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Abstract
The effect of spatial interference on place learning was examined in young and old rats. Rats were
trained on a radial eight-arm maze to discriminate between a reward arm and a non-reward arm
that either were adjacent to one another (high spatial interference) or separated by a distance of
two arm positions (low spatial interference). Each rat was tested until reaching a criterion of nine
correct choices out of 10 trials across two consecutive days. The data revealed that old rats
committed significantly more errors than young rats when the arms were adjacent and spatial
interference was high. However, no group differences were detected when the arms were
separated and spatial interference was low. Group differences also were not detected in the
number of trials required to reach the learning criterion in either condition. The results indicate
that age-related brain changes result in increased errors during place learning, particularly when
spatial interference is high, suggesting that spatial pattern separation may be less efficient in aged
animals.
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1. Introduction
The hippocampus supports several mnemonic processes critical for memory encoding and
retrieval. Among these processes is spatial pattern separation, a mechanism suggested to
reduce interference among similar memory representations and increase the probability that
one place is encoded as separate from another similar place (Gilbert and Brushfield, 2009).
The dentate gyrus (DG) and CA3 subregions of the hippocampus have been reported to
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support pattern separation in studies involving: a) computational models (Kesner, 2007a;
Marr, 1971; Mcnaughton and Nadel, 1989; Myers and Scharfman, 2011; O’Reilly and
McClelland, 1994; Rolls, 2010; Rolls and Kesner, 2006; Shapiro and Olton, 1994), b)
electrophysiological methods in animals (Leutgeb et al., 2007; Leutgeb et al., 2005; Leutgeb
et al., 2004; McNaughton et al., 1989; Tanila, 1989), c) neurotoxin induced and temporary
lesions in animals (Butterly et al., 2012; Gilbert et al., 2001; Gilbert and Kesner, 2006;
Goodrich-Hunsaker et al., 2008; Hunsaker and Kesner, 2008; Lee et al., 2005; McTighe et
al., 2009; Morris et al., 2012), d) genetic manipulations in animals (Cravens et al., 2006;
Kubik et al., 2007; McHugh et al., 2007), e) neuroimaging methods in humans (Bakker et
al., 2008; Carr et al., 2010; Kirwan and Stark, 2007; Lacy et al., 2011; Yassa and Stark,
2011), and f) neuropsychological studies with hippocampal damaged humans (Duff et al.,
2012; Kirwan et al., 2012).

Age-related gray and white matter changes have been documented in many regions of the
brain (Allen et al., 2005; Driscoll et al., 2009; Kennedy and Raz, 2009; Peters and Rosene,
2003; Ziegler et al., 2008), including the hippocampus (Allen et al., 2005; Good et al., 2001;
Driscoll and Sutherland, 2005; Raz et al., 2005; Walhovd et al., 2010). Additionally, fMRI
signal intensity has been shown to decline in all subregions (DG, CA3, CA1) of the human
hippocampus (Small et al., 2002). Activity in the perforant path input to DG also has been
shown to decrease in aged rats (Geinisman et al., 1992) and older humans (Yassa et al.,
2011). Similarly, perforant path connections to the DG in old rats are reported to be less
excitable and require greater stimulation to achieve long-term potentiation compared to
young rats (Burke and Barnes, 2006). In addition, a 40% reduction in DG neurogenesis was
reported in middle-aged rats and a reduction of up to 80% in rats at advanced ages (Bizon
and Gallagher, 2003). Taken together, the aforementioned evidence suggests that the DG
may be especially susceptible to aging effects in humans (Small et al., 2002) and animals
(Patrylo and Williamson, 2007; Small et al., 2004). These age-related changes in the
hippocampus may affect mnemonic processes such as pattern separation.

Wilson and colleagues (Wilson et al., 2006) proposed that age-related changes in the
hippocampus impair the ability to reduce similarity among new input patterns leading to
decreased pattern separation efficiency. Pattern separation is hypothesized to become less
efficient due to a strengthened processing of stored information at the expense of processing
new information. Furthermore, age-related changes in the hippocampus strengthen the
autoassociative network of the CA3 subregion that supports pattern completion, a
mechanism that allows a complete representation of stored information to be retrieved using
partial cues. These age-related changes may cause the CA3 subregion of the hippocampus to
become entrenched in pattern completion at the expense of processing new information and
pattern separation (Wilson et al., 2006). Yassa et al. (2011) reported similar findings in a
study examining circuit-specific disruptions in the hippocampus in young and older adults
using high-resolution fMRI and ultrahigh-resolution diffusion imaging. The results revealed
that reduced pattern separation activity in the DG/CA3 regions of aged humans was linked
to structural changes in the perforant pathway. These changes were suggested to strengthen
the processing of stored information while weakening the processing of novel information
(Yassa et al., 2011). Therefore, decreased efficiency in pattern separation may be a critical
age-related processing deficit.

