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Abstract
Based on the Radon transform, a wavelet multiscale denoising method is proposed for MR
images. The approach explicitly accounts for the Rician nature of MR data. Based on noise
statistics we apply the Radon transform to the original MR images and use the Gaussian noise
model to process the MR sinogram image. A translation invariant wavelet transform is employed
to decompose the MR ‘sinogram’ into multiscales in order to effectively denoise the images.
Based on the nature of Rician noise we estimate noise variance in different scales. For the final
denoised sinogram we apply the inverse Radon transform in order to reconstruct the original MR
images. Phantom, simulation brain MR images, and human brain MR images were used to
validate our method. The experiment results show the superiority of the proposed scheme over the
traditional methods. Our method can reduce Rician noise while preserving the key image details
and features. The wavelet denoising method can have wide applications in MRI as well as other
imaging modalities.
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1. Introduction
There is a practical limit on the signal-to-noise ratio (SNR) when acquiring MR image data
[1]; post-processing methods to remove noise are important. Normally, denoising methods
use the signal averaging principle which is based on the natural spatial pattern redundancy in
the images. Gaussian filters have been widely used in many applications such as functional
MR imaging (fMRI) [2]. However, they have the disadvantage of blurred edges due to
averaging nonsimilar patterns. In order to avoid this problem, many edge-preserving filters
have been proposed. One example is an anisotropic diffusion filter (ADF) [3–6]. Such a
filter preserves edges by averaging pixels in the orthogonal direction of the local gradient.
However, the denoising methods usually erase small features and change image statistics
due to their edge enhancement effect.

Another approach for denoising relies on statistical inference of a multiscale representation
of images. A prominent example includes methods based on wavelet transforms [7–9]. For
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denoising MR images, wavelet techniques based on soft thresholding were first applied by
Healy [10]. In another approach, a wavelet-based Wiener-filter-like denoising method was
used [11] where the magnitude of the MR image was squared and the square of a Rician
random variable was modeled by a scaled noncentral chi-square distribution. The prior
knowledge of the correlation of wavelet coefficients was used to represent significant
features across scales [12]. A wavelet denoising method was compared with Gaussian
smoothing methods [13]. A Wiener-like-filtering method was applied in the wavelet domain
before the reconstruction of MR images [14]. However, typical wavelet-based methods can
produce significant artifacts in the processed images because of the structure of the
underlying wavelets.

Other denoising methods include a maximum posteriori estimation technique. Those
methods account for Rician noise through a data likelihood term and a spatial smoothing
prior [15]. Awate [16] used empirical Bayes for denoising in MRI. The method uses a
Markov probability density function (PDF) to estimate the observed corrupted data and thus
use it as a prior in the Bayesian. In this way, the Bayesian denoising scheme bootstraps itself
by estimating the prior through the optimization of an information theoretic metric using the
expectation maximization (EM) algorithm. The parametric filter named non-local means
(NLM) for random noise removal is analyzed and adapted to reduce the noise in MR images
[17]. Jose [18] proposed a filter to reduce random noise in multi-component MRI by
spatially averaging similar pixels using information from all available image components in
order to perform the denoising process.

In this paper, a wavelet domain denoising procedure based on the Radon transform is
proposed for MR images. The approach explicitly accounts for the Rician nature of the data.
We employ the Radon transform to the original MRI data in order to transform it to the
Radon domain. This approach is particularly useful to denoise dark regions because of the
noise bias in low SNR (dark) regions. Furthermore, a translation invariant wavelet transform
is employed to decompose the sinogram into multiscales for denoising step by step. Finally,
we apply the inverse Radon transform to reconstruct the original MR images from the
denoised sinogram. In the following sections, we describe our methods as well as our results
from phantom, simulation brain MRI, and real patient MRI.

