Apparent overestimations of hypoxic and necrotic
areas from GMM-classifications were observed in comparison with standard thresholding
methods from pimonidazole and H&E images. Our data indicate that unassigned regions
from thresholding methods may represent less prominent necrotic or hypoxic regions
without significant H&E or pimonidazole stainings, respectively. The differences in the size
of slices used for DCE-MRI (0.79 mm) and pimonidazole and H&E (8 μm) should also be
taken into consideration when considering regional mismatch. To estimate the tumor
microenvironmental changes in a region equal in size to the slice thickness of the DCE-MR
images, two adjacent H&E images for different tumors were taken at interval of 0.8 mm, as
shown in the Supplementary Fig. 1. General characteristics of necrotic area remain
consistent, while local shift, enlargement, or reduction of necrosis are apparent between the
adjacent slices in both tumors. These variations in the slice thickness of DCE-MRI studies
may also contribute to volume averaging effects, decreasing the percent overlap between
GMM classifications and the thresholding method from standard histology images. A
possible limitation of this classification approach is that it may not distinguish the
contributions of the different tumor microenvironments on a sub-voxel level due to limited
resolution of MR images, compared to cellular dimensions. Future advances may be focused
on disentangling different contributions within a tumor voxel of DCE-MRI data to
distinguish mildly-hypoxic region penetrating well-perfused areas, which may be signature
result of acute hypoxia.
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For the further verifications of GMM classification method of DCE-MRI data, increased
sample sizes with different tumor models should be performed considering inherent
biological heterogeneity of tumors. Longitudinal studies for multiple time points across
tumor progression and treatment response will also shed light on the rigorous validation of
the proposed method as well.

The imaging of tumor hypoxia clincally may provide prognostic information useful for
therapy planning and for the monitoring of early treatment response, possibly reducing the
need for invasive procedures. Since DCE-MRI is routinely performed clinically, the method
proposed in this study could have a direct application in the clinic with fast, simple, and
data-driven analysis.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONs

AIF Arterial Input Function

ANN Artificial Neural Networks

AUC Area Under the Curve

CA Contrast Agent

DCE-MRI Dynamic Contrast Enhanced - Magnetic Resonance Imaging

DME Dulbecco’s Modified Eagle’s

EES Extracellular-Extravascular Space

EM Expectation-Maximisation

EPR Electron Paramagnetic Resonance

FLASH Fast Low Angle SHot

FOV Field Of View
18F-Fmiso 18F-fluoromisonidazole

GMM Gaussian Mixture Model

H&E Hematoxylin/Eosin

IAUC Integrated Area Under the Curve

IHC Immunohistochemistry

LBG Linde-Buzo-Gray

MSKCC Memorial Sloan Kettering Cancer Center

NA Number of Averages

NR Number of Repetitions
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PDF Probability Density Function

PET Positron Emission Tomography

RARE Rapid Acquisition with Refocused Echoes

ST Slice Thickness

SVM Support Vector Machine

TE Echo time

TR Repetition interval

VQ Vector Quantisation
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Appendix
The expectation-maximisation (EM) algorithm is an iterative procedure that maximises the
data likelihood generated by the GMM. It begins with an initial model λ and estimates a
new model λnew, and then the new model becomes the initial model for the next iteration

such that p(X∣λnew)≥p(X∣λ), where , and X={x1,…, xT} is a set of
training vectors. This adaptation process is repeated until a predefined convergence
threshold is reached and the selected parameters become their own GMM parameters. The
initial model is derived by using VQ (vector quantisation) estimation using the LBG (Linde-
Buzo-Gray) split strategy in our implementation [51, 52].

