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Abstract

The interaction between segregation distortion loci (SDL) has been often observed in all kinds of mapping populations.
However, little has been known about the effect of epistatic SDL on quantitative trait locus (QTL) mapping. Here we
proposed a multi-QTL mapping approach using epistatic distorted markers. Using the corrected linkage groups, epistatic
SDL was identified. Then, these SDL parameters were used to correct the conditional probabilities of QTL genotypes, and
these corrections were further incorporated into the new QTL mapping approach. Finally, a set of simulated datasets and a
real data in 304 mouse F2 individuals were used to validate the new method. As compared with the old method, the new
one corrects genetic distance between distorted markers, and considers epistasis between two linked SDL. As a result, the
power in the detection of QTL is higher for the new method than for the old one, and significant differences for estimates of
QTL parameters between the two methods were observed, except for QTL position. Among two QTL for mouse weight, one
significant difference for QTL additive effect between the above two methods was observed, because epistatic SDL between
markers C66 and T93 exists (P = 2.94e-4).
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Introduction

Quantitative trait locus (QTL) mapping has become a routine

approach in genetic studies of quantitative traits [1–5]. Most QTL

mapping approaches usually make use of markers that follow a

Mendelian segregation ratio. However, some markers often show

distorted segregation ratios from Mendelian expectations in actual

QTL mapping populations [6–8]. This segregation distortion often

affects linkage group construction and QTL mapping results [9–

11]. Therefore, how to use distorted markers in QTL mapping

needs to be addressed.

Segregation distortion is a commonly encountered phenomenon

[12]. Several mechanisms or approaches have been proposed to

explain this phenomenon [10,13]. Previous studies on the

influence of distorted markers mainly focus on two aspects. First,

this distortion may lead to biased estimate of recombination

fraction between distorted markers. To solve this issue, Lorieux

et al. [14–15] adopted two-point method to correct genetic

distance between distorted markers. Zhu et al [9] extended

multipoint analysis method to more general situations, considering

distorted, dominant and missing markers at the same time.

Recently, Xie [11] considers epistasis between two linked SDL in

the construction of linkage groups. Second, this distortion affects

QTL mapping results, for example, QTL detection power [16–17]

and QTL additive effect [10]. To improve the precision of QTL

mapping, Xu and Hu [18] developed an interval mapping

approach for joint analysis of both QTL and SDL. Recently,

Wen et al. [10] further extended a multi-QTL mapping approach.

However, the above-mentioned QTL mapping approaches ignore

epistatic SDL and linkage group correction. The two issues need to

be addressed in QTL mapping.

SDL epistasis is a type of gene interaction [19]. Törjék et al.

[20] indicated that marker segregation distortion is due to reduced

fertility caused by epistatic interaction. Recently, some similar

results have been reported in Drosophila [21], alfalfa [22] and rice

[23–25]. Therefore, SDL epistasis should be considered in QTL

mapping methodology. Multi-QTL mapping is now the state-of-

the-art method. However, it is difficult to implement under the

maximum-likelihood framework. At present the Bayesian method

implemented via expectation-maximization (EM) algorithm [26] is

specialized to handle complicated models and thus it is the ideal

tool for mapping multiple QTL in this study. Accordingly, there is

a critical need for an in-depth study of the methodology for multi-

QTL mapping using epistatic distorted markers.

The purpose of this study was to develop a statistical method for

mapping QTL of quantitative traits using epistatic distorted

markers. First, marker information was used to detect epistatic

SDL using a maximum likelihood approach. The detected SDL

parameters were used to correct linkage groups. Second, the

information about the detected epistatic SDL along with the

corrected linkage groups was incorporated into a multi-QTL

mapping approach. Finally, the proposed method was validated by

Monte Carlo simulation studies and real data analysis.
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Methods

Based on the corrected genetic groups [11], molecular marker

information from all the n F2 individuals is used to detect epistatic

SDL. We hypothesize that marker segregation distortion is subject

to the gametic selection.

