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Nanocarrier–Cell Surface
Adhesive and Hydrodynamic
Interactions: Ligand–Receptor
Bond Sensitivity Study
A hybrid approach combining fluctuating hydrodynamics with generalized Langevin dy-
namics is employed to study the motion of a neutrally buoyant nanocarrier in an incom-
pressible Newtonian stationary fluid medium. Both hydrodynamic interactions and
adhesive interactions are included, as are different receptor–ligand bond constants rele-
vant to medical applications. A direct numerical simulation adopting an arbitrary
Lagrangian–Eulerian based finite element method is employed for the simulation. The
flow around the particle and its motion are fully resolved. The temperatures of the parti-
cle associated with the various degrees of freedom satisfy the equipartition theorem. The
potential of mean force (or free energy density) along a specified reaction coordinate for
the harmonic (spring) interactions between the antibody and antigen is evaluated for two
different bond constants. The numerical evaluations show excellent comparison with ana-
lytical results. This temporal multiscale modeling of hydrodynamic and microscopic
interactions mediating nanocarrier motion and adhesion has important implications for
designing nanocarriers for vascular targeted drug delivery. [DOI: 10.1115/1.4007522]
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1 Introduction

The use of nanoparticles enables precise and successful
delivery of drugs to target cells [1,2]. In general, nanoparticle
drug-delivery systems have been shown to enhance drug efficacy
and reduce the impact of drugs on nontarget tissues, thereby mini-
mizing unwanted side effects. In order to more broadly integrate
this technology into clinical medicine, a model-based design and
optimization of nanoparticle transport in the vasculature and
adhesion to target cells can prove effective. Toward achieving
this goal, an important step is to determine the motion of a
nanoparticle subject to hydrodynamic effects in the vasculature
while simultaneously being subject to a constant temperature;
this is crucial to accurately model the biological reactions
(receptor–ligand interactions) mediating the adhesion of nanopar-
ticle to the endothelial cell surface lining the vasculature [3–6].
The nanocarrier with a loaded cargo may be studied subsequently
by extending this model.

A nanoparticle suspended in a fluid undergoes random motion
due to the thermal fluctuations in the fluid. As a consequence,
translational and rotational degrees of freedom become important.
In determining the translational and rotational motions of the
nanoparticle in an incompressible Newtonian medium, there exist
two methods that couple the thermal fluctuations with the hydro-
dynamic interactions. These are the generalized Langevin method
[7] and the fluctuating hydrodynamics method [8]. Either proce-
dure would require numerical simulations for covering extensive
parameter space.

In the fluctuating hydrodynamics approach, the nanoparticle
motion incorporates both the Brownian motion and the effect of
hydrodynamic force acting on its surface imparted from the

surrounding fluid. This method essentially consists of adding sto-
chastic stresses (random stress) to the stress tensor in the momen-
tum equation of the fluid and stochastic fluxes to the heat flux
where the energy equation is present [9]. The stochastic stress
tensor depends on the temperature and the transport coefficients
of the fluid medium [10,11]. Numerical simulations of the fluctu-
ating hydrodynamics approach have been carried out employing
the finite volume method [11–14], Lattice-Boltzmann method
[15–21], finite element method [8,22,23] and stochastic immersed
boundary method [24].

In the Langevin dynamics method, the effects of thermal fluctu-
ations are incorporated as random forces and torques in the parti-
cle equation of motion [7,25–30]. The properties of these forces
depend on the grand resistance tensor. The tensor in turn depends
on the fluid properties, particle shape, and its instantaneous loca-
tion such as its proximity to a wall or a boundary. This is a robust
thermostat, which preserves equilibrium distributions at constant
temperatures (i.e., adheres to the equipartition theorem). Clearly,
coupling to a thermostat will alter the hydrodynamics of the nano-
particle system. The characterizations of the performance of the
thermostat as well as how it alters the associated hydrodynamic
correlations are important. Numerical schemes for studying the
nanoparticle motion in a fluid must simultaneously consider
the momentum (Langevin) equation for the particle and the
Naiver–Stokes equation for the fluid. The random force/torque
in the particle equation can then be related to the frictional force/
torque via the generalized fluctuation–dissipation theorem
[31,32]. The implementation can occur in two ways: (i) directly
adjust the variance of the random force term in the classical Lan-
gevin equation to play the role of a thermostat. (ii) A second,
more direct approach that preserves the structure of the general-
ized Langevin equation, is to consider the power spectrum for the
variance of the random force term using a correlated or colored
noise with a well defined characteristic memory time. Such a for-
malism simultaneously preserves the equipartition theorem and
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the nature of the long-time hydrodynamic correlations, and proves
to be a versatile thermostat [7].

