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Drought is a major environmental constraint responsible for grain yield losses of bread wheat (Triticum aestivum) in many parts
of the world. Progress in breeding to improve complex multigene traits, such as drought stress tolerance, has been limited by
high sensitivity to environmental factors, low trait heritability, and the complexity and size of the hexaploid wheat genome. In
order to obtain further insight into genetic factors that affect yield under drought, we measured the abundance of 205
metabolites in flag leaf tissue sampled from plants of 179 cv Excalibur/Kukri F1-derived doubled haploid lines of wheat
grown in a field experiment that experienced terminal drought stress. Additionally, data on 29 agronomic traits that had
been assessed in the same field experiment were used. A linear mixed model was used to partition and account for
nongenetic and genetic sources of variation, and quantitative trait locus analysis was used to estimate the genomic positions
and effects of individual quantitative trait loci. Comparison of the agronomic and metabolic trait variation uncovered novel
correlations between some agronomic traits and the levels of certain primary metabolites, including metabolites with either
positive or negative associations with plant maturity-related or grain yield-related traits. Our analyses demonstrate that specific
regions of the wheat genome that affect agronomic traits also have distinct effects on specific combinations of metabolites. This
approach proved valuable for identifying novel biomarkers for the performance of wheat under drought and could facilitate the
identification of candidate genes involved in drought-related responses in bread wheat.

Bread wheat (Triticum aestivum) is one of the world’s
most important food crops, contributing about one-
fifth of human caloric intake (Shiferaw et al., 2013)
and having an international trade volume greater than
all other major food crops combined (Atchison and
Head, 2010). Since arable land area will not increase
much beyond present levels, increasing demands for

wheat must be met through improved wheat yields.
Furthermore, global environmental changes will in-
tensify the need to develop crops with tolerance to
abiotic stresses, especially water deficits. Worldwide,
drought and other abiotic stresses significantly reduce
agricultural productivity, with losses estimated at 50%
or more (Bray et al., 2000). Wheat is an important crop
in which to investigate tolerance to abiotic stress be-
cause it is grown in diverse environments and has
great potential for adaptation to environmental con-
ditions (Worland et al., 1994).

Plants are known to adjust morphologically, physi-
ologically, and biochemically to water stress (Bohnert
et al., 1995; Zhang et al., 2000; Vinocur and Altman,
2005). Epicuticular wax may accumulate, causing
leaves to be glaucous, stomatal resistance may increase
to reduce water loss, and root systems may adjust to
increase water uptake either at depth or from inter-
mittent rainfall events. Compatible solutes may accu-
mulate, including amino acids (e.g. Pro), sugars (e.g.
trehalose and fructans), sugar alcohols (e.g. mannitol),
and amines (e.g. glycinebetaine) in plant cells.

Knowledge of the locations and the effects of
genes that influence agronomic characters (traits)
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under drought stress could inform crop breeding and
provide markers for selection. Many of these traits
display quantitative (continuous) variation. Genetic
loci affecting such traits are referred to as quantitative
trait loci (QTLs). These loci may interact with each
other (epistasis) and/or with environmental factors.
Despite considerable research to map QTLs and to

quantify their effects and interactions, the biological
and molecular basis of most quantitative trait variation
remains poorly understood. With the application of
metabolomic methods to tissue samples from mapping
populations, it is possible to link metabolite profiles
with genetic maps. Metabolomic phenotypes have
been used for QTL mapping in mapping populations
of several plant species, including Arabidopsis (Arab-
idopsis thaliana; Keurentjes et al., 2006; Lisec et al., 2008;
Rowe et al., 2008), tomato (Solanum lycopersicum;
Schauer et al., 2006), potato (Solanum tuberosum;
Carreno-Quintero et al., 2012), and maize (Zea mays;
Lisec et al., 2011). In some experiments, transcriptomic
and/or proteomic data have been used in combination
with metabolomic data and QTL analysis (Wentzell
et al., 2007; Ferrara et al., 2008). Ultimately, the com-
bination of transcriptomics, proteomics, metabolomics,
and QTL analysis has the potential to reveal interac-
tions and relationships among genes, transcripts, pro-
teins, metabolites, and traits.
The parents of the mapping population used here,