Two SDL under consideration are linked, with recombination

fraction of r. The viabilities of male gametes Ab, aB and ab relatives

to AB are v, u and x, respectively. The expected frequencies pi

(i~1,2 � � � 9) of nine genotypes after gametic selection are listed in

Table 1.

Mapping Epistatic SDL
Let ni (i~1,2 � � � 9) be the observed number of the ith genotype

for two SDL A and B, and n~
P9
i~1

ni be the total number of

individuals. If two linked SDL that exist interaction are resided at

marker positions, the marker information is used to detect epistatic

SDL. Therefore, the complete data log-likelihood function in F2

can be expressed as

L~
X9

i~1

ni ln pi ð1Þ

where all the pi are listed in Table 1. Note that r in pi is obtained

from the corrected map by Kosambi [27] function. All the SDL

parameters u, v and x in pi can be estimated by

u~
(n41zn53zn7zn81)(1{r)

r(n1zn22zn52zn42)

v~
(n21zn3zn54zn61)(1{r)

r(n1zn22zn52zn42)

x~
(n51zn62zn82zn9)

(n1zn22zn52zn42)

ð2Þ

[11], where n21~
vn2

vz1
, n22~

n2

vz1
, n41~

un4

uz1
, n42~

n4

uz1
, n51~

(1{r)2xn5

(1{r)2(xz1)zr2(uzv)
, n52~

(1{r)2n5

(1{r)2(xz1)zr2(uzv)
,

n53~
r2un5

(1{r)2(xz1)zr2(uzv)
, n54~

r2vn5

(1{r)2(xz1)zr2(uzv)
,

n61~
vn6

vzx
, n62~

xn6

vzx
, n81~

un8

uzx
and n82~

xn8

uzx
. The EM

algorithm can be used to estimate all the above parameters [11].

If two linked SDL that exist interaction are not resided at

marker positions, the count data ni are not observable and we

need to substitute them by their expectations. At this case, the EM

algorithm is also used to estimate all the above SDL parameters.

In the E-step, the expected numbers of the SDL genotypes can

be obtained by the below equations,

E(n1)~
Xn

j~1

P�j (AABB)~
Xn

j~1

Pj(AABB)p1

�ppj

E(n2)~
Xn

j~1

P�j (AABb)~
Xn

j~1

Pj(AABb)p2

�ppj

E(n3)~
Xn

j~1

P�j (AAbb)~
Xn

j~1

Pj(AAbb)p3

�ppj

E(n4)~
Xn

j~1

P�j (AaBB)~
Xn

j~1

Pj(AaBB)p4

�ppj

E(n5)~
Xn

j~1

P�j (AaBb)~
Xn

j~1

Pj(AaBb)p5

�ppj

E(n6)~
Xn

j~1

P�j (Aabb)~
Xn

j~1

Pj(Aabb)p6

�ppj

E(n7)~
Xn

j~1

P�j (aaBB)~
Xn

j~1

Pj(aaBB)p7

�ppj

E(n8)~
Xn

j~1

P�j (aaBb)~
Xn

j~1

Pj(aaBb)p8

�ppj

E(n9)~
Xn

j~1

P�j (aabb)~
Xn

j~1

Pj(aabb)p9

�ppj

ð3Þ

where �ppj~Pj(AABB)p1z
1

2
Pj(AABb)p2 + Pj(AAbb)p3z

1

2
Pj(AaBB)p4 +

1

4
Pj(AaBb)p5z

1

4
Pj(Aabb) 6p6zPj(aaBB)p7z

1

2
Pj(aaBb)p8 + Pj(aabb)p9; P�j (.) is the posterior probability that

incorporates SDL parameters; and Pj(.) is the probability of the

SDL genotypes for individual j conditional on marker information.