The fluctuating hydrodynamics approach in an incompressible
fluid [8] captures the correct hydrodynamic correlations and con-
serves thermal equipartition only after adding the mass correction
[10]. On the other hand, the generalized Langevin dynamics yields
the correct thermal equipartition (without any mass correction),
but modifies the nature of the hydrodynamics correlations (due to
the coupling of the fluid equations with the thermostat degrees of
freedom) [7].

Recently, we have formulated a novel hybrid approach combin-
ing Markovian fluctuating hydrodynamics of the fluid and the
non-Markovian Langevin dynamics with the Ornstein–Uhlenbeck
noise perturbing the translational and rotational equations of
motion of the nanocarrier [33]. For this hybrid approach, we have
verified the conservation of thermal equipartition and the nature
of hydrodynamic correlations by comparisons with well-known
analytical results [10]. This approach effectively produces a ther-
mostat that also simultaneously preserves the true hydrodynamic
correlations [33]. With this procedure, we have also evaluated
adhesive interactions between a receptor and a ligand bond (teth-
ered by a spring force [34,35]) very close to the cylindrical wall at
a specified finite temperature [36].

In our earlier manuscripts, we have explored the sensitivity
of parameters representing flow rates of the fluid [8,37] and
density of the Brownian particle [37,38], validating our
numerical schemes, the fluctuating hydrodynamics and the hybrid
scheme. We have also validated our hybrid scheme for a nearly
neutrally buoyant particle [38]. In this paper, we employ the
hybrid approach to study the motion of a neutrally buoyant nano-
carrier when subject to both hydrodynamic interactions and
adhesive interactions at an endothelial cell wall for different
receptor–ligand bond constants and at a specified temperature
[6,39,40]. A direct numerical simulation procedure adopting an
arbitrary Lagrangian–Eulerian based finite element method is
employed to simulate the Brownian motion of a nanoparticle in an
incompressible Newtonian fluid contained in a horizontal micron
sized cylindrical vessel. The results for the attainment of thermal
equilibrium between the particle, tethered spring, and the sur-
rounding medium, and the potential of mean force (PMF) (or free
energy density) along a specified reaction coordinate for two
different bond constants are compared with analytical results. The
comparisons are excellent and lend credibility to our novel numer-
ical scheme.

2 Formulation of the Problem

Motion of a nanoparticle trapped in a harmonic potential resid-
ing in an incompressible Newtonian stationary fluid medium con-
tained in a horizontal micron sized circular vessel (see Fig. 1) is
considered. The fluid and particle equations are formulated in an
inertial frame of reference. The radius, R, and the length, L, of the

vessel (tube) are very large compared to the particle size, a, the
radius of the particle. Antigen of length 19 nm is attached to
the surface of a cell lying on the wall of the cylindrical tube
(R ¼ 2:5 lm) containing a quiescent Newtonian fluid and anti-
body of length 15 nm is attached to the surface of the neutrally
buoyant solid spherical nanocarrier of radius a¼ 250 nm. The
nanocarrier is placed close to the antigen such that the direction of
antibody is initially pointing toward the antigen and the distance
between them is 2Å. The tips of the antigen and the antibody are
tethered by a simple harmonic (spring) potential with spring con-
stant k [34,35]. Initially both the fluid and particle are at rest. No
body force is considered either for the particle or for the fluid do-
main. At time t¼ 0, the nanocarrier experiences Brownian motion
and harmonic motion. The motion of the nanocarrier is deter-
mined by the hydrodynamic and spring forces and torques acting
on the particle. The numerical results are obtained from simula-
tions of the fluid–particle system with physical parameters
l¼10�3 kg=ms;qðf Þ¼103 kg=m

3
; qðpÞ¼103 kg=m

3;kB¼1:3806503
�10�23 kgm2=s

2
K; 0:01 N=m � k � 10 N=m. The temperature of

the fluid is initially set to T¼ 310 K.

2.1 Hybrid Scheme: Governing Equations and Boundary
Conditions. The motion of an incompressible Newtonian fluid
satisfies the conservation of mass and momentum given by

r � u ¼ 0; qðf Þ ut þ u � rð Þuð Þ ¼ r � r (1)

r ¼ �pJ þ l ruþ ruð ÞT
h i

þ S (2)

where u and qðf Þ are the velocity and density of the fluid, respec-
tively, r is the stress tensor, p is the pressure, J is the identity
tensor, and l is the dynamic viscosity. The random stress tensor S
is assumed to be a Gaussian with

Sijðx; tÞ
� �

¼ 0

Sikðx; tÞSlmðx0; t0Þh i ¼ 2kBTl dildkm þ dimdklð Þ
dðx� x0Þdðt� t0Þ

(3)

where hi is the ensemble average, kB is the Boltzmann constant, T
is the absolute temperature, dij is the Kronecker delta, and the
Dirac delta function dðx� x0Þ denotes that the components of
the random stress tensor are spatially uncorrelated (Markovian).
The right hand side of Eq. (3) denotes the mean and variance of
the thermal fluctuations chosen to be consistent with the
fluctuation–dissipation theorem [9,10,41,42]. By including this
stochastic stress tensor due to the thermal fluctuations in the
governing equations, the macroscopic hydrodynamic theory is
generalized to include the mesoscopic scales ranging from tens of
nanometers to a few microns.