The expectation step is composed of computing the likelihood of the training vectors by the
following equation:

(5)

In the maximization step, the likelihood value is increased until the convergence threshold is
reached and three parameters are estimated:

(6)

(7)

(8)

where the a posteriori probability for the ith component is given by,

(9)
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Fig. 1.
(A) T2 – weighted MR image of a tumor slice. The color boxes marked with (a), (b) and (c)
depict three different regions of tumor. (B) Representative uptake curves from voxels within
the three regions (a), (b), and (c) in (A). Each curve was normalized with the maximum
signal within the image slice. The vertical lines mark 2 time points on the signal curves for
the three representative, normalized CA uptake curves.
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Fig. 2.
(A) and (B) show the histogram distributions of normalized image intensities in perfused,
hypoxic, and necrotic regions at two different time points (520 s, 1150 s), respectively. The
assignments of each region as necrotic, hypoxic, or well-perfused has been based on masks
generated from the corresponding histology slices and Akep map as described in the method
section. (C) 2D scatter-plot of signal magnitude at two time points, i.e., 520 s and 1150 s
after the injection of the contrast agent. Each curve was normalized within tissue
segmentation, and thus, the signals of necrotic area appear to be centered around 0.5.
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Fig. 3.
(A-1)~ (A-6) Classified uptake curves of each image voxel in a heterogeneous tumor slice.
(B-1)~ (B-6) Average uptake curves for each pattern in A-1 to A-6, respectively. (B-7)
Corresponding pattern mask as a result of GMM-classification for this heterogeneous tumor
slice (same tumor slice as depicted in Fig. 1, 2). (C-1)~ (C-6) Classified uptake curves of
each image voxel in a well-perfused, homogeneous tumor slice. (D-1)~ (D-6) Average
uptake curves for each pattern in C-1 to C-6, respectively. (D-7) Pattern mask as a result of
classification of homogeneous tumor. Each curve was normalized within tissue
segmentation, and thus the signals of necrotic area appear to be centered around 0.5.
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Fig. 4.
(A) Akep map from DCE-MRI with, corresponding (B) pimonidazole and (C) H&E images.
(D) The combined mask of well-perfused(red), hypoxic(yellow) and necrotic(blue) areas of
this tumor slice obtained based on the binary masks from (A-1), (B-1), and (C-1). (E)
displays for the same tumor slice the spatial distribution of perfused, hypoxic, and necrotic
areas obtained from GMM-categorization of DCE-MRI uptake curves. An overlap analysis
between each compartmentation from GMM-classified and threshold methods is shown for
perfused (F-1), hypoxic (F-2), necrotic (F-3) and extended necrotic (F-4) areas. For each
segmentation: OL1=(number of overlapping voxels)/(total number of thresholded voxels

Han et al. Page 19

NMR Biomed. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



from standard images). OL2=(number of overlapping voxels)/(total number of GMM-
classified voxels) Data (A–C) are re-derived from [47] with permission from Neoplasia.
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Fig. 5.
(A-1)~(I-1) Delineated tumor microenvironments of well-perfused (red), hypoxic (yellow)
and necrotic (blue) areas from the GMM categorisation of DCE-MRI uptake curves. The
spatial overlap between the perfused, hypoxic, and necrotic areas obtained from the GMM-
categorization and the same areas obtained with thresholding from Akep, pimonidazole, and
H&E maps, respectively, are depicted for the perfused areas in (A-2) ~ (I-2), for the hypoxic
areas in (C-3) ~ (I-3), for the necrotic areas without unassigned voxel correction in (C-4) ~
(I-4), and for the extended necrotic areas, including voxels unassigned by thresholding of
‘standard’ images in (C-5)~ (I-5). Unassigned voxels from thresholding method were
designated as hypoxia for tumor 5 (slice 1) as shown in Fig. G-6. Yellow box in Fig. G-3
highlights less prominent hypoxic area. Areas obtained from GMM categorization are
colored in light blue, while areas obtained from thresholding segmentation based on Akep,
pimonidazole, or H&E masks are depicted in darker blue and overlapping voxels are shown
in pink. Corresponding percent overlap values for each segmentation are listed on their
respective image. For each segmentation: OL1=(number of overlapping voxels)/(total
number of thresholded voxels from standard images). OL2=(number of overlapping voxels)/
(total number of GMM-classified voxels))
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Fig. 6.
Akep distributions of each tumor segmentation for perfused (A-1), hypoxic (A-2) and
necrotic (A-3) regions from thresholding methods are shown. Corresponding Akep
distribution from GMM classification of perfused (B-1), hypoxic (B-2) and necrotic (B-3)
regions are shown as well. Data from six rats were combined for the analysis.
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Fig. 7.
Ktrans map (A) and IAUC(60) map (B) of tumor 3(slice1) are shown. Corresponding
distribution of Ktrans and IAUC(60) values for GMM-classified perfused (A-1, B-1),
hypoxic (A-2, B-2) and necrotic (A-3, B-3) regions are shown, respectively. The Ktrans map
(C) and IAUC(60) map (D) of tumor 4 (slice1) are shown. Corresponding distribution of
Ktrans and IAUC(60) values for GMM-classified perfused (C-1, D-1), hypoxic (C-2, D-2)
and necrotic (C-3, D-3) region are shown, respectively as well. An overlap analysis between
each compartmentation from Ktrans thresholding and ‘standard’ methods (i.e, pimonidazole,
H&E) is shown for perfused (A-4, C-4), hypoxic (A-5, C-5), necrotic (A-6, C-6) and
extended necrotic (A-7, C-7) areas for both tumors. An overlap analysis between each
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compartmentation from IAUC thresholding and ‘standard’ methods is shown for perfused
(B-4, D-4), hypoxic (B-5, D-5), necrotic (B-6, D-6) and extended necrotic (B-7, D-7) areas
for both tumors as well. For each segmentation: OL1=(number of overlapping voxels)/(total
number of thresholded voxels from standard images). OL2=(number of overlapping voxels)/
(total number of Ktrans/IAUC thresholding classified voxels).
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TABLE 1