Note that the explanation for the coefficients 1/2 and 1/4 in �ppj is

similar to that in Luo et al. [28]; and Pj(.) under two SDL is

difficult to calculate, fortunately, the method of Kao et al. [29] is

available, that is

Pj(AABB)~Pj(AA)Pj(BB) ð4Þ

where Pj(AA) or Pj(BB) can be calculated from multi-point

approach [30].

In the M-step, all the SDL parameters u, v and x can be updated

by equations (2).

Repeating E-step and M-step until a certain criterion of

convergence is satisfied.

Interval QTL Mapping using Epistatic Distorted Markers
Let yj be the observation of quantitative trait for individual j in

F2. For single QTL, the genetic model for quantitative trait may be

described as follows

yj~mzs1ja1zs2jd1zej ð5Þ

Table 1. Expected frequencies of nine genotypes under
gametic selection.

Genotype Expected frequency Genotype
Expected
frequency

AABB (1{r)2=2d Aabb r(1{r)(vzx)=2d

AABb r(1{r)(vz1)=2d aaBB r2u=2d

AAbb r2v=2d aaBb r(1{r)(uzx)=2d

AaBB r(1{r)(uz1)=2d aabb (1{r)2x=2d

AaBb (1{r)2(xz1)zr2(uzv)=2d

d~(1{r)(xz1)zr(uzv)

doi:10.1371/journal.pone.0068510.t001

QTL Mapping Using Epistatic Distorted Markers
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where m is population mean; s1j and s2j are dummy variables

defined as s1j~1 and s2j~0 for QQ, s1j~0 and s2j~1 for Qq, and

s1j~{1 and s2j~0 for qq, respectively; a1 is additive effect; d1 is

dominant effect; and ei*N(0,s2
e ).

The posterior probabilities of QTL genotypes conditional on

normal markers for the jth F2 individual are calculated as

p�j(QQ)~
pj(QQ)w(yj ; mza1,s2

e )

pj(QQ)w(yj ; mza1,s2
e )zpj(Qq)w(yj ; mzd1,s2

e )zpj(qq)w(yj ; m{a1,s2
e )

p�j(Qq)~
pj(Qq)w(yj ; mzd1,s2

e )

pj(QQ)w(yj ; mza1,s2
e )zpj(Qq)w(yj ; mzd1,s2

e )zpj(qq)w(yj ; m{a1,s2
e )

p�j(qq)~
pj(qq)w(yj ; m{a1,s2

e )

pj(QQ)w(yj ; mza1,s2
e )zpj(Qq)w(yj ; mzd1,s2

e )zpj(qq)w(yj ; m{a1,s2
e )

ð6Þ

where w(y ; m,e) represents normal density function of variable y

with mean m and variance e; and pj(. ) and p�j ( .) for QTL are

similar to Pj(. ) and P�j ( .) for SDL, respectively.

If epistatic SDL exist, the conditional probabilities pj(. ) in

equation (6) are biased. In this case, the estimates of SDL

parameters are used to correct the probabilities. For one locus of

epistatic SDL, the expected frequencies of four genotypes are

deduced from Table 1, and the relative fitness of each genotype is

defined as wAA~1, wAa~t1, waA~t2 and waa~t3. The above

two results are listed in Table 2. Therefore, their relationship can

be found in the below equations

1

1zt1zt2zt3

~
1{rzrv

2d

t1

1zt1zt2zt3
~

1{rzrv

2d

t2

1zt1zt2zt3
~

ruzx(1{r)

2d

t3

1zt1zt2zt3
~

ruzx(1{r)

2d

ð7Þ

As a result, t1~1 and t2~t3~½ruzx(1{r)�=(1{rzrv) ,

indicating wAA~wAa~1 and waA~waa~
ruzx(1{r)

1{rzrv
. If the

SDL is overlapped with the QTL under study, the above fitnesses

are same as those for QTL. Therefore, the conditional probabil-

ities pj(.) in equation (6) can be corrected using the below

equations

where pjfQqg~
(1{r)zrv

(1{r)(xz1)zr(uzv)
pj(Qq) and

pjfqQg~
(1{r)xzru

(1{r)(xz1)zr(uzv)
pj(Qq).