For a rigid particle suspended in an incompressible Newtonian
fluid, the translational and rotational motions of the particle satisfy

Fig. 1 Schematic representation of a nanoparticle in a cylindrical vessel (tube)
(not to scale). Diameter of the tube: D 5 5lm; length of the tube: L 5 10 lm; diame-
ter of the nanoparticle: d 5 500 nm; viscosity of the fluid: l 5 10�3 kg/ms; density
of the fluid and the nanoparticle: qðf Þ5 qðpÞ5 103 kg/m3; and spring constant:
0:01 N/m £ k £ 10 N/m.
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Newton’s second law and the Euler equation, respectively. In the
hybrid formulation, the time correlated noise is added into the
particle equations of motion [33,36]

m
dU

dt
¼ �

ð
@Rp

r � n̂ ds

þ
ðt�

�1
nðt0Þe�jt�t0 j=s1 dt0 þ Sf (4)

d Ixð Þ
dt
¼ �

ð
@Rp

x� Xð Þ � r � n̂½ �ds

þ
ðt�

�1
gðt0Þe�jt�t0 j=s2 dt0 þ St (5)

where m is the mass of the particle, I is its moment of inertia, U
and x are the translational and angular velocities of the particle,
respectively, X is the position of the centroid of the particle,
x� Xð Þ is a vector from the center of the particle to a point on its

surface, @Rp denotes the particle surface, n̂ is the unit normal vec-
tor on the surface of the particle pointing into the particle, and the
random force n and torque g are given by

nðt0Þ ¼
ð
@Rp

Sðx0; t0Þ � n̂ ds (6)

gðt0Þ ¼
ð
@Rp

x0 � Xð Þ � Sðx0; t0Þ � n̂ð Þ ds (7)

for the Ornstein–Uhlenbeck process. The time integral in Eqs. (4)
and (5) excludes the frictional force and torque at the time instant
t since it has already been accounted for in the hydrodynamic
force and torque terms, respectively. The characteristic memory
time for translational, s1 ¼ n1 � Dt, and rotational, s2 ¼ n2 � Dt,
motions of the nanoparticle add certain amounts of memory from
the previous history of fluctuations to the system. Here, Dt is the
time step for the numerical simulation, n1 and n2 correspond to
the number of time steps required to adequately represent the
memory effects. These are variable quantities and are determined
on the basis of satisfying the equipartition theorem. The amount
of memory required by translational and rotational motions of the
nanoparticle in order to satisfy the equipartition theorem are
different. Hence, s1 ¼ s2 is not a necessary condition for the tem-
perature of the particle to attain the preset temperature of the fluid.
Equations (6) and (7) are the random force and torque acting on
the nanoparticle at time t0 (a previous time instant). Since the ran-
dom stress Sðx; tÞ is Gaussian, nðt0Þ and gðt0Þ are also Gaussian
with variance equivalent to the strength of the white noise in the
Langevin equation. In the limit of the characteristic memory times
s1; s2 ! 0 (i.e., in the absence of memory), Eqs. (4) and (5)
reduce to Newton’s second law and Euler equations, respectively,
which correspond to the Markovian fluctuating hydrodynamics.
The spring force Sf and torque St acting on the particle are given
by

Sf ¼ kld̂; St ¼ x� Xð Þ � Sf (8)

where k is the spring constant, l is the length of the spring, d̂ is the
unit vector pointing toward the tip of the antigen attached to the
wall.

The initial and boundary conditions for the problem are

Uðt ¼ 0Þ ¼ 0; uðt ¼ 0Þ ¼ 0 on R0 � @Ri (9)

u ¼ 0 on @Ri; r � n̂ ¼ 0 on @Ro (10)

u ¼ U þ x� x� Xð Þ on @Rp (11)

where R0 is the domain occupied by the fluid and @Ri and @Ro are
the inlet and outlet boundaries, respectively. The stochastic

governing Eqs. (1)–(5) along with the initial and boundary condi-
tions (9)–(11) are solved numerically. It is assumed that there is
no body torque acting at any point in the fluid and the viscous
stress tensor, r, is symmetric.

