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Abstract
Numerous biological interactions, such as interactions between T cell receptors or antibodies with
antigens, interactions between enzymes and substrates, or interactions between predators and prey
are often not strictly specific. In such less specific, or “sloppy,” systems, referred to here as
degenerate systems, a given unit of a diverse resource (antigens, enzymatic substrates, prey) is at
risk of being recognized and consumed by multiple consumers (lymphocytes, enzymes, predators).
In this study, we model generalized degenerate consumer-resource systems of Lotka–Volterra and
Verhulst types. In the degenerate systems of Lotka–Volterra, there is a continuum of types of
consumer and resource based on variation of a single trait (characteristic, or preference). The
consumers experience competition for a continuum of resource types. This non-local interaction
system is modeled with partial differential-integral equations and shows spontaneous self-
structuring of the consumer population that depends on the degree of interaction degeneracy
between resource and consumer, but does not mirror the distribution of resource. We also show
that the classical Verhulst (i.e. logistic) single population model can be generalized to a degenerate
model, which shows qualitative behavior similar to that in the degenerate Lotka–Volterra model.
These results provide better insight into the dynamics of selective systems in biology, suggesting
that adaptation of degenerate repertoires is not a simple “mirroring” of the environment by the
“fittest” elements of population.
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1. Introduction
Despite the extreme complexity of biological systems, the commonly practiced reductionist
approach often simplifies biological interactions to being “specific,” implying that the
interacting entities do not engage in similar interactions with other, similar, entities. For
example, an enzyme recognizes and converts a specific substrate but not an irrelevant
substrate; a predator recognizes and consumes a specific kind of prey but not other types of
prey; etc. An alternative, more realistic, approach is to consider most interactions as not
being strictly specific. Indeed, enzymes, antibodies, and cellular receptors can bind not only
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their preferred substrates, antigens, or ligands, respectively, but also other resembling
molecules. Similarly, a predator in most cases is capable of recognizing and consuming
more than one kind of prey. As a result, realistic biological systems are composed of often
structurally similar yet somewhat structurally differing elements, capable of performing
similar yet somewhat differing but overlapping functions. Thus, a transition has to be made
from considering simple specific interactions to considering repertoires of imperfectly
interacting molecules, cells, or species.

Edelman (Edelman and Mountcastle, 1978; Edelman and Gally, 2001) was probably the first
to introduce such a generalized view to selective systems, in which the elements of
repertoires are selected by the signals from the environment. Edelman presented the immune
system, nervous system, and ecological systems as broad repertoires of structurally different
elements that function to some extent similarly. The elements in such repertoires have some
degree of functional “limited sloppiness” (Fischer and Lipson, 1988), or, using Edelman's
terminology (Edelman and Mountcastle, 1978; Edelman and Gally, 2001), “degeneracy,”
which is different from redundancy. In redundant repertoires, the elements can be
structurally similar or different, but perform similar functions. In degenerate repertoires, the
elements form a continuum of structural variations resulting in similar, yet diverse,
functions. Edelman and others later extended this view to numerous biological systems and
pointed out that such limited functional sloppiness in biology is not a simple imperfection,
but in many cases an important feature with far reaching biological consequences (see
Edelman and Gally, 2001; Atamas et al., 1998; Atamas 1996, 2003, 2005 and references
cited there for review). The degenerate repertoires have unique features that do not occur in
any other known systems, such as adaptability to unpredictable future, exceptional
reliability, and “associative memory” (Jerne, 1967; Ohno, 1978; Edelman and Mountcastle,
1978; Edelman and Gally, 2001).

A major consequence of degeneracy in selective degenerate biological repertoires is that
more than one element will respond to an incoming signal. Therefore, a single influence
from the environment will initially select not only a single unique “specific” element but
also a population of degenerately responding, possibly less specific, elements. In other
words, degeneracy of interaction of a selective repertoire with the environment will
inevitably lead to competition, not only between exactly similar but also between similar yet
diverse elements of the repertoire.