Given the well-documented role of the DG in the reduction of interference and its
susceptibility to age-related changes, recent human studies have begun to investigate the
effect of aging on pattern separation. Pattern separation has been shown to be less efficient
in older adults on tasks involving spatial locations (Holden et al., 2012; Stark et al., 2010)
visual objects (Toner et al., 2009; Yassa et al., 2011), and temporal order of items in a
sequence (Tolentino et al., 2012). However, few studies have examined age-related changes
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in pattern separation in animal models of aging. A recently published study by Marrone et
al. (2011) found that older animals recruited distinct populations of granule cells during
exploration of the same environment on two different occasions, which the authors
interpreted to be an indication of greater pattern separation. However, when the aged
animals visited different environments, the age-related increase in pattern separation was no
longer apparent. The study also found that increased pattern separation in the similar
contexts was correlated with a reduced ability of older animals to disambiguate similar
contexts during a sequential spatial recognition task. The authors conclude that spatial
memory performance in aged animals is most impaired in situations where interference is
increased, presumably due to decreased pattern separation. Kubo-Kawai and Kawai (2007)
tested young and older monkeys on a delayed nonmatch-to-position task involving
manipulations of the spatial distance between two locations. The data revealed that older
monkeys were impaired relative to young monkeys across all spatial separations, with the
largest group differences found on trials involving the closest separation. One could
speculate that smaller separations were likely to create increased overlap among memory
representations, which may result in heightened interference and a greater need for pattern
separation. Although this study (Kubo-Kawai and Kawai, 2007) was not designed or
interpreted by the authors to assess pattern separation, these findings in aged monkeys are in
accordance with the findings from the studies involving older humans (Holden et al., 2012;
Stark et al., 2010).

A recently published article by Holden and Gilbert (2012) suggests that less efficient pattern
separation may contribute to age-related spatial memory decline. Given that few studies
have been conducted to examine spatial pattern separation deficits, particularly in older
animals, the present study used a place-learning task dependent on the DG subregion of the
hippocampus (Morris et al., 2012) to assess age-related changes in pattern separation in a
rodent model of aging.

2. Method
2.1 Subjects

Forty Fischer/Brown Norway (F344/BN) male rats (Harlan Laboratories) approximately 6
months (n = 20) and 24 months (n = 20) of age were used as subjects. Two 24-month-old
rats died during testing (separate condition n=1; adjacent condition n=1) and three 6-month-
old rats were unable to complete 10 daily trials (separate condition n=1; adjacent condition
n=2). These animals completed less than 5 trials during the first two days of testing and were
excluded from the statistical analyses. The F344/BN is a hybrid between a female Fisher 344
rat and a male Brown Norway rat. Subjects were housed individually in standard plastic
containers located in a temperature-controlled room. Animals were food deprived and
maintained at 80–85% of their free-feeding weight. The mean weight was 356.78 g (SE=
15.19, range = 328 – 377 g) for the 6-month-old rats and 560.95 g (SE= 8.67, range = 481 –
620 g) for the 24-month-old rats at the beginning of testing. As described below, each age
group was evenly divided and randomly assigned to either an adjacent or separate condition.
The colony room was kept on a 12hr:12hr light:dark cycle and all testing was conducted
during the light phase. All experimental procedures were reviewed and approved by the
Institutional Animal Use and Care Committee at San Diego State University.

2.2 Apparatus
A commercially produced radial eight-arm maze made of aluminum and clear Plexiglas was
used as the test apparatus. The maze had a center arena that measured 34.9 cm in diameter
surrounded by 34.9 cm high clear Plexiglas mechanical guillotine doors and openings to the
arms. Each arm was 69.8 cm in length, 10.5 cm wide, and was bordered by clear Plexiglas
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walls that were 20.3 cm high. Food wells were located at the end of each arm. The maze was
located in the center of a windowless, rectangular shaped room that contained a variety of
visual/distal cues. The maze was positioned approximately 40 cm from three of the walls
and a white curtain used so that the experimenter was not visible to the animal during
testing. Two visual cues approximately 40–60 cm in height were position on each wall
approximately 50 cm above the arms. The cues were positioned between two of the arms so
that one cue could not be used to locate a particular arm.