The criteria of classification of DCE-MRI data

Rh Rv

Perfused voxel Rh > 0.9 Rv > 0.2

Hypoxic voxel 0.5 ≤ Rh ≤ 0.9 Rv > 0.2

Necrotic voxel Rh < 0.5 or Rv < 0.2

NMR Biomed. Author manuscript; available in PMC 2014 May 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Han et al. Page 26

TA
B

LE
 2

T
he

 s
pa

tia
l p

er
ce

nt
ag

e 
ov

er
la

p 
of

 p
er

fu
se

d,
 h

yp
ox

ic
, a

nd
 n

ec
ro

tic
 tu

m
or

 a
re

as
 o

bt
ai

ne
d 

by
 G

M
M

-b
as

ed
 c

la
ss

if
ic

at
io

n 
w

ith
 th

os
e 

ob
ta

in
ed

 f
ro

m
 A

k e
p,

pi
m

on
id

az
ol

e,
 a

nd
 H

&
E

 im
ag

es

T
um

or
 s

lic
es

%
 o

ve
rl

ap
 o

f 
pe

rf
us

ed
 a

re
a 

(O
L

1,
 O

L
2)

%
 o

ve
rl

ap
 o

f 
hy

po
xi

c 
ar

ea
 (

O
L

1,
 O

L
2)

%
 o

ve
rl

ap
 o

f 
ne

cr
ot

ic
 a

re
a

H
&

E
 (

O
L

1,
 O

L
2)

E
xt

en
de

d 
(O

L
1,

 O
L

2)

T
um

or
 1

 (
47

8 
m

m
3 )

1
1

-
-

-
-

-
-

T
um

or
 2

 (
50

3 
m

m
3 )

1
0.

98
-

-
-

-
-

-

T
um

or
 3

 (
sl

.1
, 1

24
0 

m
m

3 )
:T

ra
in

in
g

0.
90

0.
81

0.
70

0.
36

0.
58

0.
56

0.
50

0.
91

T
um

or
 3

 (
sl

.2
, 1

24
0 

m
m

3 )
0.

88
0.

93
0.

78
0.

59
0.

92
0.

20
0.

71
0.

91

T
um

or
 3

 (
sl

.3
, 1

24
0 

m
m

3  
m

m
3 )

0.
80

0.
75

0.
82

0.
42

1
0.

10
0.

65
0.

91

T
um

or
 4

 (
sl

.1
, 8

70
 m

m
3 )

0.
86

0.
88

0.
67

0.
75

0.
72

0.
57

0.
57

0.
77

T
um

or
 4

 (
sl

.2
, 8

70
 m

m
3 )

0.
81

0.
93

0.
65

0.
55

0.
47

0.
41

0.
59

0.
78

T
um

or
 5

 (
sl

.1
, 7

44
 m

m
3 )

0.
71

0.
53

0.
51

0.
45

0.
60

0.
50

0.
41

0.
84

T
um

or
 5

 (
sl

.2
, 7

44
 m

m
3 )

1
0.

30
0.

