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tered in inflammatory conditions, thus affecting drug deliv-
ery to the brain. In summary, the BBB is an interactive inter-
face that regulates and defines many of the ways that 
the CNS and the immune system communicate with one an-
other. 

 

Copyright © 2012 S. Karger AG, Basel 

 Introduction 

 Inflammatory processes are involved in a wide variety 
of diseases and conditions that involve the central ner-
vous system (CNS). These range from neurodegenerative 
diseases such as Alzheimer’s disease (AD) to obesity. The 
study of the interactions between the immune system and 
CNS has given rise to a rich field often referred to as neu-
roimmunology or psychoneuroimmunology. The CNS 
was once felt to be an immune-privileged area. A major 
rationale for this notion of sequestration was the blood-
brain barrier (BBB), which was believed to prevent im-
mune cells and mediators of immunity from accessing 
the CNS. Currently, the separation of the immune system 
and the CNS is appreciated to be a qualified one with 
cross-talk between these two systems occurring both in 
disease and physiological states. Definition of the role of 
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 Abstract 

 The blood-brain barrier (BBB) is not simply a physical barrier 
but a regulatory interface between the central nervous sys-
tem (CNS) and immune system. The BBB both affects and is 
affected by the immune system and connects at many levels 
with the CNS, including the following: (1) the BBB transports 
cytokines and secretes various substances with neuroin-
flammatory properties; (2) transporters are altered in disease 
states including traumatic injury, Alzheimer’s disease and in-
flammatory processes; (3) cytokines and other immune se-
cretions from the cells comprising the BBB are both constitu-
tive and inducible; (4) immune cells are transported across 
the BBB by the highly regulated process termed diapedesis, 
which involves communication and interactions between 
the brain endothelial cells and the immune cells; (5) the neu-
roimmune system has various effects on the BBB, including 
modulation of important transport systems and in extreme 
pathological conditions even disruption of the BBB, and (6) 
the brain-to-blood efflux transporter P-glycoprotein is al-
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the BBB has also shifted in that it is now appreciated to 
mediate, and in some cases to define, the interactions be-
tween the CNS and the immune system.

  The ways in which the CNS and the immune system 
interact are numerous ( fig. 1 ). Having participated in the 
dichotomy of the neuro- and immune systems by sepa-
rating the CNS and the circulation, the BBB does not im-
mediately appear to be involved in their interactions. For 
example, a great deal of communication between the 

CNS and immune systems occurs through vagal media-
tion  [1, 2] . However, a number of other mechanisms have 
been discovered through which the CNS and immune 
systems communicate, and the BBB is involved in many 
of them. As examples, immune cell trafficking into the 
CNS and the exchange of cytokines between the circula-
tion and the CNS each involve the BBB. Additionally, the 
immune system influences the functioning of the BBB, 
which in turn affects CNS function in health and disease. 
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  Fig. 1.  An endocentric view of neuroinflammation. (1) Disrup-
tion of BBB integrity and disassembly of tight junctions permits 
transcellular (1a) and paracellular (1b) entry of circulating com-
ponents. (2) Circulating cytokines are transported across the 
BBB into the brain. (3) BBB endothelial cells are activated by cir-
culating cytokines and other circulating inflammatory media-
tors, causing secretion of inflammatory mediators including cy-
tokines into the brain parenchyma (3a) and alterations in the 

transport of substances across the BBB (3b). (4) Circulating im-
mune cells cross the BBB via diapedesis by paracellular (4a) and 
transcellular (4b) pathways. (5) Circulating cytokines bypass the 
BBB by inflammatory activation of vagal afferents (5a) or inflam-
matory mediators crossing the leaky vasculature into circumven-
tricular organs (CVOs; 5b), which are compartmentalized from 
the rest of the CNS by tanycytic barriers. PNS = Peripheral ner-
vous system. 

C
o

lo
r v

er
si

o
n 

av
ai

la
b

le
 o

n
lin

e



 BBB and Neuroinflammation Neuroimmunomodulation 2012;19:121–130 123

Hence, there is a dynamic interplay between the CNS, the 
BBB and the immune system. This review will examine 
in two sections some of the established mechanisms that 
involve the BBB and neuroimmune interactions. The first 
section will concentrate on physiologic processes and 
regulation of those processes, although occasionally dis-
ease states will be discussed that help to illustrate under-
lying physiologic processes. The second section will then 
examine how these processes can contribute to and even 
produce diseases.