In this work we formulate degenerate resource–consumer model systems, in which a single
kind of consumer responds to more than one kind of resource, and a single kind of resource
can be recognized by more than one kind of consumer. Common sense prompts and
modeling confirms that the non-specific nature of resource consumption will lead to intrinsic
competition in such systems, resulting in dynamic self-structuring of a generalized “sloppy”
repertoire (Atamas et al., 1998; Atamas 1996, 2003, 2005). Here we further develop this line
of reasoning by considering degenerate versions of the classical Lotka–Volterra system and
the Verhulst population model. In the next section we formulate degenerate forms of the
Lotka–Volterra model (dLV) and the single-population Verhulst model (dV). In Section 3
we give some preliminary analysis of the dLV model, and present some results from
numerically simulating the dLV model and dV models. In particular, we concentrate on
behavior of the model near boundaries of the prey (resource) populations. In Section 4 we
discuss implications of incorporating degeneracy mechanisms in diverse biological systems.
The results suggest that the population of degenerate consumers undergoes spontaneous self-
structuring into a distribution that does not mirror the distribution of resource. The degree of
degeneracy affects the competition and leads to separation into subpopulations.
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2. The models
Our goal is the formulation and analysis of a model incorporating sloppiness, or degeneracy,
in a simple resource–consumer system, with implication going beyond ecology, to
degenerate repertoires in general (Edelman and Mountcastle, 1978; Edelman and Gally,
2001; Fischer and Lipson, 1988; Atamas et al., 1998; Atamas 1996, 2003, 2005). Two well
accepted population models, Lotka–Volterra and Verhulst (logistic growth) model, are
expanded by incorporating degenerate consumption of resource by consumer.

Consider a space Z of characteristics, or traits, or food preferences, in which both consumer/
predator and resource/prey are distributed. For purposes of simplification and clarity of
discussion we will just consider Z to be one-dimensional, i.e. dynamics based on a single
characteristic, though this is not essential to the ideas that are developed. The Z can denote
any of various characteristics of resource “recognized” by the consumer. The modeled
distributions in this generalized degenerate model need not, but may, be reflective of
geometric distributions. In other words, Z may represent non-geometric characteristics. It
could represent the continuum of antigens (resource) and, correspondingly, antibodies or T
cell receptors (consumer), or the variety of cytokines (resource) and of responding cells
(consumer). Alternatively, Z may represent geometric space. This could include the
distributions of vegetation (resource) and herbivores (consumer) with increasing altitude
level on a mountain. In the case of predator–prey dynamical interaction, the variety of a
single trait for the prey is represented by Z, whereas for the consumer (predator), z ∈ Z is
interpreted as a preference for that trait. In the analysis and numerical simulation, we will
represent Z as the real numbers ℜ. In other circumstances it could be a simple real interval I,
or the one-sphere S1. For simulations we use a sufficiently long interval where simulations
are run long enough to stabilize patterns but not to the point when the observed behavior is
affected by the boundary conditions. For analysis purposes we assume that  unless
stated otherwise.

Derivation of the degenerate Lotka–Volterra model (dLV)
Consider that both consumer y and resource x are distributed in the space Z of
characteristics, or traits, or food preferences as described above. To remain consistent with
the classical non-degenerate model, the term “predator” will be used for consumer and
“prey” will be used for resource. In this distributed model, x(t, z) represents the density of
resource and y(t, z) represents the density or biomass of the consumer at time t at location
(or with characteristic) z. For a specific embodiment of the model, consider that space Z
represents geometric space, with z being the altitude above the ground level. Then, plant
foliage x(z) (resource, prey) in distributed in density over the ground—short, medium and
tall grasses; short, medium and tall bushes; and short, medium and tall trees.
Correspondingly, herbivorous animals y(z) are distributed on the same scale, from small
rodents to giraffes. Such distributions are not limited to being merely spatial. For example,
we can plot a distribution of speed z at which prey x(z) (e.g. smaller mammals) escape when
chased by predators y(z) (larger carnivorous animals). In a similar fashion, antigens x(z) and
antigen-recognizing B or T cells y(z) can be similarly distributed on a more abstract axis Z
of “antigenic specificities.”