2. The distribution of noisy MRI data
One main source of noise in an MRI signal is the thermal noise [19]. The signal component
of the measurements is present in both real and imaginary channels; each of the two
orthogonal channels is affected by white Gaussian noise [20]. An MR image is usually
reconstructed by computing the inverse discrete Fourier transform of the raw data. The noise
in the reconstructed complex data is thus complex white Gaussian noise. The magnitude of
the reconstructed MR image is used for visual inspection and for automatic computer
analysis. Since the magnitude reconstruction is simply the square root of the sum of two
independent Gaussian random variables, the magnitude image data are described by a Rician
distribution. The term Rician noise is used to refer to the error between the underlying image
intensities and the observed data [21]. Rician noise is not zero; meanwhile the mean depends
on the local intensity in the image [22].

If the real and imaginary data, with mean values AR and AI, respectively, are corrupted by
zero mean Gaussian, stationary noise with the standard deviation σ, the probability
distribution function of the magnitude data will be a Rician distribution, as described by
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(1)

where I0 is the modified Bessel function of the first kind with order zero. The image pixel
intensity in the absence of noise is denoted by A, and the measured pixel intensity by M.

Here A is given by . Equation (1) is plotted in figure 1 for different values of the
SNR, A/σ. Note that the Rician distribution tends to be a Rayleigh distribution when the
SNR goes to zero and approaches a Gaussian distribution at a high SNR. So in low-intensity
(dark) regions on an MR image, the Rician distribution tends to be a Rayleigh distribution.
In high-intensity (bright) regions, it tends to be a Gaussian distribution. For ratios as small as
A/σ = 3 (SNR =10 log10 32 ≈ 10 dB), it starts to approximate the Gaussian distribution. For
a small SNR (A/σ ≤ 1) the Rician distribution is far from a Gaussian distribution. Note that
the mean of the distributions, M̄/σ, which is shown by the vertical lines in figure 1, is not the
same as A/σ. This bias is due to the nonlinear transform of the noisy data.

When the SNR is high (A/σ → ∞), an interesting limit of equation (1) is described as

(2)

This equation shows that for image regions with high signal intensities the noisy data
distribution can be considered as a Gaussian distribution with variance σ2 and mean A.
Hence, in high SNR regions the noise can be viewed as a Gaussian white noise with
variance σ2 and zero mean. Based on such an assumption, separation of a signal and noise is
fairly straightforward in the wavelet domain. However, the Gaussian approximation may
introduce error for regions with a low SNR. As the mean of the magnitude image is not
equal to the noise-free image, the magnitude image is biased.

3. Materials and methods
Our method includes four steps. First, we transform the MR image to the Radon domain
using the Radon transform. Second, the wavelet transform is employed to decompose
sinogram into multiscales. Third, noise variance is evaluated and a thresholding-based
method is applied to denoise. Fourth, we reconstruct the denoised sinogram to get the
original MRI using the inverse Radon transform.

3.1. Radon transform
The Radon transform of a 2D function is defined as

(3)

where s is the perpendicular distance of a line from the origin and α is the angle formed by
the distance vector. According to the Fourier slice theorem, this transformation is invertible.
The Fourier slice theorem states that for a 2D function f (x, y), the 1D Fourier transforms of
the Radon transform along s are the 1D radial samples of the 2D Fourier transform of f (x, y)
at the corresponding angles [23].
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3.2. The distribution of noise in sinogram data
Rician noise differs from Gaussian noise in that it depends on the signal intensity, and the
PDF of the noise is very asymmetric for low signal intensities. In brain MR images different
regions have different intensities, i.e. white matter (WM), gray matter (GM) and scalp have
high intensity, and the noise in these regions is very close to a Gaussian distribution. But
other regions such as skull, nasal sinuses and cerebrospinal fluid (CSF) have very low
intensity [13], so the noise in these regions is close to a Rayleigh distribution. We sum these
regions along a line and thus sum the noise with different distributions. The sum of several
Rician distributed noises has a symmetric distribution. Such a sum operation, which is the
Radon transform, makes the distribution of noise close to a Gaussian distribution. In figure
2, we compare the sum distribution with the Gaussian distribution with N(μ, σ2). On brain
MR images, the low-intensity regions have fewer areas than those with high intensity. For
example, the ratio of high-intensity regions to low-intensity regions can be more than 10
along a projection line during the Radon transform. Figure 2 shows the direct comparison
between the Gaussian PDF and the sum PDF.