  Overview of Interactions between the BBB and 

the Neuroimmune System 

 BBB Disruption 
 That the BBB can be disrupted during infection and 

inflammation has long been known  [3–7] . BBB disrup-
tion can be catastrophic to an organism, removing the 
protective function that the BBB provides to the CNS. 
Early studies with cytokines suggested that disruption 
occurred quite readily, although later studies showed that 
this in part may have been because solvents such as SDS 
were not totally removed from the early preparations of 
cytokines  [8, 9] . Treatment with lipopolysaccharide (LPS) 
can also result in BBB disruption  [6] . LPS is derived from 
the cell wall of Gram-negative bacteria and induces a ro-
bust increase in blood and brain levels of many cytokines. 
Subsequent studies have shown that it can be difficult to 
consistently disrupt the BBB with individual cytokines 
and even with LPS  [10, 11] . This makes teleological sense 
as mechanisms would be expected to have evolved under 
evolutionary pressures to protect the brain by preventing 
BBB disruption.

  The mechanisms by which neuroimmune events dis-
rupt the BBB are not fully understood. It is also increas-
ingly speculated that the restrictive aspects of the BBB are 
not always maximal, but may be modulated within limits 
as part of physiological processes. It is clear that some cy-
tokines have effects on brain endothelial cells that could 
lead to either disruption or modulation of the restrictive 
aspects of the BBB. These effects include alterations of the 
actin cytoskeleton and tight junction expression  [12, 13] .

  Immune Cell Trafficking 
 Leukocytes were once thought to enter the CNS only 

during disease and as a result of BBB disruption. More 
recent studies have shown that immune cell surveillance 
is a physiologic aspect of neuroimmunity  [14–16] . The de-
tailed mechanisms by which immune cells enter the CNS 

have been extensively described [for a review, see  17, 18 ] 
and are beyond the scope of this review. Instead, this sec-
tion will provide a brief overview of the process of im-
mune cell trafficking under physiological conditions, 
and later sections will describe how trafficking is altered 
under neuroinflammatory conditions. Because the rate 
of leukocytes entering the CNS is relatively low under 
physiological conditions  [15] , inflammatory models have 
been critical in delineating mechanisms by which leuko-
cytes cross the BBB in vivo. One example of such a mod-
el is experimental autoimmune encephalomyelitis (EAE), 
a model of multiple sclerosis where high levels of leuko-
cyte infiltration into the CNS are observed  [14] . In EAE, 
cross-talk between activated myelin-specific CD4+ T 
lymphocytes, endothelial cells of a healthy BBB and oth-
er components of the neurovascular unit is required both 
for entry of the activated lymphocytes into the CNS as 
well as further recruitment of leukocytes from the circu-
lation  [17] . In vivo studies following fluorescently labeled 
encephalitogenic T cells have shown that the capture and 
subsequent diapedesis of these cells across a noninflamed 
BBB is dependent on the interaction of  � 4-integrin with 
vascular cell adhesion molecule-1 expressed on brain en-
dothelial cells  [19, 20] . Interestingly, these studies showed 
that the initial capture of immune cells at the BBB in spi-
nal cord and retinal microvessels happens abruptly with-
out rolling, which may be due to a lack of P-selectin in 
Weibel-Palade bodies of parenchymal endothelial cells 
 [21, 22] . Furthermore, diapedesis in these vessels occurs 
slowly, requiring between 4 and 16 h for complete passage 
across the BBB  [19, 20] . This delayed response is likely due 
to further communication between the immune and en-
dothelial cells  [23] , which is necessary for the recruitment 
of other factors to facilitate diapedesis, such as intercel-
lular adhesion molecule-1  [17, 24] . Although a small 
amount of serum protein accompanies immune cells 
crossing the BBB  [25] , under the conditions outlined 
above, the BBB has been shown to remain intact  [26] . 
When the BBB is inflamed, additional interactions occur, 
which will be discussed in the disease section of this re-
view.