Due to the degenerate nature of resource consumption, not only x(t, z) but also x(t, z′) will
be consumed by y(t, z); the closer z′ is to z, the more x(t, z′) is at risk of being consumed by
y(t, z). Thus, due to the degenerate nature of resource consumption, different consumers
(located at different z′) start competing for the same resource, and, reciprocally, resources
located at different z′ will be consumed by the same unit of consumer. In this degenerate
case, the demand for resource at z′ by a member of population at z depends on |z – z′| and is
described by a kernel function k(|z – z′|), a unimodal function that characterizes, in a non-
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dimensional way, the degree of y(t, z) preference for resource at z′. We assume k(z) to be
non-negative, piecewise continuous, and even (so the absolute value notation is dropped),
and integrable. Without loss of generality we assume the kernels being normalized; that is,
∫Z k(z)dz = 1. (For specific examples of the kind of kernels we employ in the analysis and
simulation sections, see the Appendix A.) Hence, the resource/prey dynamics takes the form

To simplify notation, the integration here and below is taken over Z unless otherwise
expressed explicitly. While the prey populations are a resource for the consumer/predator
populations in our model, there is an implicit need for a resource needed to maintain the
population of prey itself. We will assume that the resources that sustain and allow growth of
the prey population are supplied from an infinite reservoir and are replenished at the rate
they are consumed. This resource assumption is implicit in all models and is just a
convenience, both here and in the development of the dV model below, because these
populations are in a hierarchy of a more general ecosystem, and we need to “close” the
model system. But we do expect internal competition for these resources. This leads to a
carrying capacity K, which, for purposes here of analytical tractability, is assumed to be
independent of characteristic z. Similarly, the net (Malthusian) growth rate, a, a positive
constant, represents the proliferative capacity per unit of population, and this is augmented
by a c term representing the resource limits to the prey population in the spirit of Verhulst.
Because of the z dependence, we use the term “per unit of population” instead of “per
capita.” Thus, the prey populations have a z-independent carrying capacity K = a/c. We
could include a degeneracy mechanism within the prey populations, but the modification
does not add much to the points we want to make in this paper. Therefore, the model for x(t,
z) is

(1)

The predator repertoire consumes prey in a degenerate fashion; in the absence of prey it will
die at a constant rate α. Therefore, the model for the predator population becomes

(2)

Hence, (1)–(2) constitute our degenerate Lotka–Volterra (dLV) model. Note that given the
kernels discussed in the Appendix A, if σ → 0+, (1)–(2) become the classical predator–prey
model (except for the fact that each equation represents an infinite repertoire of non-
interacting, non-competing continuum of population types):

Derivation of the degenerate Verhulst (dV) model
Despite the initial simplicity of the classical logistic growth model of Verhulst in
comparison with classical Lotka–Volterra model, derivation of the degenerate case of
Verhulst model is conceptually a bit more complex. Consider the original formulation of
logistic growth of population y = y(t) by Verhulst (Gabriel et al., 2005):
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where a is the net growth rate as in (1), and c, the “friction coefficient,” is a non-negative
coefficient reflective of internal competition for resource, implicitly representing the limited
amount of resource. For the traditional alternative way of writing this equation, K = a/c is
the population's carrying capacity within the particular ecosystem, again as expressed in (1).
In this classical non-degenerate case, each member of the population has “equal rights” for a
unit of resource, reflective in the y2 term that represents pairwise competitive encounters
between the members of the population.

To model the “friction” between elements of the population in the dV model, consider two
consumers located at z and z′. Similarly to the dLV model above, the consumption of
resource is degenerate. Therefore, both y(t, z) and y(t, z′) may compete for resource located
at z″; the interactions between the resource and consumers is again described by a kernel
functions k(|z″ – z|) and k(|z″ – z′|), with properties expressed in the previous subsection.
Then, the “friction” between any given pair of consumers is B(z, z′, z″)k(z″ – z)y(t, z)k(z″
– z′)y(t, z′). Of important notice, for each pair y(t, z) and y(t, z′) interacting through
competition for the same resource at z″, the friction coefficient B, expressed in terms of a
rate per unit population, may depend on z, z′, and z″. The dependence of B on z and z′
would be reflective of the intrinsic differences in resource consumption between the
populations located at z and z′, whereas the dependence on z″ is implicitly reflective of the
amount of resource at that location. To minimize the complexity of the model, consider the
case when the demand for resource per unit of consumer is independent of the consumer's
location. In other words, let B = B(z″) depend at most on resource distribution; the larger
B(z″) is the more fierce the competition is, reflective of less resource at z″. Then, the
overall friction between a specific y(t, z) and all other y(t, z′) in all locations z″ is