cv Excalibur and Kukri, were both developed for
production in low-yielding environments in Australia
that are subject to cyclic, Mediterranean-type drought
(Izanloo et al., 2008). Under optimal growth condi-
tions, either of these cultivars could yield over 10 tons
ha21, whereas under cyclic drought conditions, their
yields can drop to about 2 tons ha21, a loss of around
80% (Edwards, 2012). For wheat, this level of stress is
common, with mean yields of only 3 tons ha21 globally
and 1.6 tons ha21 in Australia (Shiferaw et al., 2013).
The Excalibur cv is considered to be more drought
tolerant than cv Kukri; under severe drought condi-
tions, it outyields cv Kukri by between 10% and 40%
(Izanloo et al., 2008; Fleury et al., 2010).
The Excalibur and Kukri cv differ for many traits,

including plant height, grain number per spike, num-
ber of fertile tillers, osmotic adjustment, water use ef-
ficiency, stomatal conductance, chlorophyll content,
and biomass (Izanloo et al., 2008). Recent studies have
shown that metabolic and proteomic profiles of cv
Excalibur differ from those of cv Kukri following cyclic
drought (Ford et al., 2011; Bowne et al., 2012). Thus,
it should be possible to use progeny from a cv
Excalibur/Kukri cross to map QTLs affecting the levels
of individual metabolites under drought stress condi-
tions. To do this, we assessed metabolic profiles on
tissue samples taken from a field experiment in which
grain yield and other agronomic traits also had been
measured. Since the effect of drought stress is usually
perceived by the leaves, leading to stomatal closure,
reduced transpiration rates, decreased leaf water
potential, decrease in photosynthesis, and growth

inhibition at the whole-plant level (Bartels and Sunkar,
2005), we chose leaf tissue for the metabolite analysis.

To obtain further insight into genetic factors that affect
yield under drought conditions, we performed a parallel
QTL analysis for yield-related phenotypic (agronomic)
and metabolic traits. Because abiotic stress tolerance
traits based upon glasshouse/laboratory-based experi-
ments rarely translate into the field (Gaudin et al., 2013),
we took a field-based approach to identify QTLs. The
focus in this genetic study was to use the power of QTL
analysis in a large population to examine the genetic
control of grain yield, other agronomic traits, and met-
abolic traits for wheat grown under drought conditions,
without explicitly examining drought tolerance per se,
which would have required a well-watered control ex-
periment for the entire population.

Our objectives were to assess pairwise genetic cor-
relations among metabolic and agronomic traits, in-
vestigate the colocalization of QTLs that could be
responsible for these correlations, and provide insights
into the interconnected genetic and metabolic net-
works that underlie quantitative trait variation in
bread wheat.