A numerical simulation at a mesoscopic scale involving a
particle in a fluid could be based on a discretization of the
Eqs. (1)–(11). However, the discrete forms have to satisfy the
fluctuation–dissipation theorem [11–13,41–44]. Español and
Zúñiga [22] and Español et al. [23] have shown that a well
behaved set of discrete equations obtained in terms of the finite
element shape functions based on the Delaunay triangulation
conserves mass, momentum and energy while ensuring thermody-
namic consistency. In the present study, we obtain the discrete
hydrodynamic equations using finite element shape functions
based on the Delaunay–Voronoi tetrahedrizations. The computa-
tional domain is covered by a finite element mesh generated using
Delaunay–Voronoi methods. The fluid domain is discretized by
quadratic irregular tetrahedral elements. A typical element is
shown in Fig. 2. Figure 3 shows a triangular mesh discretizing the
surface of the fluid domain (cylinder) and the surface of the nano-
particle. The discretization of the fluid domain changes at each
time step of the simulation due to the motion of the nanoparticle.
The procedure for numerical simulation of the random stresses
associated with the unstructured tetrahedron mesh while conserv-
ing the volume is described in detail in Uma et al. [8]. The details
of combined fluid–solid weak formulation, spatial discretization,
mesh movement techniques, and temporal discretization of time
derivatives are discussed in Refs. [7,8]. These details will not be
repeated here for brevity. Briefly, the fluid domain is approxi-
mated by quadratic tetrahedral finite-elements (ten nodes defined
per tetrahedron with ten basis functions that are second-order
polynomials). The discrete solution for the fluid velocity is
approximated in terms of piecewise quadratic functions, and is

Fig. 2 Representation of a ten-node tetrahedron

Fig. 3 Finite element surface mesh of a cylindrical tube with
one spherical nanoparticle

Journal of Nanotechnology in Engineering and Medicine AUGUST 2012, Vol. 3 / 031009-3



assumed to be continuous over the domain (P2 elements). The dis-
crete solution for the pressure is taken to be piecewise linear and
continuous (P1 element). This P1/P2 element for the pressure and
velocity is consistent with the Ladyzhenskaya–Babuska–Brezzi
(LBB) or inf-sup condition and yields convergent solutions
[45,46].

The time scales involved in this study are (i) sb ¼ m=fðtÞ, the
Brownian relaxation time over which velocity correlations decay
in the Langevin equation, (ii) sd ¼ a2fðtÞ=kBT, the Brownian
diffusive time scale over which the nanoparticle diffuses over a
distance equal to its own radius, (iii) s� ¼ a2=�, the hydrodynamic
time scale for momentum to diffuse over a distance equal to the

radius of the nanoparticle, and (iv) ss ¼ 2p
ffiffiffiffiffiffiffiffiffi
m=k

p
, the harmonic

time for a single oscillation of spring, where fðtÞ ¼ 6pla is the
Stokes dissipative friction force coefficient for a sphere, a is the
radius of the nanoparticle, and � is the kinematic viscosity of
the fluid. The time step Dt for the numerical simulation has been
chosen to be smaller than all the relevant physical time scales
described above. The simulations presented in this study have
been carried out for long enough durations to allow for the tem-
perature of the particle to equilibrate; i.e., if N is the number of
simulated time steps then N � Dt ¼ t� s� .

3 Numerical Results and Discussion

For a given nanoparticle of radius a, and tube radius R, a
“realization” consists of N time steps (approximately 10 s wall
clock time for each time step that is generally considered in this
study). The number of time steps depends upon equilibration of
particle temperature, or spring temperature. In order to ensure the
uniqueness of the realizations, different initial seeds are chosen
for a Gaussian random number generator. In this section, we
numerically predict (i) the translational and rotational tempera-
tures of the nanoparticle, where the temperature calculation is
carried out until thermal equilibration is obtained for the particle;
(ii) the translational and rotational velocity distributions of the
nanoparticle motion; (iii) temperature of the spring; (vi) the trans-
lational and rotational velocity autocorrelations (VACFs); and (v)
potential mean force along a specified reaction coordinate for
different bond constants. We compare the various numerical pre-
dictions with known analytical results, where available.

3.1 Equipartition Theorem. From the equipartition theo-
rem, at thermal equilibrium, the translational and rotational tem-
peratures of the nanoparticle are given by

Fig. 4 Translational and rotational temperatures of the neu-
trally buoyant Brownian particle trapped in a harmonic potential
in a stationary fluid medium as a function of the bond constant
k. The nondimensionalized characteristic memory times are
s1=sm 5 0:12 and s2=sm 5 0:088. The error bars have been plotted
from standard deviations of the temperatures obtained with 15
different realizations, consisting of 100,000 time steps per
realization.

