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ABSTRACT

Background. Overfeeding amino acids (AAs) increases cellu-
lar exposure to advanced glycation end-products (AGEs), a
mechanism for protein intake to worsen diabetic kidney
disease (DKD). This study assessed receptor for AGE
(RAGE)-mediated apoptosis and inflammation in glomerular
cells exposed to metabolic stressors characteristic of high-
protein diets and/or diabetes in vitro with proof-of-concept
appraisal in vivo.
Methods. Mouse podocytes and mesangial cells were cultured
under control and metabolic stressor conditions: (i) no
addition; (ii) increased AAs (4–6-fold >control); (iii) high
glucose (HG, 30.5 mM); (iv) AA/HG combination; (v) AGE-
bovine serum albumin (AGE-BSA, 300 µg/mL); (vi) BSA (300
µg/mL). RAGE was inhibited by blocking antibody. Diabetic
(streptozotocin) and nondiabetic mice (C57BL/6J) consumed
diets with protein calories of 20 or 40% (high) for 20 weeks.
People with DKD and controls provided 24-h urine samples.
Results. In podocytes and mesangial cells, apoptosis (caspase
3/7 activity and TUNEL) increased in all metabolic stressor
conditions. Both inflammatory mediator expression (real-time
reverse transcriptase–polymerase chain reaction: serum
amyloid A, caspase-4, inducible nitric oxide synthase, and
monocyte chemotactic protein-1) and RAGE (immunostain-
ing) also increased. RAGE inhibition prevented apoptosis and
inflammation in podocytes. Among mice fed high protein,

podocyte number (WT-1 immunostaining) decreased in the
diabetic group, and only these diabetic mice developed albu-
minuria. Protein intake (urea nitrogen) correlated with AGE
excretion (carboxymethyllysine) in people with DKD and con-
trols.
Conclusions. High-protein diet and/or diabetes-like con-
ditions increased glomerular cell death and inflammation,
responses mediated by RAGEs in podocytes. The concept that
high-protein diets exacerbate early indicators of DKD is sup-
ported by data from mice and people.

INTRODUCTION

Diabetic kidney disease (DKD) is the leading cause of chronic
kidney disease in the developed world [1, 2]. Lifestyle factors
greatly contribute to the development of diabetes and its com-
plications. High-protein diets provoke mechanisms of DKD
progression, including glomerular hyperfiltration and hyper-
tension, with the activation of the renin–angiotensin system
[3, 4]. More recently, dietary protein has been recognized as
an abundant source of advanced glycation end-products
(AGEs). Nonenzymatic reactions of free amino groups with
ketones or aldehydes on sugars produce reactive intermediates
that subsequently rearrange to form irreversible AGE-modi-
fied proteins [5]. Direct oxidation of amino acids (AAs) can
generate reactive intermediates leading to endogenously pro-
duced AGEs [6]. Eating preformed AGEs in foods, especially
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derived from proteins browned at high heat, are an exogenous
source of AGEs. As such, the AGE pool increases either
through the diet or via hyperglycemia. AGEs also accrue when
excretion is reduced by impaired kidney function [7–10]. The
kidney itself bears a brunt of AGE exposure. In the glomeru-
lus, AGEs cross-link proteins and impair protein degradation
leading to basement membrane thickening and mesangial
expansion [11].

Notably, a proinflammatory receptor for AGE (RAGE) is
present on glomerular cells [11]. RAGE activates signals cul-
minating in cellular inflammation and death [12–14].
However, dietary effects on RAGE activation and resulting cel-
lular responses have been previously unexplored. Candidate
inflammatory mediators include novel and conventional cyto-
kines. Among the novel, serum amyloid A (SAA) is a RAGE
ligand implicated in inflammatory aspects of atherosclerosis
[15–17]. Additionally, caspase-4, a member of Group 1 cas-
pases, stimulates inflammation and apoptosis [18]. Conven-
tional cytokines, such as inducible nitric oxide synthase
(iNOS) and monocyte chemotactic protein-1 (MCP-1), have
been implicated in inflammation of the diabetic kidney [12,
19]. The hypothesis for this study was that overfeeding AAs in
a manner akin to high-protein diet, with or without hypergly-
cemia, increases AGE exposure and RAGE activation. The
study aims were: (i) to assess RAGE-mediated apoptosis and
inflammatory responses in vitro in glomerular cells exposed to
conditions mimicking high-protein diet and/or diabetes and
(ii) to evaluate cellular findings for translational proof-of-
concept in vivo in mice and people.