RESULTS

Genetic Correlations among Metabolic Traits Sharing
Biochemical Pathways

In flag leaf tissue sampled from the cv Excalibur/
Kukri doubled haploid (DH) lines, 205 compounds
were detected, of which 112 could be identified. To
distinguish between genetic and nongenetic sources of
covariation, we estimated both genetic and phenotypic
correlations for each possible pair of traits, including
all 205 metabolites and 29 agronomic traits. Almost all
correlations among metabolic traits (90% of all genetic
and 97% of all phenotypic correlations) were positive
(Fig. 1). For complete lists of genetic and phenotypic
metabolite-metabolite correlation coefficients and their
P values, see Supplemental Data Sets S1 and S2. Me-
tabolites that are biochemically related were generally
more strongly genetically correlated than biochemi-
cally unrelated metabolites. For example, metabolites
of ascorbate metabolism (including gulose, ascorbate,
glucarate, galactonate, threonate, and derivatives), Arg
and Pro metabolism (including Glu, Gln, Orn, Arg,
Pro, and 5-oxo-Pro), and glycolysis (including Glc
and the hexose phosphates Glc-6-P and Fru-6-P) were
strongly genetically correlated, indicating common
genetic control. Similarly, most amino acids had strong
genetic correlations with each other, as did sugars
derived from Glc and raffinose. There were also some
negative genetic correlations for metabolites that share
common pathways. For example, the tricarboxylic acid
(TCA) cycle intermediates cis-aconitate and isocitrate
were negatively correlated with each other, indicating
that the genetic regulation of biosynthetic routes drives
the abundance of these intermediates in opposite di-
rections.
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There were also some significant genetic correlations
between metabolites belonging to distant pathways.
For example, shikimate showed strong positive corre-
lations with several metabolites of the TCA cycle, in-
cluding succinate and cis-aconitate, and strong negative
correlations with most amino acids, including Arg, Lys,
and Tyr.

Several closely eluting unknowns (NA19, NA20, and
NA21) showed strong negative genetic correlations with
compounds related to the TCA cycle, including itaco-
nate, aconitate, and 2-methyl maleate. This could reflect
a “tradeoff” in which limited resources must be allo-
cated between competing demands, such that increased
allocation to NA19, NA20, and NA21 comes at the ex-
pense of reduced allocation to several TCA cycle inter-
mediates.

Among 29 agronomic traits (Supplemental Table S2)
that were measured, two traits related to phenological
development, thermal time to heading and number of
days to senescence, were strongly positively correlated
with each other (Fig. 2). Similarly, grain yield exhibited
strong positive correlation with one of its components,
the number of grains per m2. For complete lists of
phenotypic and genetic correlation coefficients among
agronomic traits and their P values, see Supplemental
Data Sets S3 and S4. Lines that headed early escaped
drought stress and tended to have less glaucous leaves,

less leaf rolling, longer peduncles and flag leaves, more
spikes, more grains per spike, larger better-filled grains,
higher yield, and higher harvest index than late-heading
lines. By contrast, lines that matured slowly (and there-
fore scored higher in thermal time to heading and days
to senescence) displayed a higher degree of rolling and
glaucousness of their leaves and developed fewer spikes
than lines that matured more quickly.

Correlations between Agronomic Traits and the Levels of
Certain Primary Metabolites

Between 205 measured metabolites and 29 agronomic
traits, we found 336 moderate to high genetic correla-
tions (Fig. 3). For complete lists of genetic correlation
coefficients and their P values, see Supplemental Data
Sets S5 and S6. Consistent with the observations of
Ferrara et al. (2008), we found that genetic correlations
between traits belonging to different suites of characters
(metabolic and agronomic) were generally not as strong
as those among metabolites (Supplemental Data Set S1)
or among agronomic traits (Supplemental Data Set S3).
Not surprisingly, a substantial number of the metabolic
traits showed strong positive or negative links (genetic
correlation coefficient [rG] . +0.5 or rG , 20.5) with
phenology-related traits. This indicates that certain

Figure 1. Heat map of genetic (top) and pheno-
typic (bottom) correlations between each of the
measured metabolites of the DH wheat popula-
tion. The color assigned to a point in the heat map
grid indicates the strength of a particular corre-
lation between two traits. The level of correlation
is indicated by red for positive correlations and
blue for negative correlations, as depicted in the
color key. A fully annotated heat map is given in
Supplemental Figure S1. The image was made
with R (http://www.r-project.org/).
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metabolites were more abundant in the relatively
young flag leaf tissue sampled from plants that headed
and matured late, while others were more abundant in
the older flag leaf tissue sampled from plants that
headed and matured early.
In a clustered heat map constructed based on genetic

