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Abstract
With a steep increase in the incidence of type 1 and 2 diabetes globally, diabetic nephropathy
(DN) has now become the leading cause of renal failure in the world. There are no suitable
biomarkers for the diagnosis of early stages of DN. In recent years, tremendous efforts are being
made worldwide to delineate the role of micro RNAs in the pathogenesis of DN. Circulating
miRNAs in serum, plasma, urine and other body fluids, which reflect a response to various
pathophysiological stresses, are being investigated in the context of diabetic nephropathy.
Delineation of the changes in miRNA levels in patients with DN may lead to a better
understanding of the progression of the disease. We present here an exhaustive survey of the
miRNA literature, highlighting various studies performed over the last decade. The aim is to
assess if changes in various miRNAs could correlate with the progression of diabetic nephropathy.
Based on the survey, we found that miRNA-377, miRNA-192, miRNA-216/217 and miRNA-144
are increased in body fluids of patients with DN, while miRNA-21 and miRNA-375 are decreased.
Overall, there are a very few miRNAs that are kidney specific, and although significant
differences were observed in the urinary excretion of certain miRNAs, they were not correlative to
their levels in the blood or plasma. Thus, it is completely plausible that urine-specific miRNAs
could serve as novel biomarkers for the diagnosis of early stages of diabetic nephropathy.
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INTRODUCTION
Early stages of diabetic nephropathy (DN) are characterized by hyperfiltration, nephron
enlargement and mesangial cell hypertrophy, which later on progress to glomerulosclerosis
[1]. Initial stages of DN are associated with mild proteinuria that is traditionally described as
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microalbuminuria (albumin excretion: 30 – 300 mg/day), but with progression to overt
nephropathy there is an associated increased risk of vascular disease and patient mortality
[2]. Major pathophysiological mechanisms associated with DN complicate the outcome of
DN, including activation of the renin-angiotensin-aldosterone system (RAAS), the protein
kinase C (PKC) pathway, and upregulation of pro-inflammatory cytokines and various
growth factors [3]. Angiotensin II and transforming growth factor-β (TGF-β) are significant
molecular mediators that influence DN pathogenesis, and have been suggested as potential
targets for the development of therapeutics [4]. The generation of advanced glycation end
products (AGEs) and increased oxidative stress in high glucose ambience are additional
pathobiological processes that further exacerbate hyperglycemia-induced renal injury.

Currently, DN is the most common cause of end-stage renal disease (ESRD) worldwide, and
approximately 40% of patients require renal replacement therapy. Early identification of
patients who are prone to develop renal complications would be an important step for their
better management during the clinical course of this disease process [5]. Microalbuminuria
has been the standard method for diagnosis of early stages of DN, however, this method has
some drawbacks. Microalbuminuria can develop when advanced changes have already set
in, as assessed by renal biopsy examination [6]. Also, the immunoassay that measures
microalbuminuria can only detect the immunoreactive form of albumin, and its non-
immunoreactive forms are undetectable by this method [7]. The quantitation of
immunoreactive albumin by RIA (radioimmunoassay) fails to detect approximately 80% of
the total albumin; less than 28% of the non-immunoreactive albumin in urine could be
accounted for by the total combination of all other proteins measured by ELISA [8]. During
the past decade, proteomics have become a powerful tool for the discovery of biomarkers for
various disease processes. However, these procedures are less than ideal to monitor the
progression of DN because they are very time-consuming and restricted to a select group of
proteins, excluding those that are highly hydrophobic. Thus, novel improved biomarkers are
necessary to monitor the progression of early stages of diabetic nephropathy [9].
MicroRNAs comprise 21 to 23 nucleotides, and bind to the 3′-untranslated regions (UTRs)
of their target mRNAs in a stable manner [10]. MiRNAs modulate a wide range of
biological functions, including oncogenesis, apoptosis, cardiac development and insulin
secretion [11][12][13][14][15]. MiRNAs are present in wide variety of body fluids, and their
levels in these fluids usually reflect a tissue specific injury or expression, which makes them
ideal candidates for potential biomarkers [16]. For example, serum miRNA-21 is a novel
biomarker for the diagnosis of esophageal squamous cell carcinoma [17]. In addition
miRNAs are potential biomarkers for smoking-related interstitial fibrosis [18]. This suggests
a strong relationship between the expression of tissue miRNAs and their levels in body
fluids. MiRNAs in are found at high concentrations in body fluids [20]. Further, miRNAs
are extremely stable and notably less susceptible to RNase. This protection from RNase
degradation has been shown to be a result of packaging within cytoplasmic microvesicles,
exosomes and apoptotic bodies, and also due to specific interactions with protective proteins
[21].

