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Abstract

Purpose—A number of studies have previously assessed the role of teaching interventions to 

improve organ-at-risk (OAR) delineation. We present a preliminary study demonstrating the 

benefit of a combined atlas and real time software based-feedback intervention to aid in 

contouring of OARs in the head and neck.
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Methods and Materials—The study consisted of a baseline evaluation, a real-time feedback 

intervention, atlas presentation, and a follow-up evaluation. At baseline evaluation, 8 resident 

observers contoured 26 organs-at-risk on a computed tomography scan without intervention or aid. 

They then received feedback comparing their contours both statistically and graphically to a set of 

atlas-based expert contours. Additionally, they received access to an atlas to contour these 

structures. The resident observers were then asked to contour the same 26 organs-at-risk on a 

separate computed tomography scan with atlas access. In addition, 6 experts (5 radiation 

oncologists specializing in the head and neck, and 1 neuroradiologist) contoured the 26 organs-at-

risk on both scans. A STAPLE composite of the expert contours was used as a gold-standard set 

for analysis of organs-at-risk contouring.

Results—Of the 8 resident observers who initially participated in the study, 7 completed both 

phases of the study. Dice Similarity Coefficients (DSCs) were calculated for each user-drawn 

structure relative to the expert STAPLE composite for each structure. Mean DSC across all 

structures increased between Phase 1 and Phase 2 for each resident observer demonstrating a 

statistically significant improvement in overall OAR-contouring ability (p < 0.01). Additionally, 

intervention improved contouring in 16/26 delineated organs-at-risk across resident observers at a 

statistically significant level (p ≤ 0.05), including all otic structures and suprahyoid lymph node 

levels of the head and neck.

Conclusions—Our data suggest that a combined atlas and real-time feedback-based educational 

intervention detectably improves contouring of OARs in the head and neck.

Introduction

In order to plan for IMRT, manual segmentation (contouring) of regions of interest (ROIs), 

either tumors or organs-at-risk (OARs), is performed by physician observers. As these ROIs 

serve as the input functions for all subsequent planning steps, accurate segmentation, leading 

to the proper voxel assignment of both tumors and organs-at-risk, is crucial to optimize 

therapeutic ratio. However, data shows there is a great degree of inter-observer variability in 

manual ROI segmentation.1 Both under- and over-contouring of tumors and OARs can have 

deleterious consequences, leading to local failure and normal tissue sequelae respectively. 

The importance of accurate manual segmentation and the high demonstrated inter-observer 

operator-dependence of this process indicate a specific and substantial impediment to 

execution of multi-institutional clinical trials involving conformal radiotherapy.2 Despite the 

requirement for accurate ROI delineation for radiation therapy treatment planning, 

instruction in target definition is often based on ad hoc instruction, with limited educational 

resources provided to many residents.3 Previous cooperative group studies involving 

practicing physicians suggest that reference to a simple anatomic atlas can substantially 

standardize and improve conformality of target volumes to an expert reference.4 Likewise, 

Bekelman5 and Tai6 have demonstrated educational interventions may improve trainee 

target definition.

Consequently, we sought to investigate the potential gain of a standardized atlas-based, 

software feedback-assisted intervention to improve head and neck OAR/ROI segmentation, 

having developed an open source on-line segmentation analysis software.7-9 The specific 

aims of the current study were:
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1. Estimate potential improvement in OAR/ROI manual segmentation conformance 

with a multi-expert composite ROI attributable to a combined atlas/visual software-

feedback educational intervention.

2. Validate utility of an open-source software solution for execution of said 

educational study.

3. Hypothesis-generation and sample size estimation for future prospective series.

Materials and Methods

Approval and Compliance

Institutional Review Board approval as an exempt, 45 CFR 46.101(b)(4)-compliant study 

was obtained, allowing collection of anonymized DICOM files. Clinical datasets were 

anonymized and stripped of identifiers, and fictionalized case histories were constructed for 

all cases.