correlations between agronomic traits and metabolites
(Fig. 3), there are several distinct clusters. The agro-
nomic traits fall into six clusters: A, traits related to
plant phenology; B, a mixed group of traits including
tillering, head length, and crown rot symptom sever-
ity; C, chlorophyll content, number of spikes per
plant, and grain size; D, plant biomass, number of
infertile spikelets, and plant height; E, grain yield and
number of grains per m2; and F, harvest index, num-
ber of spikes per m2, peduncle length, flag leaf length,
test weight, and grain size (G2.5 and thousand grain
weight).
The metabolites fall into five main clusters. The first

two of these (1 and 2) consist of metabolites that exhibit
negative genetic correlation with agronomic traits in
cluster A or cluster B and positive genetic correlations
with agronomic traits in clusters C, D, E, or F. Clusters
1 and 2 differ from each other in that the correlations
with agronomic traits were stronger for the metabolites
in cluster 1 than for cluster 2. The metabolites in these
two clusters, which included sugars (e.g. Glc and Fru),
amino acids (e.g. Lys and Tyr), phenolic alcohols and

long-chain alcohols (e.g. stearyl alcohol), TCA cycle in-
termediates (e.g. citrate and isocitrate), and several dis-
tinct groups of closely eluting unknown metabolites,
were less abundant in the relatively young leaf tissue
sampled from lines that headed late and yielded poorly
than in the older tissue sampled from lines that headed
early and yielded more. The metabolites in clusters 4
and 5 exhibited opposite relationships to those in clus-
ters 1 and 2, with strong (5) and less strong (4) positive
genetic correlations with agronomic traits in clusters
A and/or B and negative genetic correlations with
agronomic traits in clusters C, D, E, and/or F. These
metabolites include the amino acids Gln and b-Ala,
metabolites related to the TCA cycle (e.g. cis-
aconitate, dimethyl maleate, oxalate, and itaconate),
metabolites of the phenylpropanoid pathway (e.g.
quinate and caffeoyl quinate), the sugar alcohols in-
ositol and galactinol, shikimate, and several fatty
acids (e.g. stearate and linoleate). Finally, cluster 3,
located in the center of the heat map, includes me-
tabolites that were not strongly correlated with ag-
ronomic traits. Among these metabolites, some (e.g.
Fru-6-P) exhibited weak positive genetic correlation
with both phenological and grain traits, while others
were positively correlated with either phenological
traits (e.g. glycerol-3-phosphate and glycerol-2-phosphate)
or grain traits (e.g. 3-amino-piperidin-2-one) but not
both.

Figure 2. Heat map of genetic (top) and pheno-
typic (bottom) correlations between each of the
measured agronomic traits of the DH wheat
population. The color assigned to a point in the
heat map grid indicates the strength of a partic-
ular correlation between two traits. The level of
correlation is indicated by red for positive corre-
lations and blue for negative correlations, as
depicted in the color key. Atl, Number of aborted
tillers; CR, crown rot symptom severity; DS, days
to senescence; Flth, flag leaf length; G2.8, G2.5,
G2.2, the percentage of grains greater than 2.8,
2.5, and 2.2 mm, respectively; Gla, glaucousness;
Gm2, grains m22; Hi, harvest index; Hlth, head
(spike) length; Hlwt, test weight; Ht, plant height;
InfFL, number of infertile tillers; L2.2, screenings;
Lfr_1, leaf rolling at time point 1; Lfr_2, leaf
rolling at time point 2; Plth, peduncle length;
SPAD_1, chlorophyll content at time point 1;
SPAD_2, chlorophyll content at time point 2;
SpM2, spikes m22; TGW, thousand grain weight;
TGW_5P, thousand grain weight of five plants;
TTH, thermal time to heading; Yld, grain yield.
For a detailed description of the agronomic traits,
see Supplemental Table S1. The image was made
with R (http://www.r-project.org/).
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Detection of QTLs for 95 Metabolites

To investigate the genetic basis of relationships be-
tween agronomic traits and metabolic traits in the cv
Excalibur/Kukri wheat mapping population grown
under drought conditions in the field, we carried out
parallel QTL analyses for 29 agronomic and 205 met-
abolic traits using the R package wgaim (Taylor
and Verbyla, 2011). Prior to QTL mapping, we used
ASReml/R to model variation from nongenetic sources
of variation, including the positions of individual plots
in the field and variation among and within batches of
chromatographic runs.