  BBB Transporters for Cytokines 
 Many cytokines are capable of crossing the BBB, thus 

providing a direct link between the circulating and CNS 
compartments of the immune system  [27, 28] . Many of 
these cytokines, including interleukin (IL)-1, IL-6, tumor 
necrosis factor (TNF)- � , fibroblast growth factor, epider-
mal growth factor and leukemia inhibitory factor  [29–
34] , are transported across the BBB by distinctive unidi-
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rectional saturable transport systems. Additionally, cyto-
kines can cross from cerebrospinal fluid into blood with 
the reabsorption of cerebrospinal fluid; by this mecha-
nism, the CNS can make significant contributions to 
blood levels of cytokines  [35, 36] . Only one cytokine, IL-
2, has to date been found to be transported by a saturable 
system in the brain-to-blood direction  [37] .

  In some cases, the transporter across the BBB has been 
identified. In the case of TNF, the transporters are known 
to be the same proteins as its receptors, with both p55 and 
p75 being involved in a transcytotic (i.e. vesicle-depen-
dent) mechanism  [38, 39] . In other cases, such as for epi-
dermal growth factor, the transporter protein is not the 
same protein as that forming the receptor  [31] .

  Cytokine transporters at the BBB provide one mecha-
nism by which circulating cytokines can affect the CNS. 
For example, transport of IL-1 �  into the posterior divi-
sion of the septum mediates in large part the cognitive 
impairments associated with sickness behavior  [40, 41] . It 
is likely that IL-1 �  crossing into the brain from the blood 
both acts directly at receptors at the posterior division of 
the septum and also stimulates release of IL-1 �  and IL-1 �  
from brain sources  [42] . TNF- �  transport mediates neu-
rotoxicity at the substantia nigra, providing a pathway by 
which this cytokine could be involved in promoting Par-
kinson’s disease  [43] . The transport of fibroblast growth 
factor across the BBB explains its ability after peripheral 
administration to promote neurogenesis and to protect 
the hippocampus from ischemic injury  [44, 45] .

  Immune Events Affect BBB Transporters 
 Several of the classic saturable transporters at the BBB 

are altered or modulated by neuroimmune-related events. 
For example, tryptophan levels increase in the brain of 
animals exposed to TNF, likely because of increased 
transport across the BBB  [46] . Insulin transport across 
the BBB is enhanced in mice treated with LPS and is me-
diated through induction of nitric oxide synthase  [47] . 
The rate of transport of TNF- �  from blood to brain is 
enhanced in mice with experimental allergic encepha-
lopathy. Although these mice also have disruption of the 
BBB, the increased entry of TNF- �  is caused by an en-
hancement of its saturable transporter  [48] . In contrast, 
the transport of IL-15 is selectively abolished in the brain 
but not in the spinal cord of mice with experimental al-
lergic encephalopathy  [49] .

  Another BBB efflux transporter whose expression and 
function are modulated by inflammatory processes is P-
glycoprotein (P-gp), a member of the ATP-binding cas-
sette protein family  [50] . P-gp is predominantly located 

on the luminal side of brain endothelial cells  [50] ; this is 
consistent with its primary function to restrict the pas-
sage of circulating amphipathic molecules, including 
many xenobiotics, into the brain  [50, 51] . Multiple studies 
reporting the effects of proinflammatory cytokines on 
P-gp expression and function in cultured brain endothe-
lial cells show varying results. For example, increases, de-
creases or no changes in P-gp mRNA, protein expression 
and function have been reported for TNF- � , IL-1 �  and 
IL-6  [52–60] . Possible explanations for these disparate 
findings include the use of brain endothelial cells from 
different species, the use of primary versus immortalized 
cells and the time between cytokine application and anal-
ysis.