57
0.

41
0.

64
0.

20
0.

64
0.

89

T
um

or
 6

 (
25

30
 m

m
3 )

0.
74

0.
60

0.
37

0.
20

0.
78

0.
17

0.
61

0.
87

M
ea

n±
SD

0.
84

±
 0

.0
9

0.
72

±
 0

.2
3

0.
64

±
 0

.1
5

0.
48

±
 0

.1
6

0.
72

±
 0

.1
7

0.
34

±
 0

.1
9

0.
58

±
 0

.0
9

0.
86

±
 0

.0
9

1 N
ec

ro
tic

 a
re

as
 id

en
tif

ie
d 

ba
se

d 
on

 G
M

M
-c

la
ss

if
ic

at
io

n 
w

er
e 

co
m

pa
re

d 
to

 n
ec

ro
tic

 a
re

as
 id

en
tif

ie
d 

fr
om

 H
&

E
 im

ag
es

 a
lo

ne
 o

r 
to

 n
ec

ro
tic

 a
re

as
 c

or
re

ct
ed

 f
or

 u
na

ss
ig

ne
d 

vo
xe

ls
 w

ith
 n

o 
si

gn
if

ic
an

t C
A

up
ta

ke
 a

nd
 p

im
on

id
az

ol
e 

st
ai

ni
ng

 (
E

xt
en

de
d)

.

NMR Biomed. Author manuscript; available in PMC 2014 May 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Han et al. Page 27

TA
B

LE
 3

M
ed

ia
n 

A
ke

p 
(1

/s
) 

va
lu

es
 o

f 
G

M
M

-c
la

ss
if

ie
d 

an
d 

th
re

sh
ol

de
d 

tu
m

or
 m

ic
ro

en
vi

ro
nm

en
ts

 o
f 

pe
rf

us
ed

, h
yp

ox
ic

 a
nd

 n
ec

ro
tic

 a
re

as
.

T
um

or
 s

lic
es

P
er

fu
se

d 
ar

ea
 f

ro
m

D
C

E
-G

M
M

P
er

fu
se

d 
ar

ea
 f

ro
m

th
re

sh
ol

di
ng

 o
f

st
an

da
rd

 im
ag

es

H
yp

ox
ic

 a
re

a 
fr

om
D

C
E

- 
G

M
M

H
yp

ox
ic

 a
re

a 
fr

om
th

re
sh

ol
di

ng
 o

f
st

an
da

rd
 im

ag
es

N
ec

ro
ti

c 
ar

ea
 f

ro
m

D
C

E
- 

G
M

M
N

ec
ro

ti
c 

ar
ea

 f
ro

m
th

re
sh

ol
di

ng
 o

f
st

an
da

rd
 im

ag
es

T
um

or
 3

(s
l.1

, 1
24

0 
m

m
3 )

:T
ra

in
in

g
0.

01
68

±
0.

 0
07

9
0.

01
74

±
0.

 0
13

8
0.

00
36

±
0 

.0
11

4
0.

00
4±

0.
 0

.0
02

7
0.

00
20

±
0 

.0
09

2
0.

00
18

±
0.

 0
02

2

T
um

or
 3

(s
l.2

, 1
24

0 
m

m
3 )

0.
01

21
±

0.
 0

06
8

0.
01

23
±

0.
 0

16
1

0.
00

24
±

0 
.0

12
4

0.
00

15
±

0.
 0

.0
00

7
0.

00
15

±
0 

.0
08

7
0.

00
07

±
0.

 0
00

7

T
um

or
 3

(s
l.3

, 1
24

0 
m

m
3  

m
m

3 )
0.

00
65

±
0.

 0
02

9
0.

00
90

±
0.

 0
09

6
0.

00
21

±
0 

.0
00

9
0.

00
13

±
0.

 0
00

9
0.

00
20

±
0 

.0
08

5
0.

00
04

±
0.

 0
00

6

T
um

or
 4

 (
sl

.1
,8

70
 m

m
3 )

0.
00

95
±

0.
 0

10
0

0.
01

22
±

0.
 0

13
0

0.
00

28
±

0 
.0

06
0

0.
00

13
±

0.
 0

00
8

0.
00

24
±

0 
.0

10
0

0.
00

09
±

0.
 0

00
8

T
um

or
 4

(s
l.2

,8
70

 m
m

3 )
0.