For simplicity, consider a piecewise constant distribution of resource in Z, where Θ is the
Heaviside function: Θ(x) = 1 for x ≥ 0, and Θ(x) = 0 for x < 0. Thus,

Then,

We can write g0 as a function of the single variable z – z′ due to the kernels used and due to

a calculation in the Appendix A. The definition of g in case of Gaussian 
is the following:
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Therefore, the dV model becomes

(3)

3. Analytical and numeric solutions of dLV
Next consider the model equations (1)–(2). Besides the extinction cases for both x and y, we
have

(4)

In the rest of the paper we assume

(5)

That is, the intrinsic predator death rate in the absence of prey must be less than the product
of the region's prey carrying capacity and the predator's growth rate (for each predator type).

Stability of the equilibrium state (4)
For stability of (4), we linearize about this state; that is, let

Substituting into the equations and retaining O(ε) terms yields

(6)

(7)

If we take the Fourier transform (Miles, 1971) of these equations and write them in matrix
form, we have

(8)

So, for a non-trivial solution to (8), rates μ must be such that the determinant of M equals 0,
giving us the characteristic equation for M, namely

(9)

But the solutions to this quadratic satisfy Re(μ) < 0, implying (linear) stability for (xs, ys).
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As a note in passing, if we had included degeneracy in the prey interaction, that is, if (1) had

been replaced by ,
then (9) would have become

(9 ′)

and the stability of (xs, ys) would depend on the type of kernels chosen. If both k and k1 are
of Gaussian (or exponential) type, the solutions to (9′) will have real part negative, i.e.
Re(μ(ξ)) < 0 for all ξ, implying stability for (xs, ys). But if k1 is of Heaviside type, then
there are ranges of wavenumbers ξ where Re(μ(ξ)) > 0, for which in those intervals (xs, ys)

is unstable. As an example let k be of Gaussian type, say , then k̂(ξ) =
exp(–ξ2σ2/4), and let k1 be of Heaviside type, so

then k̂1(ξ) = sin(ξσ1)/ξσ1. Hence, there are ranges of wavenumbers where k̂1(ξ) < 0, namely

(10)

where Re(μ(ξ)) > 0, and (9) becomes

In calculations we will stick with the model (1)–(2) and to these specific kernel functions,
though there are many representations we could use. The main difference between the two
classes is that the Heaviside model, as opposed to the Gaussian (or exponential case), has
only local influence.

Discrete time problem
To motivate further analysis, let t = tn = nΔt, xn(w) ≅ x(tn, w), yn(z) ≅ y(tn, z), n = 0, 1, . . . .
An interesting case occurs when the kernel is local; that is, let

where σ > 0 is meant to be rather small. Then (1), (2) become

(11)

(12)
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Let us consider a few analytically tractable special cases. First, let x0(z) ≡ x* ∈ (0, K), y0(z)
≡ y* > 0, for all . It is straightforward to show that xn and yn do not depend on z and
that

(13)

(14)

The system has the fixed point (xs, ys), given in (4), which is stable via the necessary and
sufficient conditions of Jury (1971) because of (5) and Δt being small. Also, one can show
that (xn, yn) → (xs, ys) as n → ∞. If we had substituted a Gaussian kernel function above in
place of the Heaviside function, we would have obtained the same system (13)–(14).