MATERIALS AND METHODS

Cell studies
Cell culture. Mouse podocytes (Dr Stuart Shankland, Uni-
versity of Washington, Seattle) are conditionally immortalized
[20]. Podocytes were grown on collagen I (BD Biosciences,
www.bdbiosciences.com) coated Primaria plates (VWR, www.
vwrsp.com) in RPMI 1640 medium (Sigma Chemical Co.,
www.sigmaaldrich.com) containing 10% heat-inactivated fetal
bovine serum (FBS, HyClone, Thermo Fisher, www.hyclone.
com) and interferon-γ (50 µg/mL) at 33°C. Cell differentiation
was promoted by incubation at 37°C without interferon-γ for
10–12 days.

Mouse mesangial cells (MES-13) were obtained from
American Type Culture Collection (www.atcc.org) and grown
at 37°C in Dulbecco’s Modified Eagle Medium (Gibco Life
Technologies, www.lifetechnologies.com) supplemented with
penicillin–streptomycin (100 units/mL) and 10% heat-inacti-
vated FBS.

Experimental conditions. Metabolic stressors included: (i)
C: control (no addition), glucose 5.5 mM; (ii) AA: mixed AA
solution and L-arginine (Baxter, www.baxter.com) added to
achieve levels 4–6-fold >control; (iii) high glucose (HG),
glucose 30.5 mM; (iv) AA/HG: combination of AA and HG;
(v) AGE-BSA, 300 µg/mL; (vi) BSA, 300 µg/mL. Media was
changed to 0.5% FBS 1 day prior to the experimental

conditions. To make AGE-BSA, fatty acid-free fraction IV
BSA (Sigma) was incubated with 0.5 M glucose for 45 days at
37°C. The resulting AGE-BSA solution was dialyzed with
phosphate-buffered saline (PBS, pH 7.4) and sterile filtered
[21]. Endotoxin was undetectable (E-TOXATE, Sigma). For
RAGE inhibition studies, an anti-RAGE antibody, or control
goat serum (1:100, Millipore, www.millipore.com), was added
to media before addition to the cells. A time course study as-
sessed glucose levels in normoglycemic media. Baseline media
glucose concentrations (n = 4 per group) were 5.7 ± 0.0,
5.69 ± 0.04 and 5.69 ± 0.04 mM for C, AA and AGE con-
ditions, respectively. In conditioned media from podocytes at
48 h, glucose levels were 5.22 ± 0.08, 5.30 ± 0.06 and
4.87 ± 0.15 (P < 0.002 versus baseline). In conditioned media
from mesangial cells at 48 h, glucose levels were 3.91 ± 0.10,
4.16 ± 0.14 and 3.91 ± 0.03 (P < 0.001 versus baseline).

Apoptosis measurements. In podocytes and mesangial
cells, caspase 3/7 activity was measured using the SensoLyte®

Homogeneous AFC Caspase-3/7 Assay Kit (Anaspec Corp.,
www.anaspec.com). Fluorescence was measured by plate
reader (Biotek, www.biotek.com). For the TUNEL assay, cells
were grown on glass coverslips and stained with the DEAD-
END kit (Promega, www.promega.com). Nuclei were stained
with Hoechst 33342 dye. A fluorescent microscope (Olympus
America, Inc., www.olympusamerica.com) and camera
(Olympus DC-70 CCD) were used for visualization. Images
were analyzed by Microsuite Biological Suite Imaging Software
5.0 (Soft Imaging System Co., www.olympus-sis.com). For
each condition, two coverslips were photographed to quantify
>500 cells in 5 separate experiments.

mRNA measurements by real-time PCR. RAGE, SAA3,
iNOS, MCP-1 and caspase-4 were assessed by mRNA
expression. Total RNA was isolated from podocytes and me-
sangial cells using the RiboPure kit (Ambion, www.
lifetechnologies.com) and quantified using the Quant-iT™ Ri-
boGreen® RNA Reagent and Kit (Invitrogen, www.
lifetechnologies.com). Equal amounts of RNA were DNAse
treated using amplification grade DNase I (Invitrogen). cDNA
was synthesized using Superscript III (Invitrogen). Real-time
reverse transcriptase–polymerase chain reaction (RT–PCR)
was performed on an Applied Biosystems 7900HT Fast RT–
PCR System (www.lifetechnologies.com) using SA Biosciences
Sybr-Green reagent (Qiagen, www.qiagen.com). Results were
quantified with SDS v2.4 software (Applied Biosystems) and
normalized to mouse TATA-box binding protein. Gene-
specific primers were designed by the OligoPerfect™ Designer
program (Invitrogen).