2.3 Shaping
To minimize neophobia and maximize exploratory behavior, the experimentally naïve
subjects were handled for 10 minutes every day for 14 days prior to testing. Following
handling, each rat was allowed to individually explore the test apparatus. During the
exploration period, each rat was placed in the center arena with all guillotine doors open and
allowed to explore for 5 minutes. For the next two days, Froot Loop cereal (Kellogg’s) was
distributed across the surface of the apparatus, including each individual food well, and the
animal was allowed to explore each arm of the apparatus to retrieve the food rewards. The
food rewards were placed on the maze prior to each exploration period and were not
replaced once consumed.

Once each rat was habituated to the apparatus, the rats were randomly assigned to the
adjacent condition or separate condition and tested on a paradigm developed by McDonald
and White (1995) and subsequently used by Morris et al. (2012).

2.4 Place learning task
For the adjacent condition, one of the eight arms of the radial maze was randomly assigned
as the reward arm. The arms positioned immediately to the left and right of the reward arms
were the non-reward arms (Figure 1). The separate condition was conducted using an
identical procedure and criterion as described below for the adjacent condition except that
the reward arm was separated from the two possible non-reward arms by a distance of two
arm positions (Figure 1). Prior to the beginning of each testing session, the experimenter
raised the door for the reward arm and one of the two non-reward arms. The rat was placed
on the center arena facing a randomly chosen closed guillotine door. On each trial, the rat
was allowed to choose between the reward arm and one non-reward arm. If the rat entered
the reward arm, it was allowed to consume the Froot Loop food reward located in the food
well at the end of the arm. However, if the rat entered the non-reward arm (defined as the
forelimbs crossing the threshold of the door), then the rat would not receive a food reward
and would not be allowed to enter the reward arm. Each of the two non-reward arms was
utilized on five of the 10 daily trials in a pseudo-randomly determined order. The same
rewarded arm and one of the same two non-reward arms were used on each trial for a
particular rat; however, the rewarded arm varied across animals. Each rat received 10 trials
per day with a 60 second inter-trial interval used to clean and re-bait the apparatus, during
which time the animal was removed and placed in the home cage. Testing was conducted
daily and each animal was tested until the animal reached a criterion of nine correct choices
out of 10 consecutive trials spread across two consecutive days of testing, or until the animal
was tested for 20 consecutive days without reaching the learning criterion.

A three-location configuration consisting of one reward arm and two different non-reward
arms was utilized to ensure that the rats do not adopt an egocentric response strategy that
could provide an accurate solution to the task. If a two-location configuration was used, one
arm would be designated as the reward arm and another arm always would be designated as
the non-reward arm. For example, the reward arm always would be to the right of the non-
reward arm. Therefore, regardless of where the rat was placed on the center arena, the
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animal could reach the reward location by consistently choosing the arm on the right and
would not need to attend to extramaze cues to locate the reward arm. This solution was not
possible with the current three-location configuration because the non-reward arm was on
the left of the reward arm on half of the trials and on the right for the remaining half of the
trials. Thus, the rats were unable to adopt an egocentric response strategy and instead were
required to distinguish the reward arm from the non-reward arm only on the basis of their
locations with respect to the distal cues. On every trial, the maze was rotated randomly to
prevent the use of intramaze cues such as odorants, but the location of the external cues
remained consistent respective to the rewarded arm. Therefore, the arm that was used as the
rewarded arm on Trial 1, would be rotated into a different position for Trial 2 and so forth
for all 10 daily trials. As a result, no one arm would smell any more or less like Froot Loops
than any other arm across trials, thus minimizing odor cues from the reward as a useful
intramaze cue to solve the task.

3. Results
3.1 Errors committed prior to reaching criterion

One-way analysis of variance (ANOVA) tests were used to analyze group differences (6-
month-old, 24-month-old) in the number of errors committed prior to reaching the criterion
in the adjacent condition and the separate condition. A Bonferroni correction was used to
control for multiple comparisons (p-value set at p < .025) and the effect size for significant
group differences was calculated using Cohen’s d. As shown in Figure 2, the analysis
revealed that 24-month-old rats committed more errors than 6-month-old rats on the
adjacent condition F(1, 15) = 10.25, p = .006, d = 1.53. However, no significant group
differences were detected on the separate condition F(1, 16) = .98, p = .34.