Next consider the case x0(z) = x*Θ(z), and y0(z) ≡ y* > 0 small. This is an idealization of a
situation where there is a sharp transition between having a competing population and
having no population (i.e. no resource for y), perhaps representing the edge of a population
patch. Then, as long as z ≥ σ , (13)–(14) hold and (xn, yn) → (xs, ys) as n → ∞. For z ≤ –σ,
xn ≡ 0 and yn = (1 – αΔt)n y* → 0 as n → ∞. Also, if we let z → 0+, then it can be shown
that, with a slight abuse of notation, letting xn = xn(0+), yn = yn(0+),

(15)

(16)

and in this case (xn, yn) → (2α/β, (a/b)(1 – 2cα/aβ)) as n → ∞, assuming K > 2α/β. So, at
the population edge (from the trait z viewpoint), the prey population has competition only on
one side, so it can reach a density twice what it can in the “interior.” This suggests that for 0
< z < σ, xn(z) will converge to a value in the interval (xs, 2xs), though this does not indicate
the possibility of any fine structure like possible oscillations in population. The predator
population sizes will follow the structure variation of the prey populations except for a
“phase” shift. If we let z → σ+, expressions (15), (16) can be re-derived so that (xn(σ+),
yn(σ+)) → (xs, ys)) as n → ∞. For this case, where Gaussian kernels are used instead of
Heaviside kernels, the analytic situation is readily more complex to deal with. For example,
for z < 0, xn(z) ≡ 0, but at , where erfc(·) is the
complimentary error function replace erfc(–z/σ) with ez/σ in the exponential kernel case),
then iterations have analytically complicated dependence on z, which does not make them
easily tractable. Instead, we next carry out numerical simulations using Gaussian kernels.

Simulating the degenerate Lotka–Volterra (dLV) and degenerate Verhulst (dV) models
As the first example, we took k(z) to be Gaussian kernel function, with σ left variable. In
Fig. 1, when σ = 0, there is no degeneracy in the model and, as expected, convergence of
y(t, z) is limited to the prey food source, given by x(0, z) = 5Θ(140 – z)Θ(z – 60), that is, a
rectangular distribution with amplitude 5 in the interval 60 < z < 140. The predator
population at t = 0 is uniformly distributed at a very low density initially in all the graphs of
Fig. 1.

The resource x in Fig. 1 had a rectangular distribution with amplitude of 5 in the interval
[60; 140]. In the absence of degeneracy (σ = 0), consumers located at each preference point
z interact with resource independently of each other, resulting in a series of independent
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classical Lotka–Volterra models. This implementation of the model manifested, as expected,
in consumer dynamics that were similar at all preference points z in the interval matching
the distribution of resource (upper left panel in Fig. 1). Considering that resource is self-
limiting, as reflected in the term c in Eq. (1), the dynamics of consumer converged with time
towards a stable solution, as expected in the classical competitive Lotka–Volterra model.

Very different dynamics were observed when the interactions between resource and
consumer were degenerate (σ ≠ 0). Consider the case of σ = 33 (Fig. 1). The population of
consumers dynamically separated into two clearly defined subpopulations. The explanation
for such divergence by preference is as follows. Due to the degenerate interaction between
resource and consumers at all preference points, the consumers with preferences z and z′
will compete not only among their own kind (other consumers with preference z or
preference z′), but also with each other, for resource located at various z″. Initially, when
the overall resource is abundant, the population grows rapidly in the middle of the resource
distribution, because the consumers located here have resources from both sides of the
distribution available to them due to the degenerate nature of consumption. The consumers
with resource preferences that are closer to the edges of the resource distribution are at a
competitive disadvantage, and grow slower because less overall resource is available to
them. However, when the consumer population grows significantly, the strength of
competition for resource will be greatest in the middle of the resource distribution, due to
the degenerate interaction of resource with consumers. As a result, consumers with resource
preferences in the middle of the distribution range experience the fiercest competitive
pressure and become negatively selected, pushing the “wings” of the population distribution
to the sides of the distribution range. Considering again the simple example of foliage
distribution by altitude, zebras and giraffes consume foliage at different altitudes, but there
are no species with intermediate heights between these two. This observation appears
counterintuitive, because there is foliage available at the altitudes above those commonly
grazed by zebras and below those commonly grazed by giraffes. The results of our model
suggest that the intermediate forms are likely suppressed by the degeneracy-based
competition, on the one side from zebras who can reach higher than their average height,
and on the other side from giraffes who can reach lower than their average height. Applied
to immunology, our model suggests that various antigens will not necessarily elicit
generation of B or T cells whose specificity matches the antigens perfectly. Instead, some
antigenic determinants will appear “immunodominant,” while the others will seem less
antigenic. This difference takes place not because of the intrinsic differences in the
“antigenic strength.” Instead, the clumped distribution of the immune cell specificities may
have to do with population dynamics within the degenerate repertoires of the immune
receptors.