URINE-SPECIFIC miRNAs
We hypothesized that the unique stability of miRNAs in various body fluids would reveal
urine-specific miRNAs that would have some promise to serve as biomarkers. As urine is an
easily available source for molecular markers such as RNA; novel, highly sensitive, and
specific urine-based diagnostic tools are particularly attractive. An analysis of miRNAs in
urine from bladder cancer patients showed higher ratios of miR-126:miR-152 and
miR-182:miR-152 [22]. Urinary miRNAs can be derived from glomerular ultrafiltrate or
excreted by the renal tubules. Oftentimes, their levels may be reflective of intrinsic tissue
injury in kidney or urinary tract. Melkonyan et al. detected 22 different urinary miRNAs, but
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none were kidney-specific, suggesting these miRNAs were transported in the plasma and
were filtered across the glomerular capillary barrier; their isolation in an intact form from
the urine indicated their potential to serve as biomarkers [23][24]. In recent years, many
studies have shown that miRNAs play an important role in regulating glucose and lipid
metabolism in diabetes, and their levels in blood or urine should be of some value in
stratifying a given stage of the disease process and predicting its clinical course [25].
Argyropoulos et al. found micro-albuminuria is associated with decreased levels of
miR-323b-5p and increased urine concentration of miR-429 in patients with long standing
type 1 diabetes [26]. Interestingly, miR-323b-5p regulates Claudin-16, a key component of
the tight junction in the thick ascending limb, [27], while miR-429 correlates with the level
of proteinuria and renal function in immunologically-mediated renal diseases such as IgA
nephropathy [28]. Finally, the five most significant miRNAs were found to be of immense
value in classifying cases of DN with a high degree of significance [29].

MiRNAs AS POTENTIAL DISEASE BIOMARKERS
There are 2214 and 848 known miRNAs in humans and mice, respectively (Data from
miRBase Release 19.0: 2013.02.at http://microRNA.sanger.ac.uk). Recent clinical studies
have shown that human serum contains large amounts of stable miRNAs derived from
various cells and tissues, and their altered expression profile in body fluids of type 2 diabetic
patients is considered of high clinical value [30].

MiRNA-377 in diabetic nephropathy and pulmonary neoplasms
MiR-377 seems to be epigenetically regulated [31]. It is normally expressed in human lung
tissues, and is upregulated in lung tumors, and thus could serve as a potential biomarker for
the management of patients with pulmonary neoplasms [32]. Interestingly, in mouse and in
vitro models for DN, elevated miR-377 levels were shown to mediate decreased expression
of p21-activated kinase (PAK1) and superoxide dismutase (SOD), enhancing production of
the fibronectin protein. PAK1 plays an important role in tumor formation [33] and can lead
to fibronectin production via Smad activation in DN. Superoxide dismutase genes are related
to oxidative stress, and may be associated with vascular damage in patients with diabetic
mellitus [34]. Therefore, miR-377 may play a critical role in the pathobiology of mesangial
cells since they are known to undergo oxidative stress under high glucose ambience.

MiRNA-192 in renal disease, hepatotoxicity and colon tumors
The value of miR-192, a liver-enriched miRNA, as a potential blood-based biomarker has
been elucidated recently in a mouse model of acetaminophen (APAP)-induced
hepatotoxicity [35]. The expression level of miR-192 is significantly decreased in colon
tumors compared with normal tissues, suggesting that it could be used as a diagnostic tool to
assess hepatotoxicity and neoplasms of the gastro-intestinal tract [36]. Urinary levels of
miR-192 are downregulated in patients with IgA nephropathy [37]. Also, correlation of
miRNA-192 levels with derangements in renal functional parameters and incremental
increase in blood pressure has been recently reported [38]. More importantly, increased
glomerular expression of miR-192 was found to be associated with heightened activity of
renal TGF-β in mouse models of DN. Furthermore, miR-192 could target ZEB1/2 in PTCs
and enforced expression of E-cadherin while TGF-β led to a reduction in miR-192. ZEB1
(zinc finger E-box binding homeobox 1) and ZEB2 are E-Box–binding proteins and an
important early stage of EMT [39]. E-cadherin expression was increased and remained after
96 hours of incubation with TGF-β in PTC (proximal tubular epithelial cells) clones
overexpressing miR-192 [40]. Interestingly, specific inhibition of renal miR-192 decreases
renal fibrosis and dampens the proteinuric response [41]. Further support of miRNA-192 in
the pathobiology of the kidney is derived from studies in patients having early stages of
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diabetic nephropathy who had a higher expression of miR-192 compared to the late stages of
clinical course of this disease process [42].