To identify the proportion of metabolic variation
that is genetically determined, we estimated broad-
sense heritability for each metabolite. Over all metab-
olites, the mean of broad-sense heritability estimates
was 0.50 (Supplemental Fig. S4). This relatively high

value confirms the relevance of QTL analysis and the
potential to alter metabolic traits via selection.

For each of the 95 metabolites, of which 43 were
known compounds, between one and six metabolic
quantitative trait loci (mQTLs) were detected (Fig. 4;
Supplemental Fig. S3; Supplemental Table S3). For
individual QTLs, the estimated broad-sense heritabil-
ity ranged from close to 0 (glycerol-b-D-galactopyr-
anoside) to 0.87 (methyl-O-b-D-glucopyranoside).
The statistically significant mQTLs were distributed
over 113 intervals on the genetic map. There were 12
mQTLs for amino acids, 45 for organic acids, 11 for
sugars, six for sugar alcohols, 11 for sugar acids, six for
phosphorylated compounds, 15 for fatty acids or fatty
alcohols, five for phosphate, and one for an organic
compound (2,4,6-tri-tert-butylbenzenethiol). Interest-
ingly, most QTLs for amino acids, fatty acids, and

Figure 3. Clustered heat map of the genetic cor-
relations between the agronomic traits and the
measured metabolites of the DH wheat popula-
tion. Clustering of the agronomic traits is depicted
by the dendrogram at top, broken into six groups,
labeled A through F. Clustering of the metabolic
traits is depicted by the dendrogram at left, bro-
ken into five groups, labeled 1 through 5. The
color assigned to a point in the heat map grid
indicates the strength of a particular correlation
between two traits. The level of correlation is
indicated by red for positive correlation, blue for
negative correlation, and white for no correlation,
as depicted in the color key at top left. A fully
annotated heat map is given in Supplemental
Figure S2. The function “hclust” in the “stats” li-
brary of R (R Development Core Team, 2011) was
used for hierarchical clustering, and Euclidean
distances were used to calculate the distance
matrix. The image was made with R (http://www.
r-project.org/).
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Figure 4. (Figure continues on following page.)
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Figure 4. QTL location on the cv Excalibur/Kukri genetic linkage map. Genetic distances are indicated as cM to the far left of
the genetic map. QTLs for metabolites are shown on the left side, and QTLs for agronomic traits are shown on the right side, of
each wheat chromosome (blue bars). For abbreviations of the metabolites and agronomic traits, see Supplemental Tables S1 and
S4, respectively. Due to the larger number of mapped traits, chromosome 7A is shown on a larger scale to provide more detail.

1272 Plant Physiol. Vol. 162, 2013

Hill et al.

http://www.plantphysiol.org/cgi/content/full/pp.113.217851/DC1
http://www.plantphysiol.org/cgi/content/full/pp.113.217851/DC1


organic acids were found on the A genome, whereas
most QTLs for sugars, sugar acids, and sugar alcohols
were mapped onto the B genome.
For each of 36 metabolites, only one QTL was

detected. The maximum number of QTLs detected per
metabolite was six; this was for two unknown me-
tabolites (NA13 and NA55; Supplemental Fig. S3).
Some genomic regions (e.g. on chromosomes 4B, 4D,
5A, and 7A) affected multiple metabolites (Fig. 4;
Supplemental Table S3). For example, mQTLs for the
unknown compounds NA18 and NA55 each coincided
with mQTLs for 26 other metabolites. In contrast, some
genomic regions (e.g. on chromosomes 6B and 7B) had
few mQTLs.
Pairs of metabolites sharing at least one mQTL