There is a limit, however, to how far the forming subpopulations can be pushed apart,
because there is no resource available for consumption outside of the resource distribution
range. Therefore, the population stabilizes into two subgroups, as shown in the lower right
panel of Fig. 1. With smaller values of σ and therefore narrower degeneracy-defined
competition ranges, more subpopulations form (σ = 13 in Fig. 1). The results of the model
(1)–(2) shown in Fig. 1 closely resemble the results obtained in a different model based on
cellular automata whose behavior was defined by degenerate consumption of rectangular
distributed resource; no analytical considerations were utilized in that case (Atamas, 1996,
2003).

We do not investigate the dV model, that is Eq. (3), analytically here, but the numeric
solution shown in Fig. 2 for the dV model resembles the nature of dynamics observed in the
dLV model (Fig. 1). Notice that despite the different inherent presumptions between the
dLV model (1)–(2) and the dV model (3), the effect of degeneracy on population dynamics
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in these two models was similar, as well as being similar to that observed in a cellular
automata-based model of a degenerate consumer–resource system (Atamas, 1996, 2003).

4. Discussion
The proposed model demonstrates competition-driven divergence of subpopulations within
repertoires of degenerately interacting resource and consumer. Degeneracy is functional
microdiversity of individual elements in repertoires. It occurs at the molecular, cellular, and
organismal levels. Degeneracy greatly increases the adaptability through selection and also
leads to phenomenal reliability, because a loss of an individual element will have a small
impact on the whole repertoire, due to the overlapping functionality of multiple elements
(Atamas et al., 1998; Atamas, 1996, 2003; Edelman and Mountcastle, 1978; Edelman and
Gally, 2001). In the proposed model, the scale, or “width,” of degeneracy is defined by σ. In
the non-degenerate case (σ = 0, see Fig. 1), the population of consumers simply mirrors the
resource population. However, when degeneracy is introduced (σ > 0, see Fig. 1), the
population undergoes dynamic self-structuring.

Our model is based on the novel concept of degeneracy, which is broadly applicable to
various selective systems, including molecular, cellular, and organismal selection of
degenerate repertoires. The results demonstrate the relevance of Darwin's original thought
experiment on “divergence of character.” Although Darwin did not call it a “degenerate
system” and only made a thought experiment, he was the first to suggest that such a system
could be at work in the case of species formation, noting that “competition will generally be
most severe between those forms which are most nearly related to each other in habits,
constitution, and structure” (Darwin, 1859). Our quantitative modeling takes these ideas
further by providing a framework for quantifying the limits of how far the forming sub-
populations can be pushed apart. The Darwin's thought experiment describes an outcome
similar to that observed in our steady-state scenario, and we take it further by providing
visual demonstration of the intermediate progression of the speciation. However, the most
notable, novel, development that we propose in this study is that degeneracy leads to a
phenomenon that was not foreseen by Darwin in his thought experiment—the phenomenon
of non-local influences in the degenerate systems. Degeneracy, by definition, is the ability of
each single individual in a population to manifest a spectrum (distribution), not a single
static measure, of a trait. As a result, a population becomes an ensemble of overlapping
degeneracy ranges. A change in the quantity of individuals of any given kind will not only
affect their immediate competition within their degeneracy range, but will have global effect
on the population as a whole. The model proposed here allows for numerical exploration of
this phenomenon.