00
88

±
0.

 0
08

9
0.

01
05

±
0.

 0
11

0
0.

00
36

±
0 

.0
07

3
0.

00
13

±
0.

 0
00

9
0.

00
07

±
0 

.0
05

0
0.

00
08

±
0 

00
08

.

T
um

or
 5

(s
l.1

,7
20

 m
m

3 )
0.

00
89

±
0.

 0
02

9
0.

01
07

±
0.

 0
02

0
0.

00
65

±
0 

.0
02

1
0.

00
64

±
0.

 0
03

6
0.

00
17

±
0 

.0
00

9
0.

00
51

±
0.

 0
03

6

T
um

or
 5

(s
l.2

,7
20

 m
m

3 )
0.

00
81

±
0.

 0
02

0
0.

01
06

±
0.

 0
01

4
0.

00
48

±
0 

.0
01

5
0.

00
45

±
0.

 0
02

3
0.

00
16

±
0 

.0
01

1
0.

00
29

±
0.

 0
02

2

M
ed

ia
n±

S 
D

0.
01

01
±

0.
 0

05
9

0.
01

18
±

0.
 0

09
6

0.
00

37
±

0 
.0

06
0.

00
30

±
0.

 0
01

7
0.

00
17

±
0 

.0
06

2
0.

00
18

±
0.

 0
01

6

NMR Biomed. Author manuscript; available in PMC 2014 May 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Han et al. Page 28

TA
B

LE
 4

T
he

 s
pa

tia
l p

er
ce

nt
ag

e 
ov

er
la

p 
of

 p
er

fu
se

d,
 h

yp
ox

ic
, a

nd
 n

ec
ro

tic
 tu

m
or

 a
re

as
 o

bt
ai

ne
d 

by
 G

M
M

-b
as

ed
 c

la
ss

if
ic

at
io

n,
 K

tr
an

s  
an

d 
IA

U
C

 th
re

sh
ol

di
ng

 w
ith

th
os

e 
ob

ta
in

ed
 f

ro
m

 A
k e

p,
 p

im
on

id
az

ol
e,

 a
nd

 H
&

E
 im

ag
es

 f
or

 tu
m

or
 3

 (
sl

ic
e1

) 
an

d 
tu

m
or

 4
 (

sl
ic

e1
).

C
la

ss
if

ic
at

io
n 

m
et

ho
ds

 a
nd

 t
um

or
 s

lic
es

%
 o

ve
rl

ap
 o

f 
pe

rf
us

ed
 a

re
a

%
 o

ve
rl

ap
 o

f 
hy

po
xi

c 
ar

ea
%

 o
ve

rl
ap

 o
f 

ne
cr

ot
ic

 a
re

a
%

 o
ve

rl
ap

 o
f 

ex
te

nd
ed

 n
ec

ro
ti

c 
ar

ea

O
L

1
O

L
2

O
L

1
O

L
2

O
L

1
O

L
2

O
L

1
O

L
2

G
M

M
 c

la
ss

if
ic

at
io

n
T

um
or

 3
 (

sl
ic

e1
)

0.
90

0.
81

0.
70

0.
36

0.
58

0.
56

0.
50

0.
91

T
um

or
 4

 (
sl

ic
e1

)
0.

86
0.

88
0.

67
0.

75
0.

72
0.

57
0.

57
0.

77

K
tr

an
s  t

hr
es

ho
ld

in
g

T
um

or
 3

 (
sl

ic
e1

)
0.

87
0.

68
0.

58
0.

34
0.

58
0.

55
0.

49
0.

89

T
um

or
 4

 (
sl

ic
e1

)
0.

61
0.

59
0.

35
0.

43
0.

68
0.

37
0.

69
0.

60

IA
U

C
 th

re
sh

ol
di

ng
T

um
or

 3
 (

sl
ic

e1
)

0.
83

0.
86

0.
55

0.
32

0.
58

0.
46

0.
57

0.
84

T
um

or
 4

 (
sl

ic
e1

)
0.

82
0.

29
0.

03
0.

25
0.

00
0.

00
0.

01
0.

06

NMR Biomed. Author manuscript; available in PMC 2014 May 01.