In order to measure the similarity degree (R2), we use the following equation:

(4)

where Cov is the correlation function and StdDev is the standard variance. This equation is
used to measure how well a regression line approximates the real data points statistically,
e.g. R2 of 1.0 (100%) indicates a perfect fit. From figure 3 we can see that the R2 value is
close to 1, indicating that the distribution of noisy data is close to a Gaussian function. At
the same time we can see that the larger the A/σ the more similar to Gaussian the sum PDF
is. In order to demonstrate this conclusion further we calculated an additional 24 sets of the
similarity degree (R2) between the real Gaussian PDF and the PDFs of the sum of two or
more Rician distributed sets, and it is shown in table 1. In the table we can see that all R2s
are over 92%, and all R2s except Pmag(0) + 5*Pmag(1) and Pmag(0) + 10*Pmag(1) are over
95%. Here Pmag(0) is the PDF of the magnitude data in the air part inside MR images and
not background, because we got rid of noise in the background using a brain mask before the
Radon transform. So it is reasonable to use techniques based on the assumption of a
Gaussian distribution for sinogram images. In fact, for the heart and brain images, the bright
regions in body images have a SNR of over 20 dB (A/σ > 10) [24]. Based on the above-
mentioned two facts and equation (2) we demonstrated that the noise in sinogram images is

Gaussian noise with mean μs and variance . Here from the Radon transform we can obtain

μs = ns μ and , and it varies with the number of pixels (ns) along a line through the
MR brain image.

3.3. Wavelet transforms
3.3.1. Wavelet definition—Wavelets are mathematical functions that decompose data
into different frequency components that can be studied with a resolution matched to their
scale. Wavelet transforms are multiresolution representations of signals and images. They
decompose a signal into a hierarchy of scales ranging from the coarsest scale to the finest
one. Wavelet coefficients of a signal are the projections of the signal onto the
multiresolution subspaces. Wavelets are functions generated from one single function (basis
function) called the prototype or mother wavelet by dilations (scalings) and translations
(shifts) in the time (frequency) domain. If the mother wavelet is denoted by ψ(t) other
wavelets ψa,b(t) can be represented as
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(5)

where a and b are two arbitrary real numbers. The variables a and b represent the parameters
for dilations and translations, respectively.

3.3.2. Dyadic discrete wavelet transform—The discrete wavelet transform (DWT) is
an implementation of the wavelet transform using a discrete set of the wavelet scales and
translation obeying some defined rules. For practical computations, it is necessary to
discretize the wavelet transform. The scale parameter a is discretized on a logarithmic grid.
The translation parameter b is then discretized with respect to the scale parameter, i.e.
sampling is done on the dyadic sampling grid (as the base of the logarithm is usually chosen
as 2). The dyadic wavelet transform makes the scale factor binary discrete, while the
translation factor maintains continuous change. The discretized scale and translation
parameters are given by a = 2−j and b = k2−j, respectively, where j, k ∈ Z, the set of all
integers. Thus, the family of wavelet functions is represented as

(6)

From the multiresolution point of view, the wavelet decomposition of a discrete time signal
x[n] is given by

(7)

where ϕj0,k, ψj,k are the scaling functions and wavelet functions, respectively.

The scaling/approximation and the wavelet/detail coefficients are given respectively as

(8)

(9)

where j0 is the starting scale and is always 0. cϕ and dψ are the scale factor and the wavelet
coefficients, respectively, and j is the decomposition level. The development of the fast
wavelet transform [25] concludes its identity to two-channel subband decomposition. Thus,
it reveals a remarkable relationship between the DWT coefficients of adjacent scales. Using
the coefficients dψ at a specific level j + 1 we can calculate the coefficients at level j using a
filter bank. The wavelet decomposition of a 2D signal can be achieved by applying the 1D
wavelet decomposition along the rows and columns of the image separately. This is
equivalent to projecting the image onto separable 2D basis functions obtained from the
products of 1D basis functions