The results demonstrate that the system's behavior appears to depend strongly on the width
of the degeneracy range for the interactions between resource and consumer. The elements
of the consumer repertoire with overlapping preference ranges for the resource (adjacent in
the Z domain), will interact and be selected by the same signals (resource) from the
environment. Therefore, the consumers with overlapping degeneracy ranges will directly
compete for resource. Moreover, even if two elements have “degeneracy ranges” that do not
directly overlap, they might overlap with a common third element of the repertoire.
Therefore, numeric expansion or attenuation of a single element will affect not only its
immediate “neighbors on Z” but the whole repertoire.

Of important notice, edges of resource distribution define the behavior of the degenerate
selective system. In a realistic ecological system with geographic nature of preference z
(space), such as forests, edge effects are obvious (Schedlbauer et al., 2007; Malcolm, 1994).
Simple considerations predict that, indeed, this should be the case. First, consumers sited at
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the edges have less overall potential for the amount of recognized resource. This leads to
earlier completion of density fluctuation cycles at the edges than in the middle of
distribution. On the other hand, edge-sited consumers also experience less competition from
the neighboring consumers, simply because they have fewer neighbors. Thus, the denser
zones in distributions should be “pushed apart” to the edges. This does happen in fact in
Figs. 1 and 2. The realistic Z axis of resource preference should not be necessarily
geographic. For example, experimental observation of such separation to the edges of
distribution has been made for two sympatric species of leaf-eating crabs in a rain forest
(Greenaway and Raghaven, 1998). Although the two species of crabs can apparently utilize
each other's preferred types of leaves, they specialize in consumption of leaves of different
quality. In this case, the sympatric (occupying the same geographic location) species are
using the opposed ends of the leaf litter quality.

Importantly, the proposed model is applicable to degenerate repertoires in a broad sense (not
just classical ecosystems), such as repertoires of molecules (e.g. enzymes and their
substrates, cytokines and their receptors) or cells (e.g. T and B lymphocytes and infectious
invaders). Any selective system demonstrating functional plasticity of elements may qualify
as a degenerate system. As a mater of fact, degeneracy is a consequence of structural and
functional plasticity of elements of diverse repertoires. Synaptic plasticity exemplifies
degeneracy in the nervous system (Edelman and Gally, 2001; Leonardo, 2005). Structural
and the subsequent ligand-binding plasticity of proteins exemplify degeneracy in molecular
systems (Atamas, 2005). Degeneracy of immune specificities arises from the plasticity at the
antigen-combining sites of antibodies (Manivel et al., 2002; Goel et al., 2004) and T cells
(Selin et al., 2004). The origin of a new direction of adaptive evolution starts with a
population of variably responsive, developmentally plastic organisms (West-Eberhard,
2005). The results of our model show that degeneracy in turn affects the environmental
responsiveness, or plasticity, of biological repertoires. The results show that the originally
homogeneously distributed populations become dynamically divergent within the resource
distribution range. This is an unexpected result from the perspective of naïve Darwinism
defined as “survival of the fittest.” In the latter case, being “the fittest” implies that plasticity
would lead the consumer population to mirror the distribution of resource (the only
“environment” in this model) on the Z axis. In contrast, our results show that degeneracy
leads to a fitness landscape (reproductive success along the Z axis) of the consumer that is
very different from the simple rectangular distribution of resource (see Figs. 1 and 2).

From ecological perspective, these ideas appear important as a possible mechanism of
sympatric, as opposed to allopatric, divergence in ecosystems. The entire idea of sympatric
divergence implies, in contrast to allopatric divergence, that there is no geographic isolation
between elements of the repertoire (a species or a subpopulation in an ecosystem). The
proposed model has no particular isolating mechanism for the elements of the repertoire, yet
with time, parts of the repertoire become dynamically isolated. The repulsion of appearing
subpopulations is due to competition for the resource not only between consumers of the
same specificity, but also between consumers adjacent in Z. Such self-structuring of the
recognizing population leads to the structuring of the resource, and the structured resource
further supports the structuring of the consumer population (see Fig. 1). This model suggests
a mechanism of sympatric divergence of subpopulations based purely on ecodynamic
isolation.