Fig. 5 Equilibrium probability density of the (a) and (c) translational and (b) and (d) rotational
velocities of the neutrally buoyant nanocarrier (a 5 250 nm) trapped in a harmonic potential in
a Newtonian fluid for bond constant k 5 0.1 N/m (a) and (b) and k 5 1.0 N/m (c) and (d). The non-
dimensionalized characteristic memory times are s1=sm 5 0:12 and s2=sm 5 0:088. The distribu-
tions agree within 6% error (see dotted line) with that of the analytical Maxwell–Boltzmann
distribution.
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TðtÞ ¼
m U2
� �
3kB

; TðrÞ ¼
I x2
� �
3kB

(12)

Figure 4 shows that translational and rotational temperatures of
neutrally buoyant Brownian particle trapped in a harmonic poten-
tial, thermally equilibrated, in a quiescent fluid medium are
independent of the bond constant, k. The characteristic memory
time for translational, s1 ¼ n1 � Dt, and rotational, s2 ¼ n2 � Dt,
motions of the nanoparticle add certain amounts of memory from
the previous history of fluctuations to the system. Here, n1 and n2

correspond to the number of time steps required to adequately rep-
resent the memory effects. These are variable quantities and are
determined on the basis of satisfying the equipartition theorem.
The amount of memory required by translational and rotational
motions of the nanoparticle in order to satisfy the equipartition
theorem are different. The nondimensionalized characteristic
memory times are s1=s� ¼ 0:12 and s2=s� ¼ 0:088 (for more
details, see Ref. [33]). The error bars have been plotted from
standard deviations of the temperatures obtained with 15 different
realizations, consisting of 100,000 time steps per realization.

3.2 Maxwell–Boltzmann Distribution. At thermal equilib-
rium, the probability density function of each velocity component
(Ui ¼ Ux;Uy; or Uz; xi ¼ xx;xy; or xz) of the fluctuating nano-
carrier follows the Maxwell–Boltzmann distribution

PðUiÞ ¼
m

2pkBT

� �1=2

exp � mU2
i

2kBT

� �
(13)

PðxiÞ ¼
I

2pkBT

� �1=2

exp � Ix2
i

2kBT

� �
(14)

The equilibrium statistics of the three components of U and x
along the three coordinate directions are independent of each
other.

In Fig. 5, we plot the velocity distributions of the particle for
each component of U (Figs. 5(a) and 5(c)) and x (Figs. 5(b) and
5(d)) using hybrid scheme for bond constants k¼ 0.1 N/m
(Figs. 5(a) and 5(b)) and k¼ 1.0 N/m (Figs. 5(c) and 5(d)).
The nondimensionalized characteristic memory times are
s1=s� ¼ 0:12 and s2=s� ¼ 0:088 [33]. For determining the
velocity distribution of the nanocarrier, five realizations in each
coordinate direction consisting of 5� 100; 000 ¼ 500; 000 time
steps have been computed. Thus, a total of 1,500,000 time steps
have been computed. It is observed that each degree of freedom
individually follows a Gaussian distribution. The mean and the
variance obtained by using hybrid scheme agrees to within 6%
error (see dotted line in Fig. 5) relative to that of the analytical
Boltzmann distribution, implying an adherence to the equiparti-
tion theorem within statistical error (Fig. 5).

Figure 6 shows the probability distribution of spring
length using hybrid scheme for bond constants k¼ 0.1 N/m and
k¼ 1.0 N/m, respectively. The nondimensionalized characteristic
memory times are s1=s� ¼ 0:12 and s2=s� ¼ 0:088 [33]. The
equilibrium probability density of the displacement of spring in
each Cartesian direction follows a Gaussian distribution. The
agreement with the analytical Gaussian distribution with the mean
zero and the variance kBT=k is to within 6% error (see dotted line
in Fig. 6) of statistical error using both the methods. These results
demonstrate that our dynamic formalisms conserve the equilib-
rium distributions of the canonical (constant temperature) ensem-
ble for different bond constants.

3.3 Hydrodynamic Correlations. A nanocarrier experienc-
ing Brownian motion in a fluid is influenced by the hydrodynamic
interactions. The fluid around the particle is dragged in the direc-
tion of motion of the particle. On the other hand, the motion of the
particle is resisted by viscous forces arising due to its motion rela-

tive to the surrounding fluid. The momentum of the fluid sur-
rounding the particle at any instant is related to its recent history.
The friction coefficient is time dependent and is no longer given
by the constant Stokes value. In this context, Zwanzig and Bixon
[47] have shown that for constant friction coefficient fðtÞ, the
VACF of the particle in a simple fluid obeys

UðtÞUð0Þh i ¼ 3kBT

M
e�fðtÞ t=M (15)

xðtÞxð0Þh i ¼ 3kBT

I
e�fðrÞt=I (16)

which denote exponential decays, while for the time dependent
friction coefficient, the decay of the VACF at long times obeys a
power-law [10]