  In support of the latter explanation, studies using 
freshly isolated rat brain capillaries demonstrated that 
TNF- �  induces a time-dependent modulation of P-gp ac-
tivity. An initial decrease in activity lasting for 3 h is fol-
lowed by an increase in P-gp activity that doubles control 
values by 6 h  [54, 57, 58] . The effects of TNF mediated 
directly at brain endothelial cells occur via nuclear factor 
(NF)- � B  [61, 62] . Interestingly, multiple in vitro as well as 
in vivo studies have also found that P-gp activity does not 
always correlate with protein levels of P-gp  [54, 58, 63, 
64] . Furthermore, induction of systemic inflammation 
by intraperitoneal administration of LPS has been found 
to result in decreased P-gp activity  [63] , although anoth-
er group found that this change was only significant in 
mice lacking the p50 subunit of NF- � B  [64] . In both of 
these studies, P-gp protein expression was increased, fur-
ther suggesting that inflammatory regulation of P-gp re-
lies on posttranslational mechanisms. Given that de-
creases in P-gp activity at the BBB affect the bioavailabil-
ity of many drugs in the brain  [51] , a better understanding 
of inflammatory regulation of P-gp function could have 
important applications in a clinical setting.

  BBB Cell Secretions 
 Brain endothelial cells form the vascular BBB, and ep-

ithelial cells form the cerebrospinal fluid-blood barrier. 
Both of these cell types secrete cytokines and other sub-
stances associated with immune cell activation, such as 
nitric oxide and prostaglandins  [52, 65–67] . Thus, the 
cells that form the BBB can themselves become activated 
in a fashion similar to that of circulating immune cells. 
BBB cells secrete some cytokines constitutively, but secre-
tion can also be induced or modulated. For example, sev-
eral workers have shown that IL-6 release from brain en-
dothelial cells is stimulated by LPS  [65, 67, 68] . Another 
example is the release of endothelin-1, IL-6 and IL-8 from 
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brain endothelium in response to HIV-1, its cell surface 
glycoprotein gp120 and TNF  [69, 70] . Release of gp120-
induced endothelin-1 from brain endothelial cells is in-
hibited by N-acetylcysteine through a pathway depen-
dent on mitogen- and stress-activated protein kinase  [71] .

  A unique feature of cytokine release relies on the po-
larity of the brain endothelial cell, the only cell of the 
neuroimmune system that is simultaneously both in the 
CNS (the abluminal cell membrane faces brain intersti-
tial fluid) and in the periphery (the luminal cell mem-
brane faces the circulation). As such, the brain endothe-
lial cell can receive input from one membrane surface 
that modulates the release of a cytokine from the other 
membrane surface. For example, LPS applied to the ablu-
minal surface greatly increases the release of IL-6 from 
the luminal surface, whereas adiponectin applied to the 
luminal surface reduces IL-6 release from the abluminal 
surface  [68, 72] . This polarity likely underlies one mecha-
nism by which immune signaling can be relayed between 
the CNS and the circulation.

  Some cytokines produced by brain endothelial cells 
are apparently not secreted but have intracellular roles. 
IL-32, for example, is associated with endoplasmic reticu-
lum and its expression is under the influence of Akt  [73] .

  Diseases Involving the BBB and Neuroimmune 

Mechanisms 

 Immune Cell Trafficking 
 Under pathological conditions involving neuroin-

flammation, an inflamed BBB presents additional signals 
that lead to increased levels of immune cell recruitment 
to the CNS. For example, whereas initial capture of en-
cephalitogenic T cells by a healthy BBB in EAE relies sole-
ly on the interaction between vascular cell adhesion mol-
ecule-1 and  � 4-integrin, interactions with the inflamed 
BBB persist in spite of  � 4-integrin blockade and likely 
involve a synergistic interaction with selectins  [17] . Up-
regulation of adhesion molecules also occurs in response 
to increased levels of cytokines and chemokines in the 
brain  [74, 75] . Initiation of neuroinflammation by injec-
tion of cytokines into the brain also recruits immune 
cells to the parenchyma, but interestingly this process 
may be blocked if there is concurrent systemic inflamma-
tion  [76] . Immune cell trafficking to the CNS has also 
been found to occur in other neurodegenerative condi-
tions such as AD, Parkinson’s disease and neuroAIDS 
and is thought to contribute to varying extents to disease 
progression. In Parkinson’s disease, T lymphocytes are 