Study Design

This single-arm pilot, prospective feasibility analysis was designed to determine the 

requisite sample and effect size required for a planned larger atlas-based software-feedback 

assisted effort. The study was designed as a test-retest sequence, with comparison to a 

“gold-standard” multi-expert composite ROI (Figure 1).

Software Utilization

For this study we utilized TaCTICS (Target Contour Testing/Instructional Computer 

Software, https://github.com/kalpathy/tacticsRT), which has been presented in detail 

previously.7-9 TaCTICS provides a data collection and analysis platform for manual or 

automated segmentation ROIs. TaCTICS is capable of collecting, displaying, and analyzing 

ROIs with multiple distinct metrics, and can generate multi-observer probabilistic composite 

ROIs using Warfield's STAPLE (Simultaneous Truth And Performance Level Estimation)10 

methodology. This feature was used for the current study to create multi-expert estimation 

of a ground truth “gold-standard” ROIs. TaCTICS was also used to calculate Dice Similarity 

Coefficients (vide infra) for analysis of individual resident ROIs.

Observer Manual Segmentation/Educational Intervention

Eight resident observers were asked to contour all structures listed in Table 1 on axial CT 

images obtained from a patient with a head and neck malignancy, using their normal clinical 

practice (but without referring to any atlas). TaCTICS software7-9 was used for ROI 

submission.

After contouring this case, the resident observers were asked to contour the same structures 

on a new case after an educational intervention. This intervention consisted of real-time 

feedback (within 5 minutes), as both numerical and visual DSC scoring of submitted ROIs 

(Supplemental Figure A). Feedback included axial slice-by-slice ROI comparisons with 

other submitted user ROIs (Supplemental Figure B), as well as two expert sets of contours 

defined as a “reference caution” (Supplemental Figure C), and a “reference flag” 
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(Supplemental Figure D). Segmentations outside the “reference caution” indicated an ROI > 

0.25 cm outside an atlas-based ROI contour for said OAR or > 0.5 cm outside an atlas-based 

ROI contour for atlas-based lymph node levels (conceptually equivalent to a clinical trial 

“minor deviation”). Segmentations outside the “reference flag” indicated ROIs > 0.5 cm 

outside an atlas-based ROI contour for an OAR, or > 1.0 cm outside atlas-based lymph node 

levels ROIs (conceptually a “major deviation”).

Simultaneously, observers were provided immediate access to relevant peer-reviewed 

reference atlases11-13 as well an in-house reference atlas (courtesy XXXXXXXXX, MD). 

Upon online submission of the second case ROIs, TaCTICS again provided feedback and 

metrics as described above.

Five expert head and neck radiation oncology attendings (XXX, XXX, XXX, XX, XXX) 

and one neuroradiologist (XX) were asked to manually segment the same OAR ROIs for 

both cases. Using Warfield's STAPLE10 methodology, a probabilistic estimate of ground 

truth segmentation of these contours was generated to create idealized “gold-standard” ROIs 

using TaCTICS. This multi-expert probabilistic composite ROI set was then used for all 

subsequent comparisons.

TaCTICS was used to calculate the Dice similarity coefficient (DSC) for all resident 

observer ROIs for all residents prior to the atlas/feedback intervention and after the 

intervention. The DSC is defined as:

where A represents each resident observer OAR ROI and G is the “gold-standard” multi-

expert STAPLE contour. The DSC characterizes the intersection of the user with the 

reference STAPLE while penalizing observers for excessively large contours.14

Statistics

Statistical analysis was performed using the JMP software package. The Wilcoxon Signed-