3.3.3. Translation invariant wavelet—Since the DWT provides good localization in
both spatial and spectral domains, low pass filtering is inherent to this transform. The DWT
is computationally efficient. The only drawback is that it is not translation invariant, which
can introduce artifacts during image reconstruction and exhibit Gibbs phenomena in the
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neighborhood of discontinuities because of the lack of translation invariance of the wavelet
basis. The translation variance in the discrete wavelet transform is due to the required
decimation operation (downsampling by two). This problem can be solved by applying
additional discrete wavelet decomposition after shifting the sequence by one sample [26].
From the Radon transform we know that the translation along α in the Radon domain
corresponds to the rotation of the input image. Although a translation invariant wavelet
transform seems to be useful for this application, its application in both directions (s and α)
leads to suboptimal results compared with a non-translation invariant wavelet transform.
Although the circular shift along α corresponds to the rotation of the image, the circular
shift along s does not correspond to a regular geometric distortion. The shift along s in the
Radon domain corresponds to an image significantly different from the original image. To
solve this problem, we only apply a 1D translation invariant wavelet transform along s [27,
28]. In section 3.5 we will discuss some properties using a 1D wavelet transform along s.

3.3.4. Threshold-based denoising in the wavelet domain—The wavelet
coefficients of signals after a wavelet transform contain important information and the
wavelet coefficients of noise correspond to smaller amplitude. In our method, a suitable
threshold value is selected through different scales, and the wavelet coefficients less than the
threshold are set to zero, while retaining the wavelet coefficients greater than the threshold.
So the noise signal is effectively inhibited. Finally, the denoised signal is reconstructed
using the wavelet inverse transform. It is well known that for independent and identically-

distributed Gaussian noise  a threshold β = μs + σs, μs + 2σs, μs + 3σs, … will
suppress 68.26%, 95.44%, 99.74% of its values. Therefore, we choose β = μs + cσs, where c
is a constant. By taking c between 3 and 4, we can achieve good results. Based on the fact

that the variance in each wavelet scale is also  in an orthogonal transformation we can
obtain the final threshold

(10)

Under the Gaussian noise assumption, thresholding techniques successfully utilize the
unitary transform property of the wavelet decomposition to distinguish statistically the
signal components from those of the noise. Our desire, then, is to remove the estimated
noise contribution β from each of the wavelet coefficient, and obtain the estimated signal.
Although Donoho [29] proved the optimality of soft threshold in theory, Stein threshold has
shown better results in SNR improvement. Thus

(11)

where x̂i is the denoised signal, yi denotes the noisy observations and Wf (yi) each of the
wavelet coefficients. Finally, we perform the wavelet inverse transform for Wf (xi) in order
to obtain the denoised signal x̂i.

3.4. Noise mean μ and variance σ2 estimation
Our algorithms require the underlying noise variance σ2, which is usually unknown and has
to be estimated from the data. Typical MR images include an empty region of air outside the
patient. A simple estimator is based on the following argument.

From equation (1) we can obtain a special case of the Rician distribution in image regions
where only noise is present, A = 0. This is better known as the Rayleigh distribution, and
equation (1) reduces to
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(12)

This Rayleigh distribution governs noise in image regions without signals. The mean for this
distribution can be evaluated analytically and is given by

(13)

These relations can be used to estimate the ‘true’ noise variance σ2 from the magnitude
image. So from equation (13) the pixel values in the region outside the patient provide us
with a very reliable estimator:

(14)

3.5. Properties of our method
The 1D wavelet transform of an image is equal to the projection of the image onto the 1D
basis functions. If we denote the Radon transform of the image by Rf (α, s), the wavelet
transform coefficients by Wf (·, ·), and the corresponding 1D orthogonal wavelet basis
functions by φ(s), then

(15)

By defining h(x, y) = φ(x cos α + y sin α)

(16)

where h(x, y) in 2D is defined from the wavelet function φ(s) in 1D, and it is similar to 2D
wavelet transforms except that the point parameter is replaced by a line parameter. The
wavelet is a function with scale and point position, while h(x, y) is a function with scale and
line position. Hence the wavelet is effective in representing point singularities, and h(x, y) is
effective in representing singularities along the line. So our transform can capture
singularities along lines and edges in an efficient way.