CML ELISA assay. After media was collected, protease
inhibitors were added to prepare for the direct enzyme-linked
immunosorbent assay (ELISA) measurement of carboxy-
methyllysine (CML) using affinity-purified rabbit antibodies
to CML and a CML–BSA standard [22].

Immunocytochemistry. Podocytes and mesangial cells
grown on glass cover slips were fixed in 100% methanol,
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hydrated in PBS, blocked (Tris-buffered saline, 0.3% Tween-20
[TBST] and 1% BSA) and incubated overnight with rabbit
anti-CML (6.0 μg/mL) or anti-RAGE antibodies (2 µg/mL,
Santa Cruz Biotechnology, www.scbt.com). After washing,
they were incubated with goat anti-rabbit IgG conjugated with
Oregon Green 488 (Invitrogen). Fluorescence microscopy and
digital imaging were performed as described for the TUNEL
assay. Antibody reactivity measurements were deemed specific
based on absorption with RNase A-CML or RAGE peptide
(Santa Cruz Biotechnology).

Mouse studies
Induction of diabetes, care and monitoring. The exper-
imental protocol was approved by the Animal Care Committee
at the University of Washington. Male C57BL/6J mice, 6
weeks of age, were purchased from The Jackson Laboratories
(www.jax.org) and maintained in a pathogen-free facility with
a 12-h light cycle and free access to diet and water. Mice were
made diabetic by five daily injections of streptozotocin (STZ,
40 mg/kg) beginning at 8 weeks of age (n = 20 per group).
Control mice received five daily injections of citrate buffer.
During the 20-week study, blood glucose and spot urine col-
lections were made every other week. Body weight was deter-
mined weekly. Blood glucose was maintained at 300–400 mg/
dL by daily insulin administration. If mice had glucose levels
of 350–500 mg/dL, they received 5–9 units of regular insulin.
If glucose levels were >500 mg/dL, mice received 10 units of
regular insulin. Blood pressure was measured once at 16
weeks.

Study diets. One week following STZ or citrate injections,
mice were started on study diets (Harlan Teklad, www.harlan.
com) with protein calories of 20% (standard) or 40% (high).
Caloric intake of carbohydrates was 62 and 42%, respectively.
The study diets had an equal content of fat and total calories.
Mice had free access to food except when blood glucose was
measured after a 4-h fast.

Biochemical and physical assessments. Blood samples were
obtained by tail vein puncture for glucose measurements
(One-Touch Glucometer® Lifescan, www.lifescan.com). At
weeks 16, 18 and 20, urine was collected during the evening
dark cycle to quantify albumin (Albuwell M Murine ELISA kit
Exocell, www.exocell.com) and creatinine (Creatinine Compa-
nion kit Exocell) excretion. Blood pressure was measured by
the Coda-6 VPR tail-cuff system (Kent Scientific, www.
kentscientific.com) [23].

Kidney histology and podocyte counts. Kidneys were ob-
tained at the end of the study after perfusion with PBS sup-
plemented with 100 µM diethylenetriamine pentacetic acid
and 100 µM butylated hydroxytoluene (Sigma). Kidneys were
immersion-fixed in 10% neutral-buffered formalin, embedded
in paraffin and sectioned for staining with silver methenamine,
periodic acid-Schiff, hematoxylin and eosin.

Podocyte were counted on 3-µm sections of formalin-fixed
tissue immunostained with WT-1 (Santa Cruz Biotechnol-
ogy), a podocyte marker. Glomerular sections (n = 50) were

photographed and imported into Microsuite Biological Suite
Imaging Software 5.0 (Soft Imaging System) for morphometric
analyses. The podocyte number was determined by the stereo-
logic method of Weibel [24] based on evaluating the density of
WT-1-positive podocytes and glomerular volume. The
number of WT-1-positive nuclei per glomerulus was multi-
plied by glomerular volume to derive the podocyte number
[25–27].