To assess whether the adjacent and separate conditions differed in task difficulty, a one-way
ANOVA was used to compare the number of errors committed by young rats on the two
conditions. The analysis revealed no significant difference between young rats tested on the
adjacent (Mn=7.25, SE=.94) and separate (Mn=6.11, SE=.90) conditions F(1,16) = .76, p = .
40. The finding that young rats did not differ significantly between the two conditions
provides evidence that age-related deficits on the adjacent condition were due to a greater
demand for pattern separation rather than a difference in task difficulty compared to the
separate condition.

3.2 Trials to criterion
One-way ANOVA tests were used to analyze group differences (6-month-old, 24-month-
old) in number of trials required to reach the learning criterion in the adjacent condition and
the separate condition. As shown in Figure 3, the analyses revealed no statistically
significant differences between 6- and 24-month-old rats in the adjacent condition F(1, 15) =
2.36, p = .14 or the separate condition F(1, 16) = .00, p = 1.00.

3. Discussion
The goal of our study was to examine the effect of spatial interference on place learning for
adjacent and separated locations in young and old rats. It was hypothesized that
discriminations between adjacent locations involved more spatial interference among distal
cues and a greater need for spatial pattern separation than separated locations (also see
Morris et al. 2012). As shown in Figure 2, an examination of the total errors committed
before reaching the learning criterion revealed that older rats made significantly more errors
than young rats in the adjacent condition where spatial interference was high. The effect size
for group differences on the adjacent condition was high (d = 1.53). However, no group
differences were detected in the separate condition where spatial interference was low.
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These findings support the hypothesis that age-related differences in performance were
larger on the adjacent condition (presumably due to increased spatial interference and
increased demand for pattern separation) compared to the separate condition (involving
decreased spatial interference and less pattern separation demand). However, as shown in
Figure 3, the number of trials required to reach the learning criteria was comparable between
young and old rats in both conditions. Taken together, the data suggest that although aged
rats may be able to acquire spatial discriminations, age-related changes in the brain may
result in less efficient pattern separation resulting in increased likelihood of spatial memory
errors, particularly in situations where spatial interference is high.

As reviewed previously, age-related changes have been documented in various regions of
the brain including the hippocampus. Studies have shown that aging is likely to result in
functional changes within the DG (Small et al., 2002; Patrylo and Williamson, 2007; Small
et al., 2004) and alterations in perforant path input to the region (Geinisman et al., 1992;
Yassa et al., 2001; Burke and Barnes, 2006). Using the place-learning task employed in the
present study, Morris et al. (2012) concluded that the DG is critical for place learning in the
adjacent condition when spatial interference is high, presumably due to critical role the DG
plays in supporting spatial pattern separation. Given that the present task has been shown to
be dependent on the DG subregion and the DG may be particularly susceptible to the effects
of aging, the increased errors committed by old rats in the present study may be due to age-
related changes in the DG. However, age-related changes in other brain regions also may
have been involved. For example, McDonald and White (1995) found that rats with fornix-
fimbria lesions required significantly more trials to reach the learning criterion in the
adjacent condition but not the separate condition compared to controls. Therefore, future
studies are needed to further examine the neural changes associated with aging that may
underlie deficits on the present task.

Although only a few behavioral studies have examined the effects of aging on spatial pattern
separation, the results point to an age-related decrease in pattern separation efficiency in
both older humans (Holden et al., 2012; Stark et al., 2010) and animals (Marrone et al.,
2011). Taken together with the present findings, the aforementioned studies suggest that less
efficient spatial pattern separation may be critical processing deficit in older humans and
animals that may contribute to age-related spatial memory decline (Holden and Gilbert,
2012). These data also provide support for the hypothesis that age-related changes adversely
affect pattern separation by weaken the processing of novel information while strengthening
the processing of stored information (Wilson et al., 2006; Yassa et al., 2011).