UðtÞUð0Þh i
Uð0ÞUð0Þh i ’

mqðf Þ1=2

12p3=2l3=2

� �
t�3=2 ¼ Bt�3=2 (17)

xðtÞxð0Þh i
xð0Þxð0Þh i ’

Iqðf Þ3=2

32p3=2l5=2

� �
t�5=2 ¼ Ct�5=2 (18)

Fig. 6 Equilibrium probability density of the displacement of
spring length using hybrid scheme for bond constant (a)
k 5 0.1 N/m and (b) k 5 1.0 N/m, where the standard deviation
r 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=k

p
. The nondimensionalized characteristic memory

times are s1=sm 5 0:12 and s2=sm 5 0:088. The distributions
agree within 6% error (see dotted line) with the analytical
Maxwell–Boltzmann distribution.
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The nondimensionalized characteristic memory times are s1=s�
¼ 0:12 and s2=s� ¼ 0:088 [33]. For determining the VACF of
the nanocarrier, five realizations in each coordinate directions
have been employed with total computation of 15� 100; 000
¼ 1; 500; 000 time steps. Figure 7 shows the VACF of the transla-
tional and rotational motions of a nanocarrier (a¼ 250 nm) in a
quiescent fluid medium in a circular vessel as obtained from our
numerical simulations. It may be observed that the translational
and rotational VACFs of the Brownian particle have exponential
and power-law decays (�t�5=2) over long times, respectively. We
note that the exponential decay of the translational velocity of the
nanocarrier over long times is due to its proximity to the wall (due
to the confining harmonic potential), again indicating that hydro-
dynamic correlations are correctly captured by our model. For a
free nanocarrier, the long-time behavior of the translational and
rotational VACFs both follow algebraic decays with time, as
shown by us in previous studies [8,33].

3.4 Potential of Mean Force. In order to determine average
properties corresponding to a given equilibrium distribution at a
finite (fixed) temperature, we compute the PMF for the harmonic
(spring) interactions between antibodies and antigens. We choose
a reaction coordinate y, which is the vertical displacement
between the tips of the antigen and the antibody; increase in y
allows the nanocarrier to be displaced away from the wall while
still being bound by the spring. Since, the maximum (and hence
the average) displacements along y are limited by temperature and
by the total time of the simulation, we perform umbrella sampling
in multiple windows with harmonic biasing potentials to facilitate
extensive sampling along y. The window size of the umbrella
sampling is chosen as Dy ¼ 0:05 nm and the harmonic biasing
potential in each window is chosen to be 0:5kuðy� y0;iÞ2, where
0:5kuðDyÞ2 ¼ 1:0� 10�20 J; ku is the harmonic force constant
and y0;i is the vertical coordinate of the center of window i. By
updating y0;is, the tip of the antibody (on the average) is slowly
varied relative to the antigen reaction tip. The weighted histogram

analysis method (WHAM) algorithm [48] is used to unbias and
combine the histograms in different windows to form a complete
PMF (W(y)) profile using a tolerance factor of 10�6 in the WHAM
method. For determining the PMF profile using hybrid scheme,
three realizations in each window have been computed with up to
100,000 time steps per realization (hence, yielding a total of
3� 100; 000 ¼ 300; 000 time steps per window). All the relevant
parameters including the window size Dy, strength of the biasing
potential ku and the sampling size in each window have been
tested to ensure convergence.

Figure 8 shows the calculated PMF profile for two different
bond constants along reaction coordinate y using hybrid scheme at
a temperature of 310 K. It is observed that our numerical results
agree very well with the corresponding analytical solution. It is
to be noted that the bond constant relevant to the biological
applications are in the range 0.4 N/m to 2.5 N/m (Table 1, see,
Table A3-1 of Refs. [35,39,49]). The procedure for fitting the data
is outlined in detail in Ref. [39]. Briefly, the rupture force between
a receptor and its ligand is measured in single molecule experi-
ments (AFM or optical tweezers). Since the rupture force is
inherently a stochastic variable, through repeated measurements
(of 100 or more trials), the rupture force distribution is obtained
experimentally (see, for instance, Ref. [6]). This distribution is
reproducible within experimental error across multiple experi-
ments. Then, using the Bell model (which includes the harmonic
component introduced in our current study), the rupture force dis-
tribution is predicted using the theory of failure analysis: namely,
the probability that a bond will rupture after time t in an interval
delta t is given by the probability that the bond survived a rupture
for time t and it subsequently ruptures in the interval delta t. Using
a maximum likelihood estimate, we vary the parameters (namely
the spring constant) and choose the value of k that best fits the
experimental rupture force distribution.