Human studies. Urine samples (n = 32) from a study that
assessed the effect of angiotensin-receptor blockade on AGE
production in people with DKD (n = 11), those with uncom-
plicated diabetes (n = 10), and healthy controls (n = 11) were
evaluated to examine relationships between dietary protein
and AGE excretion [28]. Study participants with DKD had
overt nephropathy defined by total protein excretion >500 mg/
day. Samples for the present analyses were from 24-h collec-
tions obtained at baseline (before administration of study
medicine, candesartan). Urine was stored at −70°C until
thawed in the presence of protease inhibitors. For the esti-
mation of protein intake, urinary urea was measured on an
Abbott Architecture 8200 auto analyzer. Protein intake was
calculated by the Maroni equation. [29]. Urinary CML was
measured by competitive ELISA. Urine (50 µL) was combined
with anti-CML antibody (50 µL, diluted 1:1000) and incubated
overnight at 4°C. The reaction was add to a 96-well plate
(Rainin Instruments, www.mt.com) coated with CML-BSA
(100 ng/100 µL). After incubation and washing, anti-rabbit
biotin-conjugated antibody (Sigma) and peroxidase-conju-
gated streptavidin (www.rockland-inc.com) were sequentially
added. The absorbance of washed plates was measured by
plate reader (Sunrise plate reader, Tecan, www.tecan.com).

Statistical analysis

Data were expressed as mean ± SD. Two-way repeated-
measures analysis of variance assessed differences in outcome
measurements between groups and treatments. Statistical sig-
nificance was set at two-tailed probabilities <5% (P < 0.05).
SPSS (www.spss.com) version 17 software was used for stat-
istics.

RESULTS

Podocyte studies
Apoptosis. Caspase 3/7 activity, an indicator of early-phase
apoptosis, was increased by all metabolic stressor conditions
(AA, HG, AA/HG and AGE). Inhibition of RAGE inhibited
caspase 3/7 activity in podocytes exposed to each condition
(Figure 1). Similarly, TUNEL staining, the indicator of late-
phase apoptosis was increased after exposure to the same con-
ditions. Treatment of podocytes with the anti-RAGE antibody
reduced the number of TUNEL-positive podocytes (Figure 1).

RAGE expression and AGE production. Immunostaining
revealed increased RAGE in podocytes exposed to AA, HG,
AA/HG and AGE for 2 days (Figure 2). On the other hand,
RAGE mRNA expression did not increase after the periods of
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exposure to metabolic stressors from 2 to 7 days (data not
shown). Immunostaining for AGE (CML) increased in podo-
cytes exposed to AA, HG and AA/HG (Figure 3a). CML in
conditioned media also increased, but this occurrence was
later than the cellular appearance of CML (Figure 3b).

Inflammatory mediators. A time course study (6 h–7 days)
of AGE-induced expression of mRNA for inflammatory
mediators was performed (data not shown). As a result, 1 day
of exposure was determined to be optimal. Anti-RAGE anti-
body almost fully inhibited mRNA expression of SAA and
iNOS, while reduction of MCP-1 and caspase-4 was approxi-
mately half (Figure 4). The other conditions (AA, HG and
AA/HG) did not consistently induce mRNA expression of
SAA3, iNOS, MCP-1 or caspase-4 over a time course ranging
from 1 to 7 days (data not shown). Therefore, inhibition
studies with the anti-RAGE antibody were only performed for
the AGE condition.

Mesangial cell studies
Apoptosis. Both caspase 3/7 activity and TUNEL staining
increased in mesangial cells exposed to AA, HG, AA/HG and
AGE (Figure 5). However, anti-RAGE antibody did not reduce
caspase 3/7 activity or TUNEL staining in response to any
condition (data not shown).

RAGE expression. Immunostaining for RAGE increased in
mesangial cells exposed to AA, HG, AA/HG and AGE
(Figure 6), but corresponding mRNA expression did not in-
crease (data not shown).