Multi-QTL Mapping using Epistatic Distorted Markers
When multiple QTL are taken into account, the model (5) is

extended as

yj~mz
Xp

l~1

(s2l{1,jalzs2l,jdl)zej ð9Þ

where al and dl are additive and dominant effects of the lth QTL

(l~1, � � � ,p), respectively; p is the number of putative QTL; and

s2l{1,j and s2l,j are dummy variables, which are similar to s1j and

s2j in model (5). This model can be expressed in matrix form

y~XbzZcze ð10Þ

where y~(y1,y2, � � � ,yn)T; X~(1,1, � � � ,1)T;

b~m;Z~(Z1,Z2, � � � ,Z2p); c~(c1,c2, � � � ,c2p)T; and e*N(0,Is2).

At present, there are several methods available for estimating

the parameters in model (10). There we adopt an empirical Bayes

approach [26], and employ normal prior N(0,s2
l ) for QTL effect

cl and the scaled inverse x2 prior p(s2
l Dt,v) for s2

l ,

p(s2
l Dt,v)~Inv-x2(s2

l Dt,v)!(s2
l )

{
1

2
(tz2)

exp ({
v

2s2
l

), where

(t,v)~(0,0) [26]. This procedure for parameter estimation is as

follows.

p’j(QQ)~
wAApj(QQ)

wAApj(QQ)zwAapjfQqgzwaApjfqQgzwaapj(qq)

~
(1{rzrv)(ruzrv{rx{rzxz1)pj(QQ)

(1{rzrv)(ruzrv{rx{rzxz1)pj(QQ)z (1{rzrv)2z(x{rxzru)2
� �

pj(Qq)z(ruzrv{rx{rzxz1)(ruzx{rx)pj(qq)

p’j(Qq)~p’jfQqgzp’jfqQg~
wAapjfQqg

wAApj(QQ)zwAapjfQqgzwaApjfqQgzwaapj(qq)
z

waApjfqQg
wAApj(QQ)zwAapjfQqgzwaApjfqQgzwaapj(qq)

~
(1{rzrv)2z(x{rxzru)2
� �

pj(Qq)

(1{rzrv)(ruzrv{rx{rzxz1)pj(QQ)z (1{rzrv)2z(x{rxzru)2
� �

pj(Qq)z(ruzrv{rx{rzxz1)(ruzx{rx)pj(qq)

p’j(qq)~
waapj(qq)

wAApj(QQ)zwAapjfQqgzwaApjfqQgzwaapj(qq)

~
(ruzrv{rx{rzxz1)(ruzx{rx)pj(qq)

(1{rzrv)(ruzrv{rx{rzxz1)pj(QQ)z (1{rzrv)2z(x{rxzru)2
� �

pj(Qq)z(ruzrv{rx{rzxz1)(ruzx{rx)pj(qq)

ð8Þ

Table 2. Expected frequencies and relative fitness for one
locus of epistatic SDL.

Genotype Expected frequency Relative fitness

Before selection After selection

AA 1/4 (1{rzrv)=2d 1

Aa 1/4 (1{rzrv)=2d t1

aA 1/4 ½ruzx(1{r)�=2d t2

aa 1/4 ½ruzx(1{r)�=2d t3

doi:10.1371/journal.pone.0068510.t002

ð6Þ

QTL Mapping Using Epistatic Distorted Markers
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(1) Setting initial values: s2
1~s2

2~ � � �~s2
2p~1, b~(X T X ){1X T y,

s2~
1

2n
(y{Xb)T (y{Xb).

(2) E-step: QTL effect can be predicted by E(cl)~s2
l ZT

l V{1

(y{Xb), where V~
Pp
l~1

ZlZ
T
l s2

l zIs2, E(cT
l cl)~E(cT

l )E(cl)

ztr½var(cl)�, and var(cl)~Is2
l { s2

l ZT
l V{1Zjs

2
l .