It is observed from Fig. 8 that if we choose the bond constant
k < 0:1 N=m, the PMF becomes more linear and it is insensitive
to the bond constant. On the other hand, for the values of
k > 1:0 N=m, only 10% of bond constant values lay within the

Fig. 7 Translational ((a) and (b)) and rotational ((c) and (d)) VACFs of the harmonically trapped
Brownian particle of radius a 5 250 nm through a circular vessel of radius R 5 2:5 lm obtained
using hybrid scheme. The nondimensionalized characteristic memory times are s1=sm 5 0:12 and
s2=sm 5 0:088.
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biological range. Therefore, in the present study, we choose
to demonstrate PMF profile for the values k¼ 0.1 N/m and
k¼ 1.0 N/m. The excellent agreement between the analytical and
our numerical results reiterates the preservation of equilibrium
distribution of the canonical ensemble by our dynamics method
for different bond constants. The successful validation of the com-
puted PMF using our hybrid scheme also highlights a concrete
path for temporal multiscaling; namely, to reach a y-coordinate
value of 0.4 nm corresponds to a PMF of WðyÞ ¼ 19 kBT, requires
a time scale of �0:1s, which is currently much outside the scope
of conventional dynamics; however, the umbrella sampling
strategy enables us to evaluate equilibrium probability distribu-
tions associated with rare-to-occur events.

4 Computational Time

The approximate number of CPU cycles required for the
computation of 20,000 time steps for a particle of radius 250 nm
in a cylindrical tube of radius 5 m (about 10,000 mesh nodes) is
4� 1010. All simulations were carried out on a 2.93 GHz proces-
sor in which the wall clock time for this typical run is 	 70 h.

5 Conclusions

A hybrid approach based on Markovian fluctuating hydro-
dynamics of the fluid and a non-Markovian Langevin dynamics
with the Ornstein–Uhlenbeck noise perturbing the translational
and rotational equations of motion of a neutrally buoyant nanopar-
ticle trapped in a harmonic potential is employed to simulate the
Brownian motion in an incompressible Newtonian stationary fluid
medium contained in a horizontal circular vessel. We demonstrate
that the thermal equipartition of translation, rotation, and spring
degrees of freedom are preserved by our hybrid scheme, while

simultaneously resolving the nature of the hydrodynamic correla-
tions. Our model shows that nanocarrier binding to the vessel wall
is very sensitive to mechanical spring stiffness within the known
biological range of spring constants for relevant adhesion mole-
cules. This enables the determination of probability distributions
and extensive conformational sampling of nanocarrier motion
which is prohibitive by conventional dynamics. The framework
we have presented in this article provides a comprehensive
platform for temporal multiscale modeling of hydrodynamic and
microscopic interactions mediating nanocarrier motion in vascular
targeted drug delivery.
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Nomenclature

R ¼ radius of the circular vessel
L ¼ length of the circular vessel
a ¼ radius of the nanoparticle
u ¼ velocity of the fluid

qðf Þ ¼ density of the fluid
qðpÞ ¼ density of the nanoparticle

r ¼ stress tensor
p ¼ pressure
J ¼ identity tensor
l ¼ dynamic viscosity
S ¼ random stress tensor

kB ¼ Boltzmann constant
T ¼ absolute temperature

dij ¼ Kronecker delta
d ¼ Dirac delta
m ¼ mass of the particle
I ¼ moment of inertia of the particle

U;x ¼ translational and angular velocities of the particle
X ¼ position of the centroid of the particle

x� Xð Þ ¼ vector from the center of the particle to a point on its
surface

@Rp ¼ the particle surface
@Ri ¼ inlet boundary
@Ro ¼ outlet boundary

n̂ ¼ unit normal vector on the surface of the particle
pointing into the particle

n ¼ random force
g ¼ random torque

sb ¼ Brownian relaxation time
sd ¼ Brownian diffusive time
s� ¼ hydrodynamic time
ss ¼ harmonic time for a single oscillation of spring

fðtÞ; fðrÞ ¼ Stokes dissipative friction force and torque coefficient
s1; s2 ¼ characteristic memory times

Sf ¼ spring force
St ¼ spring torque
k ¼ spring constant
l ¼ length of the spring

d̂ ¼ unit vector pointing toward the tip of the antigen
attached to the wall
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[42] Öttinger, H., and Grmela, M., 1997, “Dynamics and Thermodynamics of Com-
plex Fluids. II. Illustrations of a General Formalism,” Phys. Rev. E, 56(6), pp.
6633–6655.

[43] Patankar, N. A., Singh, P., Joseph, D. D., Glowinski, R., and Pan, T. W., 2000,
“A New Formulation of the Distributed Lagrange Multiplier/Fictitious Domain
Method for Particulate Flows,” Int. J. Multiphase Flow, 26, pp. 1509–1524.

[44] Chen, Y., Sharma, N., and Patankar, N., 2006, “Fluctuating Immersed Material
(FIMAT) Dynamics for the Direct Simulation of the Brownian Motion of Parti-
cles,” Proceedings of the IUTAM Symposium on Computational Approaches to
Multiphase Flow, S. Balachandar and A. Prosperetti, eds., Springer, Dordrecht,
The Netherlands, pp. 119–129.