Inflammatory mediators. A time course of mRNA
expression for AGE-induced inflammatory mediators revealed
that SAA3, MCP-1, iNOS and caspase-4 peaked within the
first day of exposure (Figure 7). AGE-induced mRNA
expression for inflammatory mediators was not inhibited by
the anti-RAGE antibody (data not shown). The other con-
ditions (AA, HG and AA/HG) did not consistently induce
mRNA expression of SAA3, iNOS, MCP-1 or caspase-4 for up
to a 3-day period (data not shown). Therefore, inhibition
studies with the anti-RAGE antibody were not performed.

Mouse study

Diabetic mice in both standard and high-protein diet
groups for 20 weeks had elevated blood glucose levels and
lower body weight compared with their respective control
groups of nondiabetic mice (Table 1). Diabetic mice fed a
high-protein diet exhibited higher blood pressure compared
with nondiabetic mice also on the high-protein diet. Kidney
hypertrophy was significantly greater in diabetic mice fed the
high-protein diet compared with those fed the standard diet
(Table 1). In this model, diabetic mice fed a standard diet did

F IGURE 1 : Podocyte apoptosis in metabolic stressor conditions with inhibition by antibody to RAGE. Cells were exposed to conditions with
and without the anti-RAGE antibody or control serum. (a) An early-phase marker, caspase 3/7 activity, was measured after 1 day. (b) A later-
phase marker, TUNEL staining, was performed after 2 days. Data are expressed as the mean ± SD, *P < 0.05 versus control, †P < 0.05 versus
control serum, n = 9–10. Metabolic stressor conditions included: (i) C: control (no addition), glucose 5.5 mM; (ii) AA: increased amino acids,
levels 4–6-fold >control; (iii) HG: high glucose, glucose 30.5 mM; (iv) AA/HG: combination of AA and HG; (v) AGE-bovine serum albumin
(AGE-BSA, 300 µg/mL).

F IGURE 2 : RAGE expression on podocytes exposed to metabolic stressors. Cells were exposed to conditions for 2 days, and RAGE was de-
tected by immunostaining (original magnification, ×200). Metabolic stressor conditions included: (i) C: control (no addition), glucose 5.5 mM;
(ii) AA: increased amino acids, levels 4–6-fold >control; (iii) HG: high glucose, glucose 30.5 mM; (iv) AA/HG: combination of AA and HG; (v)
AGE-bovine serum albumin (AGE-BSA, 300 µg/mL).

O
R
IG

IN
A
L
A
R
T
IC

L
E

R.L. Meek et al.

1714



not develop increased levels of albuminuria, whereas those on
the high-protein diet had twice as much albumin excretion. In
nondiabetic mice, only the group fed the high-protein diet
developed increased levels of albuminuria (Figure 8).

Histological examination of kidneys revealed modest ab-
normalities, as expected for this model which is not ‘DKD
prone’ [30]. Nevertheless, the model is useful for understand-
ing early changes that may initiate disease. As such, podocyte
loss, an early structural manifestation underlying albuminuria,
was assessed by immunostaining for the podocyte marker
WT-1. The reduced podocyte number was only detected in
diabetic mice fed the high-protein diet (Figure 9).

Diabetic mice exhibited increased mRNA for RAGE in the
kidney cortex compared with nondiabetic mice (3584 ± 879
versus 2598 ± 607 molecules/ng RNA, P < 0.001). The group
fed the high-protein diet had a larger increment in RAGE
expression (43%) compared with those fed standard chow
(30%), but this numerical difference missed statistical signifi-
cance. CML was elevated in the kidney cortex of diabetic mice
(8.27 ± 1.57 versus 6.68 ± 1.14 µg/g, P = 0.020), but did not
differ by diet groups.

Human study

Urinary albumin excretion was 2996 ± 2702 mg/day
(mean ± SD) in participants with DKD, 43 ± 33 mg/day in
those with uncomplicated diabetes and 11 ± 5 mg/day in
healthy controls [25]. Estimated GFR (serum creatinine based
on the modification of diet in renal disease equation in mL/
min/1.73 m2) levels were 61 ± 21, 74 ± 16 and 86 ± 18 in the
groups, respectively. Creatinine clearance from the 24-h urine
collection (mL/min) measurements were 85 ± 27, 134 ± 49 and
123 ± 29, respectively. Urinary excretion of CML increased di-
rectly with dietary protein intake as assessed by urinary urea
nitrogen excretion in groups of people with DKD or uncom-
plicated diabetes and healthy controls (Figure 10).