usually had higher genetic correlations than pairs of
metabolites sharing no mQTLs (Fig. 5). However, there
were also cases in which metabolites were genetically
highly correlated yet shared no mQTLs (e.g. maltose
and NA40; rG = 0.84). Conversely, there were cases of
metabolites sharing mQTLs yet exhibiting only weak
genetic correlation with each other (e.g. Fru and iso-
citrate; rG = 0.28, despite two QTLs in common) or no
significant correlations with each other (e.g. Arg and
Asp; rG = 20.04, despite similar effects detected for
these two amino acids in the 5-centimorgan [cM] in-
terval between cwem0012 and PSP2999 on the short
arm of chromosome 1A). Either of these situations
could be due to the action of other QTLs whose effects
were too small to detect.

Detection of QTLs for 22 Agronomic Traits

The broad-sense heritability of individual agro-
nomic traits varied from 0.05 (total biomass) and to
0.97 (thermal time to heading; Supplemental Table S4).
For 22 of the 29 agronomic traits, we detected between

two (chlorophyll 1, thousand grain weight, screenings
L2.2) and 10 (crown rot symptom severity) QTLs. A
complete list and description of QTLs for agronomic
traits is provided in Supplemental Table S4, and the
QTL positions are shown on the genetic linkage map in
Figure 4. These QTLs are distributed over 53 intervals
on the genetic map. In many cases, several traits were
associated with the same marker loci, as on chromo-
somes 2B, 4A, and 7A, while other regions contain
very few or no QTLs, as on chromosomes 1AS, 3B, 6B,
7B, and 7DS. On chromosome 7A, a single genomic
interval between two adjacent markers affected 12
agronomic traits, including thermal time to heading,
leaf rolling, flag leaf length, thousand grain weight,
spikes per m2, test weight, and the grain size traits
G2.5, G2.2, and L2.2. That interval, which explains 39%
of the genetic variation for thermal time to heading
(Supplemental Table S4), may contain a phenological
locus with downstream effects on other traits. Another
position on the same chromosome was found to affect
grain yield, glaucousness, crown rot symptom sever-
ity, peduncle length, grains per m2, and harvest index.

Colocalization of Agronomic QTLs with mQTLs

The detection of coincident QTLs for either grain
yield and grain yield-related traits or for grain yield
and metabolic traits can provide information on traits
that are associated with effects on grain yield under
drought conditions. Each agronomic QTL coincided
with at least one mQTL. In total, we found that mQTLs
for 38 metabolites colocalized with QTLs for agro-
nomic traits (Supplemental Tables S3 and S4, respec-
tively). 2-Oxogulonate and the unknown compound
NA57 shared the largest numbers of QTLs with agro-
nomic traits (14 individual mQTLs sharing the same
marker interval with 13 and 14 agronomic traits, re-
spectively), closely followed by Fru and isocitrate, each
of which shared QTLs with 12 agronomic traits.

Five genomic regions affected both metabolic and
agronomic traits: one each on chromosomes 4B and
5A, two in close proximity on chromosome 7A, and one
on chromosome 7DL. On chromosome 4B, a 29.1-cM
interval flanked by wPt-7062 and wPt-8756 was associ-
ated with concentrations of phosphate and four un-
known metabolites (NA13, NA45, NA55, and U22) and
with the agronomic traits flag leaf length and leaf roll-
ing. On chromosome 5A, a 3.8-cM interval flanked by
wPt-0373 and wmc75b affected leaf rolling, cis-aconitate,
itaconate, 2,4,-6-tri-tert-butylbenzenethiol, and four un-
known metabolites (NA6, NA26, NA55, and NA60). On
chromosome 7A, a 1.0-cM region between gwm60 and
wmc28 affected several organic acids, including itaco-
nate, dimethyl maleate, pipecolate, cis-aconitate, and
caffeoyl quinate, the amino acid Gln, as well as a range
of agronomic traits, including glaucousness, peduncle
length, grains per m2, grain yield, and harvest index.
Notably, this QTL is also close to one for grain yield and
Glc-6-P (in the 1.1-cM interval between wmc83 and