Rank test was used as a non-parametric measure to determine two outcomes. The first 

outcome that was assessed was whether the intervention improved a user's ability to contour 

a particular OAR ROI as measured by DSC as compared to a expert composite STAPLE of 

the same OAR ROI. The second outcome that was assessed was whether the intervention 

improved a user's ability to contour the set of all OAR ROIs. A non-Bonferroni-corrected 

confidence level of a = 0.05 was considered statistically significant for this hypothesis 

generating pilot study. Pre-study power and sample size calculations using G*Power15 were 

performed using a minimum asymptotic relative efficiency16 of the Wilcoxon Signed Rank 

test of 0.864 relative to its parametric equivalent, the paired t-test, to ensure an equivalent 1 - 

b = 0.80 using a large effect size (≥ 0.7) for seven users. Post-hoc evaluation of detected 

effect sizes for all OAR ROIs, again performed using G*Power15, demonstrated an evident 

mean±SD effect size (calculated as Cohen's D) of 0.77±0.32, broadly consistent with pre-

study estimates.
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Results

Feasibility

Seven resident observers completed both phases (assigned henceforth as Users A-G). All six 

experts contoured all 26 structures on both cases with two exceptions. One expert omitted 

contouring the right cochlea while another omitted right Level 2 on the second case. 

STAPLE composites were generated from all 6 expert contours excepting the two 

aforementioned OARs for which composites were generated from 5 expert contours. 

TaCTICS was used to analyze overlap of the structures and obtain DSCs for each resident 

observer for each structure relative to the STAPLE multi-expert composite ROIs. A 

summary of the DSCs by structure is seen in Table 2. Notable is the improvement in mean 

DSC for all resident observers for all OAR ROIs. Of note, in the initial phase, at least one 

resident observer was unable to contour the majority of the structures with any overlapping 

voxels relative to the expert composite.

Atlas Intervention with Real-Time Feedback Improves Contouring of Multiple Head and 
Neck OARs

Atlas-introduction with real-time software-based visual feedback demonstrated p < 0.05 for 

multiple candidate ROIs by Wilcoxon Signed-Rank Analysis (Table 2). Improved resident 

DSC conformance with expert ROIs was seen for otic structures (bilateral cochleae, bilateral 

middle ears, bilateral vestibular apparatuses), lymph node levels above the hyoid (bilateral 

levels 1 and 2 and the retropharyngeal space) as well as bilateral parotid and sublingual 

glands. Figure 2 illustrates the alteration in an individual resident observer's conformance 

with expert STAPLE ROIs for lymph node Level 1 after the atlas/software intervention. 

There was no significant improvement in DSC of the ROIs for the velar and palatal 

structures.

Additionally, the average user conformance with expert STAPLE ROIs across all ROIs 

improved after the intervention (p = 0.0078). Figure 3 shows the improvement in the mean 

DSC for each individual user across all 26 contoured structures.

The Benefit of Atlas Intervention May Relate to Level of Training and OAR Size

Post-hoc secondary analysis was performed to assess potential trends in resident observer 

OAR contouring experience and ROI DSC interval improvement post-intervention. Users A, 

B and G were “Upper level” third or fourth year radiation oncology residents. Users C and F 

were incoming PGY-1 residents matched to radiation oncology programs, and Users D and 

E were in their first two years of residency in radiation oncology, grouped as “Junior Level”. 

For both junior (p < 0.0001) and upper (p < 0.0001) level resident observers, there was a 

statistically significant mean DSC improvement in subgroup analysis. (Supplemental Figure 

E) Figure 4 demonstrates a plot of average change in DSC versus STAPLE composite OAR 

size from Phase 2 for Junior (Figure 4a, R2 = 0.06) and Upper (Figure 4b, R2 = 0.33) Level 

resident observers. This shows that for experienced trainee observers, there is demonstrable 

gain primarily in the contouring of small-volume OARs while for novice users the gain is 

seen across all OARs.
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Discussion

The utility of atlas-based and other teaching interventions in improving contouring of ROIs 

has been addressed by a number of authors showing mixed effects. Our previous work 

demonstrated improvement in OAR segmentation when using an atlas-based intervention4. 

Here, we perform a prospective feasibility study to evaluate a combination of an atlas-based 

educational component with a real-time software feedback and visualization assessment, and 

also to estimate effect size and perform sample size calculation for a future larger scale 

directed atlas-based, software-assisted longitudinal effort planned with the goal of 

improving segmentation of difficult to contour organs-at-risk in the head and neck.