(3) M-step: update parameters s2
l , b and residual error variance

s2
l ~

E(cT
l cl)zv

tz2z1

b~(X T V{1X ){1(X T V{1y)

s2~
1

n
(y{Xb)T y{Xb{

Xp

l~1

ZlE(cl)

" # ð11Þ

Repeat E-step and M-step until a certain criterion of convergence

is satisfied.

In summary, the proposed approach includes three steps. First,

marker information is used to detect epistatic SDL. Then, the

estimates of SDL parameters are used to correct conditional

probabilities of QTL genotypes. Finally, the corrected probabil-

ities are incorporated into a multi-QTL mapping approach.

Results

Monte Carlo Simulation Studies
The purpose of the simulation experiment was to evaluate the

statistical performance of the proposed approach by changing

SDL heritability, QTL heritability, sample size, and genetic

distance between SDL and QTL, respectively.

Effect of SDL heritability on new method. In the first

simulated experiment, the simulated genome consisted of one

chromosome, and twenty-one evenly spaced co-dominant markers

covered the chromosome with an average marker interval of

5.0 cM. We simulated a single QTL and two SDL, all of which

overlapped with markers. The single QTL with 0.10 heritability

was located at marker position 25 cM, and two SDL each with

heritabilities of 0.05, 0.10 and 0.15 were placed at marker

positions 20 cM and 30 cM, respectively. The genetic parameters

in F2 population with a sample size of 300 were as follows:

a = d = 0.3849 (QTL effects), s2~1, and m~100. The phenotypic

values for quantitative trait are simulated by model (9). The

parameters for viability selection were set at u = v = x = 0.5141

(5%), 0.3615 (10%) and 0.1617 (15%), respectively. These

parameters could be transferred into SDL effects [11]. These

SDL genotypic effects along with random error were used to

simulate phenotypic values of viability selection. If the value is

larger than zero, this individual remains, or it is deleted from the

simulated population. Each treatment was replicated 200 times. In

the analyses of each simulated dataset, two approaches were

Table 3. Simulated parameters in all the Monte Carlo simulation experiments.

Case Position (cM)
Distance of
QTL and SDL (cM) Heritability (%) Sample size

SDL1 QTL SDL2 SDL1 = SDL2 QTL

1 20 25 30 5 5, 10, 15 10 300

2 20 25 30 5 10 5, 10, 15 300

3 20 25 30 5 10 10 100, 200, 300

4 20 22, 25, 30 24, 30, 40 2, 5, 10 15 10 300

doi:10.1371/journal.pone.0068510.t003

Figure 1. Power of QTL detection under various situations. Old: the modified method of Wen et al. (2013) with the corrected linkage groups;
New: the proposed method in this study.
doi:10.1371/journal.pone.0068510.g001

QTL Mapping Using Epistatic Distorted Markers
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adopted: 1) New method, the proposed method in this study; and

2) Old method, the modified method of Wen et al. [10] with

linkage groups corrected by epistatic distorted markers. The mean,

absolute bias and standard deviation among the estimates

obtained from 200 replicates were used to indicate the precision,

and paired t test was used to compare the above two methods. All

simulation parameters were given in Table 3.

All the results are listed in Table S1 and Figs. 1, 2A, 3A and
3E. Results showed that the ability to detect QTL decreased as

SDL heritability increased in both two methods (Table S1).
However, some differences between the two methods were

observed if SDL heritability was fixed. For example, the power

for QTL detection is higher for new method than for old one

(Fig. 1); and significant differences for QTL parameter estimates,

QTL additive effect and residual variance, exist (Fig. 2A). The

standard deviations and absolute biases for the estimates of QTL

additive and dominance effects are all small, although the

accuracy of the new method decreases as SDL heritability

increases (Fig. 3A and 3E). The unbiasedness is better for the

new method than for old one, although the difference of SD

between the two methods is not obvious (Table S1).