3.6. Reconstruction
After obtaining the denoised sinogram, we perform the inverse Radon transform in order to
obtain the original image. It is defined as

(17)

where R are the filtered projections. Generally, three different inverse Radon transform
methods are the direct inverse Radon transform (DIRT), filtered back-projection (FBP) and
convolution filtered back-projection (CFBP) [30]. The DIRT is computationally efficient,
but it introduces some artifacts. FBP based on the linear filtering model often exhibits
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degradation in recovering from noisy data [31]. Spline-convolution filtered back-projection
(SCFBP) offers better approximation performance than the conventional lower-degree
formulation (e.g. piecewise constant or piecewise linear models) [32]. For SCFBP the
denoised sinogram in the Radon domain is approximated in the B-spline space, while the
resulting image in the image domain is in the dual-spline space. We used SCFBP to
propagate the deniosed sinogram back into the image space along the projection paths.

4. Evaluation and results
Our denoising method has been evaluated by modified brain phantom and simulation brain
data. We also applied the method to denoise real brain MR images. We compare with the
optimum linear filter, the Wiener filter [33], which is solely adapted to a SNR at a single
scale. Meanwhile, a traditional multiscale wavelet method is also applied to these datasets in
order to compare with our method. Here Wiener and wavelet methods are used to denoise
images in the image domain directly. Finally, in order to prove the efficiency of the
proposed method quantitatively an average SNR is used as a quality metric. It is given by

(18)

where x[j, k] is the original image x̂[j, k] is the denoised image, with results averaged over
all images and reported as mean decibels (dB).

In order to validate our method Rician noise is added to the modified phantom and
simulation brain MRI. But while denoising we can get a mask first through a threshold and
eliminate the noise outside the phantom and brain. The noise outside the phantom and brain
is only used to evaluate the noise variance. The mentioned SNR in the following section
only expresses the SNR in the phantom or brain except in outside air. Here for the Wiener
filter we used neighborhoods of size 3 × 3 to estimate the local image mean and standard
deviation. 2D and 1D db3 wavelets were used in the wavelet filter and our method,
respectively, and the images were decompounded into four levels.

4.1. Brain phantom data
Figure 4 illustrates the visual assessment of denoised results on the brain phantom with
different noises and the comparison of three methods. In order to compare the denoised
effectiveness Rician noise of different degrees is added to this phantom. The images from
top to bottom are the phantoms with different degrees of noise, and the images from left to
right are the original noised phantom, the denoised result after Wiener, the traditional
wavelet and our method in sequence. It can be seen that the Wiener filter makes images a
little blurred, and both the traditional wavelet and our method can reduce Rician noise
effectively while retaining phantom detail, but our method can suppress Rician noise more.

Figure 5 shows the SNR plots between input SNRs and output SNRs for the three methods.
From this figure it can be seen that our method can improve the SNR more than Wiener and
the wavelet method. At the same time the output SNR after the Wiener filter grows almost
linearly, while the other two methods can improve less with the increase in the input SNR in
the original image, and approach the SNR curve of the Wiener filter because the noise is
closer to Gaussian noise.

Figure 6 exhibits residuals between the original and denoised phantoms. Comparing these
figures we can see that the Wiener filter smoothes the whole image and is uniform for all
regions in the image. And the wavelet method performs better for bright regions than dark
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regions, namely wavelet denoising is better for Gaussian noise than Rician noise under the
same condition. The dark part in the phantom is brighter than other parts in the wavelet
residual figure. Finally, our method can decrease noise for both dark and bright regions, and
its denoised effectiveness in dark regions is better than the other two methods.

In order to compare the results after different methods quantitatively, we obtain profiles
through the original phantom, the denoised phantom, and the phantom after the Wiener
filter, the wavelet method and our method as shown in figure 7. The Wiener filter can only
smooth a denoised image in the whole image, and in the bright region, the wavelet method
and our method have almost the same effect because our method also applies wavelet to
denoise. But for dark regions our method performs better than the wavelet method because
of the noise distribution. The result after our method is closer to that of the original
phantom.