DISCUSSION

In glomerular cells central to DKD, a high-protein diet-like
condition induced apoptosis and inflammation in both dia-
betic and nondiabetic states. RAGE appears to be a key
mediator of these responses in podocytes. A high-protein
diet also reduced the podocyte number in diabetic mice, and
only these diabetic mice developed albuminuria. In humans,
protein intake directly correlated with urinary AGE excretion
in diabetic and nondiabetic people alike.

A novel finding was that culture of podocytes with high AA
levels increased RAGE and AGE to the same extent as a HG
level. Mesangial cells are known to produce AGE in response
to AAs [31, 32]. Importantly, the corresponding data from po-
docytes and evidence for increased RAGE in both cell types

F IGURE 3 : Effect of high levels of AAs and glucose on AGE pro-
duction in podocytes. CML was detected by (a) immunostaining of
podocytes after 2 days (original magnification, ×400) and (b) ELISA
of culture media after 7 days. Data are presented as mean ± SD,
*P < 0.05 versus control, n = 11. Conditions included: (i) C: control
(no addition), glucose 5.5 mM; (ii) AA: increased amino acids, levels
4–6-fold >control; (iii) HG: high glucose, glucose 30.5 mM; (iv) AA/
HG: combination of AA and HG.

F IGURE 4 : SAA and other inflammatory mediators expressed in podocytes exposed to AGE and inhibition by antibody to RAGE. Cells were
exposed to (i) control and (ii) AGE-bovine serum albumin (AGE-BSA, 300 µg/mL), with and without the anti-RAGE antibody or control serum
for 1 day. Expression of mRNAwas determined by real-time RT–PCR and displayed relative to control (no addition). Data are expressed as
mean ± SD. *P < 0.05 versus control (no addition), †P < 0.05 versus AGE with control serum. n = 5–6.

O
R
IG

IN
A
L
A
R
T
IC

L
E

G l o m e r u l a r i n j u r y , h i g h - p r o t e i n d i e t a n d R A G E

1715



after exposure to the high levels of AAs are new observations.
Collectively, these data indicate that, in the states of metabolic
stress, including high-protein diet, the AGE–RAGE system
can be stimulated in glomerular cells. Although we did not
detect an effect of high-protein diet in mice to increase RAGE
mRNA expression in the whole kidney, this does not exclude
the possibility of increased cell-specific expression or regu-
lation of the receptor’s protein translation or surface transloca-
tion. Additionally, people who ate larger amounts of protein
had greater urinary AGE excretion, putatively reflecting in-
creased exposure of the kidney to AGE. In sum, these data

show that the high-protein diet can lead to greater amounts of
RAGE and AGE in the kidney.

Podocyte loss occurs early in DKD and is associated with
the onset of albuminuria [33–36]. In the present study, only
the high-protein diet increased albuminuria and podocyte loss
in diabetic mice. Although we did not observe increased albu-
minuria or podocyte loss in diabetic mice on a normal diet,
such changes could occur with greater hyperglycemia, longer
duration of diabetes or enhanced DKD susceptibility [35]. Of
note, blood pressure increased in diabetic mice fed the high-
protein diet, which may have contributed to albuminuria. This

F IGURE 5 : Mesangial cell apoptosis in metabolic stressor conditions. (a) Caspase 3/7 activity was measured after 1 day (n = 12) and (b)
TUNEL staining after 2 days (n = 6) of exposure to metabolic stressor conditions. Data are expressed as mean ± SD, *P < 0.05 versus control.
Metabolic stressor conditions included: (i) C: control (no addition), glucose 5.5 mM; (ii) AA: increased amino acids, levels 4–6-fold >control;
(iii) HG: high glucose, glucose 30.5 mM; (iv) AA/HG: combination of AA and HG; (v) AGE-bovine serum albumin (AGE-BSA, 300 µg/mL).

F IGURE 6 : RAGE expression in mesangial cells exposed to metabolic stressors. Cells were exposed to metabolic stressor conditions for 2 days,
and RAGE was detected by immunostaining (original magnification, ×200). Metabolic stressor conditions included: (i) C: control (no addition),
glucose 5.5 mM; (ii) AA: increased amino acids, levels 4–6-fold >control; (iii) HG: high glucose, glucose 30.5 mM; (iv) AA/HG: combination of
AA and HG; (v) AGE-bovine serum albumin (AGE-BSA, 300 µg/mL).