present in the midbrain, and leukocyte infiltration oc-
curs in brains of mice treated with 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)  [77] . Furthermore, 
mice deficient in CD4 are resistant to MPTP-induced 
neurotoxicity in the substantia nigra  [77] . In the context 
of AD, evidence suggests that circulating immune cells of 
monocyte lineage enter the CNS and can effectively clear 
amyloid- �  (A � ) from the brain  [78] . Although it has been 
disputed that monocyte entry into the CNS is an artifact 
from BBB disruption that occurs following irradiation af-
ter adoptive transfer  [79, 80] , it is noteworthy that BBB 
disruption does occur in later stages of AD  [81] . There-
fore, additional studies are necessary to elucidate wheth-
er leukocyte trafficking occurs in earlier stages of AD 
when the BBB remains intact. In neuroAIDS, lentiviral-
infected macrophages are recruited to the CNS, acting as 
Trojan horses that carry HIV across the BBB  [82] . Once 
in the CNS, HIV causes inflammatory reactions in the 
brain that can result in CD8+ lymphocyte infiltration 
 [83] , as found in cases of HIV encephalitis  [84] . Together, 
these findings suggest that immune cell trafficking across 
the BBB is an adaptive physiological process, but that loss 
of fine-tuned regulation has serious consequences which 
can manifest as neurodegenerative disease.

  The BBB in Traumatic Brain Injury 
 Traumatic brain injury (TBI) is a serious condition in 

emergency medicine, and its pathophysiological profile is 
varied and complicated  [85] . Neuroinflammation is an 
important component of TBI, contributing to many as-
pects of its CNS pathology. BBB disruption caused by TBI 
leads to neutrophil influx  [86] . Leukocytes release proin-
flammatory cytokines, cytotoxic proteases and reactive 
oxygen species, in turn initiating the immune functions 
of native glia  [87, 88] . Activated glial cells, especially clas-
sically activated microglia, then propagate many of the 
same inflammatory processes as invading neutrophils 
and contribute to neuroinflammatory processes after 
TBI  [89] . Key contributing factors to secondary brain 
damage are inflammation, metabolic disturbances and 
cerebrovascular dysfunction that further increase injury-
induced tissue ischemia and brain edema resulting from 
BBB disruption  [90] . The control of neutrophil influx fol-
lowing TBI might attenuate secondary brain injury. At 
sites of inflammation, neutrophils adhere to endothelial 
cells by binding to adhesion molecules such as intercel-
lular adhesion molecule-1, vascular cell adhesion mole-
cule and platelet endothelial cell adhesion molecule-1 
 [91] . The central role of matrix metalloproteinase-medi-
ated pathological processes has been demonstrated in 
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several models of neuroinflammation  [92] . Hypoxia-in-
ducible factor-1 � , an upstream transcription factor in-
duced by hypoxia, regulates the subsequent expression of 
many kinds of proteins responding to the various patho-
physiological conditions induced by hypoxia  [93] . Ex-
pression of matrix metalloproteinase-9 and hypoxia-in-
ducible factor-1 �  is enhanced after TBI and likely plays 
an important role in BBB disruption, as inhibition of this 
expression suppresses BBB disruption and brain edema 
following TBI  [92, 94] . Symptomatic epilepsy and neuro-
degenerative diseases after TBI are also very serious sec-
ondary complications and affect the quality of life in TBI 
patients. Recently, these complications have also been 
thought to be closely related to neuroinflammation. A 
relationship between BBB dysfunction and these diseases 
has been reported  [95] . Thus, BBB disruption and neuro-
inflammation are important therapeutic targets in every 
stage of TBI.

  BBB Secretions in Disease 
 Secretion of cytokines from the cells that comprise 

the BBB may also mediate disease processes. Deane et 
al.  [96]  have outlined a pathway by which A �  protein 
activates the BBB receptor transporter receptor for ad-
vanced glycation end products. In turn, the receptor for 

advanced glycation end products induces the release of 
endothelin-1 from brain endothelial cells, which then 
mediates vasoconstriction. Endothelin-1 release from 
brain endothelial cells is also induced by HIV-1 proteins 
 [69] . The endothelin-1 is released from the abluminal 
side of the brain endothelial cells, thus directly access-
ing neurons and other cells within the CNS. Endothe-
lin-1 levels in cerebrospinal fluid correlate with the se-
verity of the neuroAIDS syndrome, and endothelin-1 
also affects the functioning of BBB transporters, includ-
ing P-gp, which regulate the retention of antiviral drugs 
 [54, 57, 97, 98] .