Effect of QTL heritability on new method. In the second

simulation experiment, the effect of QTL size on the new method

was assessed by setting QTL heritability as 0.05, 0.10 and 0.15,

indicating a = d = 0.2649, 0.3849 and 0.4851, respectively. SDL

heritability was set as 0.10. Other parameters were the same as

those in the first simulation experiment (Table 3). All the results

were listed in Table S2 and Figs. 1, 2B, 3B and 3F. Results

showed the similar trends in the first simulated experiment. In

addition, the difference of QTL detection power between the

Figure 2. {log10P(H0) for QTL parameters in the paired t test between the old and new methods. p: QTL position; a: additive effect of
QTL; d: dominant effect of QTL; var: residual variance. The dashed line represents the critical value at the 0.05 level of significance.
doi:10.1371/journal.pone.0068510.g002

Figure 3. Standard deviation and absolute bias for QTL estimates in the new method. a: additive effect; d: dominant effect; and var:
residual variance.
doi:10.1371/journal.pone.0068510.g003

QTL Mapping Using Epistatic Distorted Markers
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above two methods decrease as the increase of QTL heritability

(Fig. 1), and significant difference for QTL dominant effect exists

under QTL heritability of 0.15 (Fig. 2B). As for the accuracy of

the new method, a general trend is observed (Figs. 3B and 3F).

In addition, the unbiasedness is also better for the new method

than for old one (Table S2).

Effect of sample size on new method. The third simulation

experiment was designed to investigate the effects of sample size on

the new method by setting sample size as 100, 200 and 300.

Heritability of each SDL and QTL was set as 0.10. Other

parameters were the same as those in the first simulation

experiment (Table 3). All the results were listed in Table S3
and Figs. 1, 2C, 3C and 3G. Results showed a general trend in

QTL mapping. In addition, significant differences exist in QTL

parameter estimates, i.e., QTL dominant effect and residual

variance (Fig. 2C). As for the accuracy for parameter estimation,

the results are similar to those in the second simulation experiment

(Fig. 3C and 3G).

Effect of genetic distance between QTL and SDL on new

method. The last simulation was performed to evaluate the

effect of genetic distance between SDL and QTL on the new

method by setting the distance as 2, 5 and 10 cM. All the

parameters were shown in Table 3, and all the results were

showed in Table S4 and Figs. 1, 2D, 3D and 3H. Results

showed a general trend in QTL mapping. In addition, significant

differences exist in QTL parameter estimates, i.e., QTL additive

and dominant effects (Fig. 2D). The standard deviations of QTL

additive and dominant effects decrease as the genetic distance

between QTL and SDL increases (Fig. 3D), the absolute bias for

Figure 4. Mapping QTL for weight in 333 mouse F2 individuals. (a) LOD scores using composite interval mapping (CIM, curve), old (solid
vertical line) and new (dashed vertical line) methods. Dashed horizontal line represents critical value for significant QTL. Hollow vertical line indicates x2

value of segregation distortion test for marker interval of QTL; (b) QTL absolute effects, detected by old and new methods. NS and star indicate no
difference and significant difference at the 0.01 level between old and new methods, respectively.
doi:10.1371/journal.pone.0068510.g004

QTL Mapping Using Epistatic Distorted Markers
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QTL additive effect has a same trend as standard deviation

(Fig. 3H).

Real Data Analysis
The mouse dataset of 304 F2 individuals, derived from

MapMaker/Exp v3.0b [31], was used for the demonstration.