F IGURE 7 : Time course of SAA and other inflammatory mediators in mesangial cells stimulated with AGE. Cells were exposed to (i) control
(no addition) and (ii) AGE (AGE-BSA, 300 µg/mL). Expression of mRNAwas determined by real-time RT–PCR and displayed relative to
control (n = 3). Data are expressed as mean ± SD, *P < 0.05 versus control, †P < 0.01 versus control.
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observation is clinically relevant because we recently reported
that dietary protein associated with blood pressure in people
[37]. Moreover, this effect was explained by AA composition
with plant-like distributions favoring lower blood pressure and
animal-like distributions favoring higher blood pressure. In-
terestingly, nondiabetic mice developed albuminuria on the

high-protein diet without podocyte loss, suggesting that albu-
minuria reflects nonstructural mechanisms such as glomerular
hypertension or decreased tubular reabsorption. Overall, the
present data indicate that the high-protein diet incites podo-
cyte loss and albuminuria in diabetic mice. If these findings
translate to people, then the high-protein diet may be a life-
style factor promoting DKD onset and hypertension.

In parallel to the structural changes in mouse kidneys, high
levels of AAs and/or glucose caused apoptosis of glomerular
cells in culture. The degree of apoptosis was similar to that ob-
served with exposure to exogenous AGE, supporting the
notion of an AGE pathway for cellular responses to states of
metabolic stress. Moreover, RAGE appears responsible for po-
docyte death because apoptosis was fully inhibited by blockade
with the anti-RAGE antibody. Interestingly, podocytes
exposed to HG increase p27Kip expression, leading to cell cycle
arrest and apoptosis [38]. Exposure to exogenous AGE also
stimulates p27Kip1 expression with similar consequences [39].
If these AGE effects are RAGE-dependent, then p27Kip could
be a downstream mechanism for high-protein diet and/or hy-
perglycemia to cause podocyte death. In contrast, RAGE inhi-
bition did not block apoptosis of mesangial cells. Therefore,
cells other than podocytes appear to have non-RAGE-related
mechanisms, leading to death in response to AGE or related
metabolic stressors.

High levels of AGE incited inflammatory responses from
podocytes and mesangial cells represented by increased
mRNA expression of novel (SAA and caspase-4) and conven-
tional (MCP-1 and iNOS) cytokines. To our knowledge, these
are the first data demonstrating increased expression of SAA
and caspase-4 in glomerular cells. SAA is derived from a
family of conserved genes of which isoforms 1–3 are acute

Table 1. Biochemical and physical properties

Glucose (mg/dL) Body weight (g) Kidney/body
(mg/g)

Blood pressure (mmHg)
systolic/diastolic

Baseline Week 20 Baseline Week 20 Week 20 Week 20

Controls

Standard
chow

180 ± 27 167 ± 23 19.3 ± 1.4 29.6 ± 2.6 6.17 ± 0.60 139 ± 27/107 ± 23

High-
protein
chow

215 ± 19 172 ± 23 19.6 ± 0.7 30.2 ± 1.9 6.26 ± 0.69 123 ± 14/102 ± 14

Diabetic

Standard
chow

187 ± 31 435 ± 131* 21.0 ± 1.0 25.6 ± 2.4* 8.43 ± 1.84* 146 ± 16/116 ± 16

High-
protein
chow

204 ± 31 497 ± 88.0* 20.0 ± 0.9 24.3 ± 1.9* 10.32 ± 1.36*,** 152 ± 18***/123 ± 18***

*P < 0.001 compared with control in each diet group.
**P = 0.021 kidney/body weight compared with diabetic standard chow.
***P = 0.005 blood pressure compared with control on high-protein chow.