A strength and also a limitation of the proposed models is that they do not include sexual
reproduction-based selection or genetic mutability in the repertoires. As a strength, since no
sexual reproduction and no genetic mutability is present in the system (the preference z
remains the same for each growing element of the repertoire), the models are applicable to a
variety of non-sexually expanding and immutable degenerate repertoires (such as antigen-
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driven expansion of lymphocytes, or selective synaptic strengthening of connections
selected by signals in neuronal circuits). Also, regarding the strength, the models show that
even in the absence of Darwinian variation through mutations, selection alone leads to
pattern formation in degenerate repertoires. However, the applicability of the models would
be obviously limited for sexually reproducing species in ecological systems, and for
selective processes that are based on hypervariability of the offspring, such as in specificity
maturation of B cells.

In summary, we have proposed a model of generalized selective degenerate repertoires that
display self-structuring dynamics. It is an example where non-local interactions between
populations of one kind or another are extremely important, and the modeling leads to (non-
linear) partial differential-integral equations. Other areas where such non-local effects have
recently been modeled include non-local contact models of infectious diseases, and
modeling of non-local connectivity in neural field studies, though in these cases, z represents
a spatial variable. Needless to say, biology has provided a need to further analyze the
behavior of classes of these type equations with non-local integral terms, and at present
analytic results are quite limited.
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Appendix A: The kernel functions used in the paper
Examples of the kind of kernels we consider here include a Gaussian form, namely

, where σ is a variance parameter, and a Heaviside form, namely
k(z) = σ/2 if |z| < σ, and 0 otherwise. (Defining the usual Heaviside function, or unit step
function, as Θ(z) = 1 if z ≥ 0, and 0 for z < 0, then another way of writing k(z) is (σ/2)Θ(σ –
|z|).) Both of the kernel forms belong to a larger class of functions that are proportional to
exp(–|z/σ|r). In the Gaussian case, r = 2, while letting r → ∞, we obtain the Heaviside form.
As σ → 0+, both Gaussian and Heaviside forms of the kernel function approximate Dirac
delta functions; thus, in the limit, this would imply non-interacting, non-competing,
continuum of population types.

For the dV model we needed to show that the integral for 
in Section 2 can actually be written as a single variable z – z″ for at least the kernels used in

the paper. The integrals are over the whole real line ℜ. First, given , then

where z = z″ + x. Now, with y = z′ – z″,

Thus, the integral becomes
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That is, the integral is actually of Gaussian form, of argument z – z″.

Similarly, suppose k is of Heaviside form, that is, . Then

 unless |z′ – z| < σ and |z′ – z″| < σ; that is, unless |z – z″| < 2σ. If

this is so, then integral equals . Hence,

While this shows g = g(z – z″), g is not a Heaviside step function. Nevertheless, it is a “tent-
like” form with compact support (i.e. is zero outside an interval about its argument), so it
preserves the local character of the Heaviside k.

To summarize,

k(z) k̂(ξ) g(z) ĝ(ξ)

exp( − z 2 ∕ σ 2)
σ π

exp(–σ2ξ2/4) exp( − z 2 ∕ 2σ 2)
σ 2π

exp(–σ2ξ2/2)

1
2σ ϴ(σ − ∣ z ∣ ) sin(σξ)

σξ
2σ − ∣ z ∣

4σ 2
ϴ(2σ − ∣ z ∣ ) 2

ξ 2
(1 − cos(2σξ))

exp( − ∣ z ∣ ∕ σ)
2σ

1

1 + σ 2ξ 2
exp( − ∣ z ∣ ∕ σ)

4σ (1 +
∣ z ∣
σ ) 1

1 + 2σ 2ξ 2 + σ 4ξ 4
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Fig. 1.
Simulation results of consumer dynamics in the system (1)–(2) for the parameters a = 1, b =
0.2, c = 0.02, α = 0.5, β = 0.12, and indicated values of sigma. The non-degeneracy case is
represented by σ = 0.
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Fig. 2.
Simulation results of dV model (3) for indicated values of sigma. The parameters were B0 =
100, B1 = 0.1, and a = 3. The basic behavior of the model is similar to the dLV model.
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