Twelve RFLP markers were divided into two linkage groups. Each

linkage group was corrected by the method of Xie [11], and the

corrected length was 132.36 cM. Using the corrected linkage

groups, QTL for weight in mouse was detected by three

approaches, the above two methods and composite interval

mapping [32]. When the marker density is too sparse (.1 cM),

a virtual marker (treated as missing data) may be inserted. In the

case of incomplete marker information, the corrected conditional

probabilities were calculated by equation (8) and these probabil-

ities were used to calculate dummy variables for all putative QTL,

i.e., x2l{1,j~p’j(QQl )
{p’j(qql )

and x2l,j~p’j(Qql )
. The LOD thresh-

old was set at 3.0 for QTL detection.

All the results are listed in Table S5 and shown in Fig. 4.

Among two QTL detected by all the three approaches, no

significant difference for estimates of the second QTL is observed

between the old and new methods (Fig. 4b). However, significant

difference for additive effect of the first QTL is found (Fig. 4b).

This is because that the first QTL is located between epistatic

distorted markers C66 and T93 (u~0:71, v~0:04, x~0:21,

l~2 L(u,v,x){L(u,v,x~1)½ �~13:11~xx2
df ~1, p~2:94E{4), and

the second QTL is located at marker region with normal

segregation. The result further confirms the conclusions of the

simulation studies.

Discussion

Marker segregation distortion is a common phenomenon

observed in QTL analysis [6], thus Wen et al. [10] proposed

multi-QTL mapping using distorted markers. However, this work

needs to be addressed in two aspects. First, linkage groups in Wen

et al. [10] are not corrected by making use of distorted marker

information. Second, epistasis between two SDL is not considered

although the epistasis is very important. To overcome the above

shortcomings, a new approach was proposed in this study. In the

simulated data analyses, some new results were found, for

example, QTL detection power is slightly higher for the new

method than for the above old method and significant difference

for dominant effect of QTL is observed between the above two

methods (Fig. 2). In real data analyses, epistatic distorted makers

were detected. Therefore, the new approach is valuable. To

further validate the new method, we assume no epistasis between

two linked SDL. Results from a Monte Carlo simulation

experiment show that similar results for QTL detection power

and parameter estimates between the old and new methods were

observed (Table S7), indicating that the new method works well.

In this study new method is based on gametic selection. This is

because gametic selection caused by epistatic SDL is often

reported [21,23–24,33]. In this case, multi-QTL mapping

approach can be set up by incorporating viability coefficients of

male gametes (u, v and x) into QTL mapping approach. Note that

the fitness model can be linked with the quantitative genetics

model for viability selection [11,28]. Therefore, epistatic SDL

effect and size can be easily calculated. As for zygotic selection,

once epistatic SDL is identified by the method of Xie [11], the

epistatic SDL information can be used to correct conditional

probabilities of QTL genotypes in multi-QTL mapping approach.

Therefore, multi-QTL mapping approach under zygotic selection

can be easily set up.

In real data analysis, corrected linkage groups are also useful.

To explain this issue, we re-analyze real dataset in Wen et al. [10].

As compared with the results from Wen et al. [10], one additional

QTL was further detected by the old and new methods (Table
S6), indicating that the corrected linkage groups using distorted

markers can increase the power of QTL mapping. This result is

consistent with that in Monte Carlo simulation studies in this

study. As for the same QTL detected by the old and new methods,

no significant differences are identified. This is because no epistasis

SDL was mapped. As for the third QTL, the position from Wen

et al. [10] is different from those from the old and new methods;

and as for the fourth QTL, the additive effect estimate from Wen

et al. [10] is different from those from the old and new methods.

The possible reason is derived from the corrected linkage groups.

This method may be extended to the QTL-by-QTL interaction

detection and additional bi-parental populations, e.g. backcross,

recombination inbred lines and doubled haploid lines. Although

co-dominant markers were adopted in this study, missing and

dominant markers are also available, as shown in the real data

analysis in this study. The related results can be found in Xie [11].

If more than two distorted markers exist in a same linkage group, a

two-dimensional scanning approach in this study was also used to

detect the epistasis. The source codes for R program and the much

more user-friendly interface software will be available soon.
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