In figure 8 we compare the difference of the denoised effect in the Radon domain. Noised,
denoised and no-noise sinograms are shown from left to right in sequence. We obtain a
denoised sinogram that is close to the noise-free sinogram visually, and it shows that our
method has already decreased the noise in the sinogram.

4.2. Simulation brain data
We obtained the brain MR images from the McGill phantom brain database for
comprehensive validation of the denoising methods. The MR volume contains 181 × 217 ×
181 voxels and covers the entire brain. Based on the realistic phantom, an MR simulator is
provided to generate specified MR images. The MR tissue contrasts are produced by
computing MR signal intensities from a mathematical simulation of the MR imaging physics
[34].

As shown in figure 9, the same Rician noise is added to the whole volume and three slices
are shown for comparison in this figure. By comparing the dark regions (e.g. skull and CSF)
with the bright regions (e.g. WM, GM and scalp) in all denoised images, it can be seen that
our method enhances the image contrast and makes the edges clearer than the other two
methods. The Wiener method smooths the images and makes whole images blurred. The
wavelet method and our method both preserve image details but our method decreases noise
more, and this point can be seen from the quantitative SNR. The average SNR of original
simulation brain with Rician noise is 17.88 dB, the average SNR after Wiener is 19.33 dB,
the average SNR after the wavelet method is 23.12 dB, and the average SNR after our
method is 26.84 dB.

In the same way we obtain the residuals between the original image and denoised image
after different methods as shown in figure 10. As discussed above, the Wiener filter smooths
the whole image and its residuals are almost the same except for the edge parts, and the
wavelet method is better for bright regions than dark regions, and our method can decrease
noise for both dark and bright regions.

In figure 11, we quantitatively compare the profiles through the original image, noised
image, and the image after the Wiener filter, wavelet and our method. In this figure, the
Wiener filter only smooths the noised image in the whole image and loses the image details.
In bright regions, the result after the wavelet method is almost the same as the result after
our method, but in dark regions our method excels the wavelet method. We can see the
denoised image after our method is closest to the original image and it has the best denoised
effect among the three methods.
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4.3. Real brain data
The denoising method was also applied to real T1-weighted MR images of human brain.
The MR images were acquired with a 4.0 T MedSpec MRI scanner (Bruker BioSpin GmbH,
Rheinstetten, Germany) on a Siemens Syngo platform (Siemens Medical Systems, Erlangen,
Germany). The T1-weighted magnetization prepared rapid gradient echo sequence
(MPRAGE) (TR = 2500 ms and TE = 3.73 ms) was used for the image acquisition. The
volume has 256 × 256 × 176 voxels covering the whole brain yielding a 1.0 mm isotropic
resolution.

Figure 12 illustrates qualitative comparison of denoised results on T1-weighted MR brain
images and the comparison of different methods. We do not perform any preprocessing for
the original MR brain image. In this figure our method makes the edges of the MR image
clearer and enhances the image contrast. This can be obtained from the property of our
method; it can capture singularities along lines and edges in an efficient way. Through
comparing the three residuals we can see that the Wiener method makes the whole image
smooth and that its residuals are bigger at the edge than in other regions. The traditional
wavelet can decrease Rician noise better than Wiener, and it can decrease the noise in dark
regions to some degree. In brighter regions with a high SNR, our result shows much less
difference from the other two methods, and this means it does not affect the region with little
noise. In dark regions that have a low SNR, our result shows bigger difference as compared
to the original image than the other two methods, indicating that it greatly decreases the
noise. This figure also shows that our method can decrease the noise more than the other two
methods, especially for dark regions like skull and CSF (figure 13).

5. Discussion and conclusion
We developed and evaluated a wavelet domain denoising method based on the Radon
transform for noise removal in MRI. The new approach explicitly accounts for the Rician
nature of the MR data. In high-intensity (bright) regions of the MR images, the Rician
distribution is well approximated as Gaussian. In low-intensity (dark) regions, the Gaussian
approximation is no longer valid and the Rician distribution has two degrading effects: the
random fluctuation of pixel values and the introduction of a signal-dependent bias. Based on
the Rician noise encountered in MRI we apply the Radon transform to the original MR
image, add Rician noise to MR images to consider the Gaussian distribution for MR
sinogram images.