Age-related decline in pattern separation may be due in part to changes in hippocampal
neurogenesis. Penner et al. (2011) suggested that age-related memory impairment may be
due to subregion-specific epigenetic and transcriptional changes in the hippocampus. Past
studies also have reported reduced neurogenesis in the aged hippocampus (Kuhn et al.,
1996) that is directly related to decrease hippocampal volume and impaired performance on
hippocampal dependent tasks (Driscoll et al., 2006) and may contribute to impaired pattern
separation (Aimone et al., 2011; Creer et al., 2010). In particular, Clelland and colleagues
(2009) tested mice with ablated hippocampal neurogenesis on a task similar to the one used
in the present study. The authors reported that mice with ablated neurogenesis were
impaired when the spatial separation between arms was small but not when the separation
between arms was increased (Clelland et al., 2009). New evidence suggests that older DG
cells may contribute to pattern completion, while newborn neurons may be involved in
pattern separation (Nakashiba et al., 2012), as they are particularly involved in mnemonic
processes dependent on the DG (Sahay et al., 2011). Thus, interventions that increase
neurogenesis during adulthood may have clinical implications for reversing age-related
impairments in pattern separation and associated DG dysfunction (Sahay et al., 2011). The
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development of such interventions may be particularly important given recent evidence in
animals suggesting that pattern separation deficits may begin in middle age (Huxter et al.,
2012). Creer et al. (2010) reported that voluntary running improved the ability of adult mice
to discriminate between two spatially adjacent locations, suggesting an improvement in
spatial pattern separation. In addition, the improved spatial pattern separation in animals
engaging in voluntary running was correlated with increase neurogenesis. Therefore,
exercise may be a potential intervention to combat pattern separation deficits and decreased
neurogenesis in adulthood. Unfortunately, voluntary running did not have similar effects on
pattern separation or neurogenesis in very old mice (Creer et al., 2010). Given the
aforementioned studies, the development of behavioral tasks sensitive to age-related changes
in spatial pattern separation may have implications for future studies of neurogenesis.

A number of previous behavioral studies have used 24-month-old Fisher 344 rats (F344) to
examine age-related changes in cognition. The present study was conducted using the F344/
BN hybrid strain. This strain has been shown to live longer than F344 rats and is
recommended by the National Institute on Aging for use in aging research. The 50%
survival age for F344/BN male rats is 34 months; however, the 50% survival age for F344
male rats is 24 months (National Institute on Aging). Therefore, the rats in the present study
showed significant memory impairments at 24 months of age despite having longer average
longevity than other strains of rats used in prior behavioral experiments. These findings are
consistent with prior studies reporting significant age-related deficits in F344/BN rats 24–26
months of age on a variety of cognitive tasks, as briefly reviewed by Maasberg et al. (2011).
Given the increased longevity in this strain, it could be debatable whether 24-month-old rats
are considered “middle-aged” or “old”. As reviewed previously, pattern separation has been
suggested to become less efficient in old age. However, recent evidence suggests that pattern
separation deficits may begin in middle age (Huxter et al., 2012). Therefore, future
longitudinal studies are needed to examine how pattern separation efficiency changes
between middle-age and old-age.

In conclusion, our findings add to a relatively small but growing literature reporting
decreased efficiency in pattern separation in older humans and animals (Yassa and Stark,
2011; Yassa et al., 2011; Yassa et al., 2011; Holden et al., 2012; Stark et al., 2010; Toner et
al., 2009; Marrone and Adams, 2011; Yassa et al., 2010). The present findings also provide
further evidence for behavioral age-related learning and memory impairments in the F344/
BN hybrid strain. A potential strength of the present study lies in the finding that old rats are
impaired on a well-characterized spatial pattern separation task shown to be dependent on
the DG subregion of the hippocampus (Morris et al., 2012). Given the wealth of evidence
indicating that the DG may play a critical role in pattern separation [for reviews see (Gilbert
and Brushfield, 2009; Yassa and Stark, 2011; Schmidt et al., 2012; Kesner, 2007b)], age-
related changes in the DG may adversely affect pattern separation. This decreased efficiency
in spatial pattern separation has been hypothesized to contribute to spatial memory decline
and episodic memory impairment associated with aging (Holden and Gilbert, 2012).
Behavioral tasks that measure specific mnemonic processes, such as pattern separation, may
be highly sensitive to subtle age-related changes. The observed pattern of age-related change
in aged F344/BN rats is reported to closely resemble the changes found in nondemented
older humans (Driscoll et al., 2006). Therefore, the present study provides further evidence
that this strain of rats, may serve as a useful animal model to study the effects of aging on
cognitive function. The present findings may have important implications for designing and
testing behavioral interventions to improve pattern separation in older animals to reduce
interference, thus improving memory function.
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Figure 1.
Schematic of a radial eight-arm maze illustrating an example of a reward arm location and
one of the two respective non-reward arms in the adjacent condition (left) and the separate
condition (right).
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Figure 2.
Mean errors committed (± SE) before reaching the learning criterion of nine correct choices
out of 10 consecutive trials spread across two consecutive days of testing, for the adjacent
and separate conditions for young and aged rats.
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Figure 3.
Mean trials (± SE) to reach the learning criterion of nine correct choices out of 10
consecutive trials spread across two consecutive days of testing, for the adjacent and
separate conditions for young and aged rats.
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