F IGURE 8 : Urine albumin was increased in both nondiabetic and
diabetic mice fed the high-protein chow (n = 9, nondiabetic mice/
standard chow; n = 10, nondiabetic mice/high-protein chow; n = 12
diabetic mice/standard chow and n = 19, diabetic mice/high-protein
chow). Data are expressed as mean ± SD, *P = 0.009 versus nondia-
betic mice fed a standard chow, †P = 0.005 versus diabetic mice fed
the standard chow.
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phase reactants [40, 41]. These isoforms bind cell surface re-
ceptors to activate inflammation in a similar manner. Circulat-
ing SAA is mostly produced in the liver, but local production
has been detected. In humans and mice, SAA is present in the
kidney, particularly proximal tubules [41, 42]. Caspase-4 is
unique in that it promotes apoptosis and inflammation [18].
Therefore, it is a strong candidate to link metabolic stress with
glomerular injury and warrants further study. MCP-1 and
iNOS have been implicated in rodent models of DKD. MCP-1
induces monocyte infiltration to glomerular and tubulo-inter-
stitial compartments, whereas iNOS promotes tubulo-intersti-
tial inflammation and apoptosis [43–47]. Thus, the present

data illustrate that both novel and conventional cytokines
induce glomerular cell inflammation and apoptosis in
response to metabolic stress.

Importantly, SAA is a RAGE ligand, providing opportu-
nity for autocrine receptor activation. RAGE inhibition ame-
liorated inflammatory cytokine induction in podocytes
exposed to AGE. In particular, SAA expression was blocked,
consistent with an autocrine pathway for RAGE binding and
activation. There is precedent for proposing autocrine acti-
vation of RAGE. For example, endothelial cells cultured with
the HG level increased the expression of various RAGE
ligands (calgranulins, S100A8 and S100A12, and high mobi-
lity group box) [48]. Contrary to the present data in podo-
cytes, RAGE inhibition did not block proinflammatory
responses of mesangial cells, suggesting the possibility of al-
ternate receptor pathways such as scavenger receptor-B1 or
CD-36 [49, 50].

This study has noteworthy limitations. First, studies of iso-
lated cell in culture may not faithfully reflect in vivo responses
to metabolic stress. For example, the lack of detectable inflam-
matory responses of glomerular cells to AAs and/or glucose
may be due to considerably lower levels of endogenous AGE
(formed during the experiment) in these conditions compared
with exogenous AGE (added to the cell culture media).
Indeed, the CML level in conditioned media from podocytes
in the AA/HG group was markedly lower than in the group
exposed to AGE preformed in the media (0.0004 versus
300 μg/mL) after 2 days. A downward drift was detected in the
glucose levels of conditioned media for normoglycemic groups
(AA, HG and AGE), presumably reflecting cellular utilization.
However, levels were not in an overtly hypoglycemic range,
and cells cultured in control conditions did not display evi-
dence of stress marked by death or inflammatory responses.
Regardless, cellular studies provide insights into specific mech-
anisms and variations by cell type. For example, apoptotic and
inflammatory responses were RAGE-dependent in podocytes,
but not in mesangial cells. Secondly, the mouse study was an

F IGURE 9 : (a) Podocyte number in glomeruli of nondiabetic and diabetic mice fed normal or high-protein diet for 20 weeks (n = 10). Data are
expressed as mean ± SD; *P = 0.007 compared with a diabetic standard chow. (b) Representative photomicrograph of WT-1 staining in mouse
kidneys (original magnification ×1000).

F IGURE 1 0 : Dietary protein intake (urea nitrogen excretion) and
urinary excretion of an AGE (CML and ELISA) were correlated in
study participants as a whole (r = 0.66, P < 0.001) and within each
group (uncomplicated diabetes r = 0.74, P = 0.009; healthy controls
r = 0.62, P = 0.056; DKD r = 0.77, P = 0.006, respectively).
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early proof-of-concept appraisal in a non-DKD prone model
[30]. Therefore, the present findings may or may not translate
to models more closely approximating human DKD. Yet,
these data provide insights into early changes that may lead to
kidney damage later. Finally, the human component was an
exploratory post hoc analysis of samples obtained from a clini-
cal study [28]. Taken together, the association of dietary
protein intake with urinary AGE excretion supports key con-
cepts from the experimental studies.

In conclusion, metabolic stressors designed to mimic high-
protein diet, with or without diabetes, increased glomerular
cell exposure to AGE along with death and inflammation. In
podocytes, these responses were mediated by RAGEs. Notably,
increased expression of SAA, a proinflammatory protein and
RAGE ligand, suggests the possibility of a unique autocrine
loop for podocyte death and inflammatory responses. Emer-
ging evidence from mice and people supports the concept that
higher protein intake may exacerbate early changes character-
istic of DKD.
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