MiRNA-216 and miRNA-217 in DN and pancreatic ductal adenocarcinoma
MiR-216 and miR-217 are characteristically expressed in the pancreatic tissue. A uniquely
controlled expression of miR-217 in the pancreatic tissues may be an additional mechanism
for acinar cells to balance their β-catenin expression levels and secretory functions. miR-216
and miR-217 play important roles in early detection of pancreatic ductal adenocarcinoma, a
condition known for its difficulty to diagnose [43]. The relevance of miR-216 and miR-217
in chronic kidney diseases has also been described (reviewed in [44]). Interestingly,
miR-216 and miR-217 also play a role in the activation of Akt kinase, a key mediator of
diabetic nephropathy. Specifically, TGF-β was shown to activate Akt kinase by inducing
miR-216 and miR217, in turn downregulating phosphatase and tensin homologue (PTEN).
Overexpression of PTEN has been observed in early stages of DN, adding significance to
the role of miR-216 and miR-217. Intriguingly, these miRNAs are also upregulated by
miRNA-192, a finding that is also relevant in the pathogenesis of diabetic nephropathy [45].

miRNA-144 in type 2 diabetes and pancreatic cancer
miRNA-144 has been shown to play a role in regulation of cell growth [46] and apoptosis
[47]. MiR-144 is a regulator of genes that modulate embryonic-hemoglobin, and is
downregulated in pancreatic cancer [48]. RT-qPCR analyses showed that miR-144 is
overexpressed in colorectal cancerous tissues, thus yielding the possibility to serve as a
clinical diagnostic marker [49]. Increased circulating levels of miR-144 also correlate with
the downregulation of its predicted target: insulin receptor substrate 1 (IRS1), at both
mRNA and protein levels; thus suggesting that miR-144 may also be a potential biomarker
for type 2 diabetes (T2D) [50].

MiRNA-21 in DN and solid tumors
MiRNA-21 is commonly upregulated in solid tumors of the lung, breast, stomach, prostate,
colon, brain, head and neck, esophagus, pancreas, and kidney [51]. Its overexpression
inhibits proliferation of mesangial cells, and decreases urinary excretion of albumin in
diabetic db/db mice. This suggests that miR-21 plays a protective role in glomerular
hypertrophy and the onset of early DN. What is more interesting is that like miR-216a and
miR-217, PTEN is also a potential target of miR-21 [52]. In addition, miR-21 prevented
mesangial hypertrophy by targeting the PTEN/PI3K/Akt pathway. The main biological
function of PTEN is to block PI3K signaling, a crucial pathway involved in metabolic
responses to insulin [53]. Binding of insulin to the insulin receptor activates the PI3K
pathway, while defects in PI3K signaling have been demonstrated in type 2 diabetes mellitus
[54]. Altered PTEN expression is associated with diabetic nephropathy (DN), and miR-21
expression is downregulated in early stages of DN. Thus, it is conceivable that
overexpression of miR-21 could prevent renal mesangial cell hypertrophy via
downregulating PTEN in diabetic nephropathy [55].

MiRNA-375 in type 2 diabetes and colorectal cancer
While miRNA-375 expression is decreased in colorectal cancerous tissues, there is no
significant correlation between the expression of miRNA-375 with tumor size, histological
grade, or the tumor stage [56]. Like miRNA-144, miRNA-375 also inhibits tumor growth
and metastasis of esophageal squamous cell carcinoma by repressing insulin-like growth
factor 1 receptor (IGF-R1) [57]. Another study reported that pancreatic miR-375 expression
was increased in type 2 diabetic (T2D) patients, and upregulated in pancreatic islet amyloid
formation and A-cell deficit [24]. Of great interest here is that miR-375 seems to be an
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important regulator of insulin secretion. It is a pancreatic islet cell specific miRNA in mice,
and it upregulates insulin secretion by targeting myotropin [58]. Furthermore, a decrease of
miR-375 levels has been seen in high glucose ambience. Such a regulation of miR-375
expression by glucose is also observed in rat islet cells[59]. In addition, miR-375 regulates
PDK1 protein levels, by interacting directly with the 3′ UTR, resulting in modulation of
glucose stimulatory action on insulin gene expression and DNA synthesis. This is significant
as PDK1 can regulate cell growth and organ development [60]. Finally, miR-375 expression
is decreased in diabetic GK rat islets, thus emphasizing the significance of miR-375 in the
pathophysiology of diabetes in rodents and humans [61] (Table 1).