  BBB Transporters 
 The section above on transporters (“BBB Transporters 

for Cytokines”) has already outlined how IL transport 
can mediate the cognitive changes associated with sick-
ness behavior, an adaptive mechanism that likely enhanc-
es survival in the short term  [99] . That section also brief-
ly considered work showing how transport of TNF- �  can 
mediate toxicity at the substantia nigra and thus contrib-
ute to Parkinson’s disease.

  One mechanism by which neuroinflammation could 
contribute to AD is by altering the ability of the BBB to 
remove A �  from the CNS. Low-density lipoprotein re-
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ceptor-related protein-1 (LRP-1) is a multifunctional pro-
tein expressed in a variety of cell types throughout the 
body  [100] . At the BBB, it is best characterized as an efflux 
transporter for A �   [102–104]  located at the abluminal 
surface  [101]  ( fig. 2 ), whose accumulation in the brain is 
linked to AD pathogenesis  [105] . Additionally, studies us-
ing animal models as well as human tissue support a role 
for an LRP-1 defect at the BBB in the onset and progres-
sion of AD  [102, 103, 106] . The neurovascular hypothesis 
as stated by Zlokovic  [107]  posits that this defect in the 
brain-to-blood efflux of A �  contributes to the progres-
sion of AD.

  In addition to its dysfunction in AD, impairment of 
LRP-1 at the BBB occurs with systemic inflammation 
( fig. 2 ). Peripheral administration of LPS decreases the 
efflux of A �  from the brain  [108] . Furthermore, that 
study demonstrated that LRP-1 impairment was revers-
ible when mice were treated with indomethacin prior to 
LPS administration. Interestingly, of 22 cytokines mea-
sured in serum in that study, none were found to correlate 
with the effects of indomethacin on A �  transport follow-
ing LPS administration  [108] . This suggests that BBB 
LRP-1 dysfunction in response to LPS results from cyto-
kines that are produced locally in the CNS and/or from 
autocrine/paracrine actions of other inflammatory me-
diators on brain endothelial cells.

  AD is associated with increased neuroinflammation 
as well as increased oxidative stress in the CNS. Given 
that systemic inflammation also causes increased CNS 
inflammation and oxidative stress, it is possible that these 
processes may contribute to LRP-1 dysfunction at the 
BBB ( fig.  2 ). Elevated levels of 4-hydroxy-2-nonenal 
(HNE)-bound LRP-1 have been found in the hippocam-
pus of individuals with AD compared to age-matched 
controls  [109] , indicating that oxidative damage in AD 
contributes to LRP-1 dysfunction. Whether these chang-
es occur at the BBB or in other cell types in the CNS has 

yet to be determined. Multiple cell types in the brain ex-
press LRP-1  [100] , and in addition to A �  transport, LRP-
1 has other defined roles in neurons such as lipid homeo-
stasis  [110]  and neuronal survival  [111] . Therefore, deter-
mining which cell types contribute to observed changes 
in LRP-1 oxidative modifications will provide additional 
insight into the role of LRP-1 dysfunction in AD.

  Other disease models associated with neuroinflam-
mation, such as streptozotocin-induced diabetes  [112] , 
also cause decreases in LRP-1 expression at the BBB  [113] . 
Together, these findings suggest that neuroinflammation 
as a result of multiple pathological conditions causes 
LRP-1 dysfunction at the BBB and therefore could con-
tribute to the onset and progression of AD through this 
mechanism.

  Penetration of HIV-1 and its proteins across the BBB 
is enhanced by treatment with LPS  [114, 115]  and is con-
sistent with the many interactions among HIV-1, the BBB 
and the neuroimmune system. As noted above, these oth-
er interactions include release of endothelin-1, a cytokine 
whose levels in the CNS correlate with the severity of neu-
roAIDS and enhanced interactions of immune cells with 
the BBB.

  In summary, the BBB interacts in a variety of ways that 
connect the immune system and CNS. In some cases, the 
BBB separates the immune system and CNS, in other cas-
es it acts as a mediator of neuroimmune interactions and 
in still other cases the BBB itself can be a target of neuro-
immune interactions. These diverse interactions are not 
only important in normal or physiologic interactions but 
also in mediation of disease processes.
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