Our method combines the Radon transform and wavelet transform and it can be seen as a
translation invariant and orthogonal wavelet transform. Based on the fact that the shifted
Radon transform along s corresponds to an image significantly different from the original
image, we apply a 1D translation invariant wavelet transform along s. Our method is similar
to a 2D wavelet transform except that the point parameters are replaced by the line
parameters. The wavelet is a function with scale and point position, while our method is a
function with scale and line position. Hence the wavelet is effective in representing point
singularities. And our method is effective in representing singularities along the line. So our
transform can capture singularities along lines and edges in an efficient way. Based on the
nature of noise we show how to obtain accurate thresholds in different scales and evaluate
original noise variance.

Our method can not only effectively decrease Rician noise in MRI but also preserve the key
image details and features. Brain phantom, a simulation brain MR image and a real brain
MR image are used to validate our method. Our method is compared with the optimum
linear filter at a single scale, the Wiener filter, and the multiscale traditional wavelet method.
Meanwhile, it can enhance the image contrast, and it performs better than the traditional
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wavelet and Wiener methods in terms of SNR. The experiment results show the superiority
of the proposed scheme and outperform the traditional denoising methods. Our denoising
method can have wide applications in MR imaging.
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Figure 1.
The Rician distribution of M for several SNRs (A/σ) and the corresponding means.
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Figure 2.
Gaussian PDF and the PDFs of the sum of two or more Rician distributed sets. In (a)–(d) the
sums in sequence are: Sum = Pmag(1) + 10*Pmag(2), Sum = Pmag(2) + 10*Pmag(3), Sum =
Pmag(3) + 10*Pmag(4), and Sum = Pmag(1) + 5*Pmag(2) + 5*Pmag(3) + 10*Pmag(4).
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Figure 3.
Correlation plots between the real Gaussian PDF and PDFs of the sum of two or more
Rician distributed sets. (a)–(d) are the corresponding correlation plots of (a)–(d) in figure 2,
respectively. The horizontal axis is the real Gaussian distribution data and the vertical axis is
the distribution sum data.
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Figure 4.
Denoised results of brain phantom with different noise using different methods. The first
column is the phantom with different degrees of noise. The second column is the results
after the Wiener filter. The third column is the results after wavelet. The fourth column is
the results after our method.
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Figure 5.
Input and corresponding output SNR plots for the three methods. The horizontal axis is the
input SNR and the vertical axis is the output SNR.

Yang and Fei Page 17

Meas Sci Technol. Author manuscript; available in PMC 2013 July 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Residuals between the original phantom and denoised phantoms. (a) Original phantom; (b)–
(d) the corresponding residuals between the denoised and original phantoms in sequence.
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Figure 7.
Comparison of horizontal profiles between the original phantom, noised phantom and
phantoms denoised using Wiener, wavelet and our method.
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Figure 8.
Comparison of the noised (left), denoised (middle) and noise-free (right) sinograms.
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Figure 9.
Denoised results of the simulated brain data using different methods. The first column is the
noised brain images of different slices. The second column is the results after the Wiener
filter. The third column is the results after wavelet. The fourth column is the results after our
method.
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Figure 10.
Residuals between the original image and denoised images. (a) Original image; (b)–(d) the
corresponding residuals between the denoised and original images in sequence.
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Figure 11.
Comparison of horizontal profiles between the original image, noised image and images
denoised using Wiener, wavelet and our method.
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Figure 12.
Qualitative comparison of denoising results obtained with different methods. The first
column is the real MR brain image without any processing. From top to bottom, the second
column is the denoised results by Wiener, wavelet, and our method, respectively. The third
column is the corresponding residuals between the original image and denoised image.
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Figure 13.
Qualitative detail comparisons of denoising results obtained with different methods. From
left to right: original real image, denoised images and the corresponding residuals. From top
to bottom: Weiner, wavelet and our method.
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