This suggests that kidneys are not involved in the physiological urinary clearances of
circulating miRNAs. The only exception to this is miR-638.. In general, it seems that in
patients with severe chronic renal failure, the blood circulating levels of total and specific
miRNAs are reduced in comparison to patients with mild renal impairment or normal renal
functions. Intriguingly also the rates of ex vivo microRNA degradation of blood/plasma
miR-210, miR-16 and miR-21 were higher in patients with end-stage renal disease (ESRD)
compared to those individuals with normal renal functions [62].

HYPOTHESIS
The above reviewed literature suggests that miRNAs play an important role in the
pathogenesis of diabetic nephropathy and in the initiation of renal glomerular mesangial cell
dysfunctions. Conceivably, miRNAs can modulate the pathogenesis of DN by affecting
various different pathways. We hypothesize that urinary excretion of miR-377, miR-192,
miR-216/217 and miR-144 increase in patients with diabetic nephropathy as they may
exacerbate the perturbations in body homeostasis in a hyperglycemic milieu. On the other
hand, the urinary excretion of miR-21 and miR-375 may decrease as they bind to their
various tissue targets and henceforth serve to preserve body homoestasis in patients with
diabetic nephropathy. In line with this contention is the study by Melkonyan et al., where 22
different urinary miRNAs were identified, but none of them specific for kidney tissues [19].
It is likely that miRNAs in urine versus in blood has no significant impact on a given disease
characteristics, except miRNA-638 [56], which showed a significant increase in the urine of
patients with Stage 4 CKD compared to normal and Stage 3 CKD patients. Neal et al.
recently found a striking reduction in the overall levels of circulating miRNAs in patients
with severe chronic kidney disease (CKD) having marked impairment in renal functions
[62].

CONCLUSIONS
Several miRNAs have now been identified, which may be upregulated or downregulated in
the progression of DN, and their detection in very early stages may be of value in predicting
the disease course. In addition, increasing the threshold of detection of miRNAs by various
amplification methods and at the same time delineating miRNA tissue-restricted expression
profiles will be very helpful in advancing this field by comprehensively determining their
relevance in the pathogenesis of diabetic nephropathy.

Urine proteomic profiling studies have identified normoalbuminuric subjects with type 2
diabetes who subsequently develop diabetic nephropathy. As a further step, in this review
we discuss a group of miRNAs that could serve as biomarkers in DN, including: miR-377,
miR-21, miR-192, miR-216a, miR-217, miR-375 and miR-144. The blood levels of some of
these miRNAs are increased in DN, suggesting they may be of some value in monitoring the
progress of diabetic nephropathy. Whereas some of the other miRNAs in blood circulation
are consumptively decreased as they bind to their targets in various tissues so as to maintain

Yang et al. Page 5

Med Hypotheses. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



body homeostasis in early stages of DN. Of course, there are also some changes in the
urinary excretion of certain miRNAs in patients with diabetic nephropathy; for instance,
there is an upregulation of miR-638 in the urine specimens. Further studies are needed to
characterize miRNAs that are highly specific to DN in order to understand their role in the
pathogenesis of diabetic nephropathy.
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Table 1

Disease-associated miRNAs

miRNA Location Change Disease Associations Reference

miRNA377
Lung

Upregulation
Pulmonary neoplasm Melkamu et al. [26]

Kidney Diabetic nephropathy Zhao et al. [25]

miRNA192

Blood

Upregulation

Hepatotoxicity Wang et al. [30]

Colon Colonic tumors Karayvaz et al. [31]

Urine IgA nephropathy Wang et al. [32]

kidney Diabetic nephropathy Krupa et al. [37]

miRNA216/217
Pancreas

Upregulation
Pancreatic ductal adenocarcinoma Szafranska et al. [38]

Kidney Diabetic nephropathy Kato et al. [40]

miRNA144
Colorectal tissue

Upregulation
Colorectal cancer Kalimutho et al. [42]

Blood Type 2 diabetes Karolina et al. [43]

miRNA21

Lung, breast, stomach,
prostate, colon, etc.

Upregulation Lung, breast, stomach, prostate, colon
tumor

Chow et al. [44]

Kidney Downregulation Diabetic nephropathy Mahimainathan et al. [48]

miRNA375

Colorectal tissue

Downregulation

Colorectal cancer Dai et al. [49]

Esophageal tissue Esophageal squamous carcinoma Kong et al. [50]

islet cells Type 2 diabetes El Ouaamari et al. [53]

miRNA638 kidney Upregulation Chronic kidney disease Neal et al. [54]
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