[45] Hu, H., 1996, “Direct Simulation of Flows of Solid-Liquid Mixtures,” Int. J.
Multiphase Flow, 22(2), pp. 335–352.

[46] Hu, H. H., Patankar, N. A., and Zhu, M. Y., 2001, “Direct Numerical Simula-
tions of Fluid-Solid Systems Using the Arbitrary Langrangian-Eulerian
Technique,” J. Comput. Phys., 169(2), pp. 427–462.

[47] Zwanzig, R., and Bixon, M., 1970, “Hydrodynamic Theory of the Velocity Cor-
relation Function,” Phys. Rev. A, 2(5), pp. 2005–2012.

[48] Roux, B., 1995, “The Calculation of the Potential of Mean Force Using Com-
puter Simulations,” Comput. Phys. Commun., 91(1–3), pp. 275–282.

[49] Zhang, X., Wojcikiewicz, E., and Moy, V., 2002, “Force Spectroscopy of the
Leukocyte Function-Associated Antigen-1/Intercellular Adhesion Molecule-1
Interaction,” Biophys. J., 83(4), pp. 2270–2279.

031009-8 / Vol. 3, AUGUST 2012 Transactions of the ASME

http://dx.doi.org/10.3233/BIR-2009-0544
http://dx.doi.org/10.1016/j.jconrel.2010.10.025
http://dx.doi.org/10.1016/S0006-3495(96)79248-2
http://dx.doi.org/10.1073/pnas.1006611107
http://dx.doi.org/10.1063/1.3635776
http://dx.doi.org/10.1063/1.3635776
http://dx.doi.org/10.1063/1.3611026
http://dx.doi.org/10.1007/BF01030307
http://dx.doi.org/10.1103/PhysRevE.64.046115
http://dx.doi.org/10.1016/j.jcp.2004.06.002
http://dx.doi.org/10.1088/0305-4470/35/7/310
http://dx.doi.org/10.2140/camcos.2010.5.149
http://dx.doi.org/10.1103/PhysRevLett.70.1339
http://dx.doi.org/10.1017/S0022112094001771
http://dx.doi.org/10.1017/S0022112094001771
http://dx.doi.org/10.1017/S0022112094001783
http://dx.doi.org/10.1209/epl/i2004-10542-5
http://dx.doi.org/10.1007/978-3-540-87706-6_2
http://dx.doi.org/10.1016/j.partic.2009.06.012
http://dx.doi.org/10.1063/1.3247586
http://dx.doi.org/10.1063/1.3274222
http://dx.doi.org/10.1016/j.jcp.2006.11.015
http://dx.doi.org/10.1063/1.436761
http://dx.doi.org/10.1146/annurev.fl.20.010188.000551
http://dx.doi.org/10.1146/annurev.fl.20.010188.000551
http://dx.doi.org/10.1017/S0022112099007557
http://dx.doi.org/10.1063/1.1571819
http://dx.doi.org/10.1143/JPSJ.77.074007
http://dx.doi.org/10.1103/PhysRevE.79.031401
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1080/00268976.2012.663510
http://dx.doi.org/10.1016/S0006-3495(84)84252-6
http://dx.doi.org/10.1074/jbc.M213233200
http://dx.doi.org/10.1021/jp074514x
http://dx.doi.org/10.1016/j.bpj.2011.05.063
http://dx.doi.org/10.1103/PhysRevE.56.6620
http://dx.doi.org/10.1103/PhysRevE.56.6633
http://dx.doi.org/10.1016/S0301-9322(99)00100-7
http://dx.doi.org/10.1007/1-4020-4977-3_13
http://dx.doi.org/10.1016/0301-9322(95)00068-2
http://dx.doi.org/10.1016/0301-9322(95)00068-2
http://dx.doi.org/10.1006/jcph.2000.6592
http://dx.doi.org/10.1103/PhysRevA.2.2005
http://dx.doi.org/10.1016/0010-4655(95)00053-I
http://dx.doi.org/10.1016/S0006-3495(02)73987-8

	s1
	cor1
	l
	s2
	s2A
	E1
	E2
	E3
	F1
	E4
	E5
	E6
	E7
	E8
	E9
	E10
	E11
	F2
	F3
	s3
	s3A
	E12
	F4
	F5
	s3B
	E13
	E14
	s3C
	E15
	E16
	E17
	E18
	F6
	s3D
	F7
	s4
	s5
	B1
	B2
	F8
	T1
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34
	B35
	B36
	B37
	B38
	B39
	B40
	B41
	B42
	B43
	B44
	B45
	B46
	B47
	B48
	B49