Our study demonstrated detectable improvement in overall contouring of OAR ROIs 

through the use of the aforementioned intervention. Cumulatively, resident observers 

improved their average DSC across all OAR ROIs demonstrating that through the use of our 

intervention, an individual's overall contouring of normal OAR ROIs more closely 

approximated expert observers. In a previous technical paper, we reported such interventions 

lead to more homogenous contours among trainees.8In toto, our intervention appears to 

improve both contouring uniformity, and accuracy as compared to an expert-derived “gold-

standard”.

Our study also demonstrated OAR-specific differentials in contouring improvement with 

detectable improvement in suprahyoid lymph node level, otic, parotid and sublingual gland 

ROIs after the intervention. We suspect improvement in contouring of the suprahyoid and 

retropharyngeal lymph node levels is related to the complex anatomy of the upper neck. 

Thus, a more precise visual/atlas-based anatomical definition, as obtained from our 

intervention, is more readily characterized. A similar rationale applies to sub-centimeter otic 

structures and sublingual glands. Regarding the parotids, improved contouring was likely 

due to a novice error in neglecting to contour the deep lobe of the parotid gland. There was 

no improvement in contouring of the ROIs for the velar and palatal structures selected for 

this study.

Segmentation of head and neck ROIs is notoriously difficult as OARs are particularly small 

and confined to an anatomically complex region. Bekelman et al.5 examined the utility of a 

teaching intervention in contouring tumor ROIs in the head and neck. 14 residents 

segmented three CTVs on 6 CT slices of a single base-of-tongue case. The residents then 

underwent a series of oncology and anatomy seminars, including didactics and a hands-on 

sessions before recontouring. There was improvement in the node-negative neck ROIs, but 

difficulty remained in coverage of subclinical disease. These data, in concert with our 

findings, show training interventions have potential to improve head and neck segmentation.

Our web-based intervention provides an ideal mechanism for low-cost educational and 

clinical trial implementation. As an open-source online training system, radiation oncology 

departments need not invest additional educational funding, and clinical trialists may easily 

implement web-based training/credentialing programs for ROI quality-assurance. During 

this study, observers downloaded DICOM images into their treatment planning system, 

exported contours as an RTSTRUCT file from their treatment planning system, and 
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uploaded these files for real-time feedback and analysis. We have since developed an 

entirely web-based ROI segmentation system to streamline this process. As this entire 

intervention was web-based, it provides a blueprint for a low-cost mechanism to train and 

credential future radiation oncologists in the segmentation of head and neck OAR ROIs.

Conclusions

The results of our study demonstrate that a combined atlas-based and real-time feedback 

intervention was associated with improved contouring of OAR ROIs in the head and neck, 

as defined by ROI conformance with a multi-expert gold-standard.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study Design/workflow.
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Figure 2. 
Segmentation of Lymph Node Level I by User A relative to Expert STAPLE Composites. 

Phase 1 represents the initial segmentation, while Phase 2 represents the segmentation after 

intervention. Cranio-caudal contouring of Lymph Node Level I in Phase 2 is improved after 

atlas/feedback intervention.
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Figure 3. 
DSC distribution for Users A through G before and after the intervention, with improvement 

in mean DSC for each resident observer. (p = 0.0078)
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Figure 4. 
Volume-dependent correlation was seen among upper level resident observers (4b), with 

significant improvement in low-volume OAR segmentation, while no correlation was noted 

for junior level observers (4a).
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Table 1

List of 26 ROIs/OARs to contour grouped by category.

Lymph Node Levels Ear Structures

Left Level 1     Left Cochlea

Left Level 2     Right Cochlea

Left Level 3     Left Middle Ear

Left Level 4     Right Middle Ear

Left Level 5     Left Vestibular Apparatus

Right Level 1     Right Vestibular Apparatus

Right Level 2 Salivary Glands

Right Level 3     Left Parotid Gland

Right Level 4     Right Parotid Gland

Right Level 5     Left Sublingual Gland

Retropharyngeal Level     Right Sublingual Gland

Velar/Palatal Structures     Left Submandibular Gland

Lower Lip     Right Submandibular Gland

Upper Lip

Soft Palate
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