Figure 5. Box plot of the number of shared mQTLs versus the genetic
correlation (absolute value) between any pair of two metabolites. The
image was made with R (http://www.r-project.org/).
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STM0511TCTG) and a known sodium-exclusion QTL
(Edwards et al., 2008). Another genomic region on
chromosome 7A, flanked by wmc283 and BS0001030,
harbors QTLs for many traits: 12 agronomic traits (in-
cluding thermal time to heading, days to senescence,
and thousand grain weight) and the abundance of nine
metabolites (including phosphate, Fru, 2-oxogulonate,
and isocitrate). As noted above, this was the most im-
portant QTL for thermal time to heading (Supplemental
Table S4). The colocalization of these metabolites with
plant maturity is not unexpected; mQTLs for primary
metabolites have been previously found to be colo-
calized with known plant maturity loci (Carreno-
Quintero et al., 2012). Here, though, only nine out of
205 metabolites had QTLs mapped near the known
vernalization locus Vrn-1A on chromosome 5A (Snape
et al., 2001; Distelfeld et al., 2009), and there is no
concentration of mQTLs on the homologous group 2
chromosomes, on which the photoperiod response
(Ppd) genes are located (Fig. 4; Supplemental Tables S8
and S9).

Associations were also found between peduncle
length and 1-kestose (chromosome 2B), between raffi-
nose and harvest index (also on chromosome 2B), and
between crown rot symptom severity and both phytol
(chromosome 2D) and 1-kestose (chromosome 6A).
However, all of these QTLs had low logarithm of odds
(LOD) scores (LOD , 2.46), indicating that they may
not be very important loci for these traits.

To compile information on connections between
the metabolites, genetic correlations, and colocaliza-
tion of metabolic with agronomic QTLs, we created an
author-generated metabolite pathway map of primary
metabolism (Fig. 6). This map shows significant cor-
relations between pairs of metabolites that are adjacent
in pathways and indicates whether mQTLs coincided
with QTLs for agronomic traits. Most mQTLs coin-
cided with QTLs for agronomic traits from clusters A,
containing maturity-related traits, and F, containing
grain yield-related traits. Metabolic QTLs for the sug-
ars raffinose, 1-kestose, and Fru and the TCA cycle
metabolite isocitrate overlapped with QTLs detected
for grain yield-related traits, including thousand grain
weight (cluster F). At the shared QTLs, cv Excalibur
alleles increased both thousand grain weight and the
levels of these metabolites, contributing to positive
genetic correlation among these traits (Supplemental
Tables S3 and S4). QTLs for most cis-aconitate me-
tabolites and metabolites derived from the TCA cycle
(itaconate and Gln) overlapped with QTLs detected for
maturity-related traits (cluster A), including thermal
time to heading, and with QTLs detected for grain
yield-related traits (clusters E and F). At a shared QTL
on 5A, the cv Excalibur allele delayed maturity and
increased the levels of these metabolites (contributing
to positive genetic correlations). In contrast, at a shared
QTL on 7A, the cv Excalibur allele decreased the levels
of these metabolites and increased grain yield (con-
tributing to negative correlations). In several cases,
mQTLs coincided with QTLs for both maturity and

grain yield-related traits. With one exception (an
mQTL for pipecolate), these overlaps had antagonistic
effects on the two categories of agronomic traits.
Among the agronomic traits from clusters C and D,
only chlorophyll content had QTLs that coincided with
mQTLs. Alleles that increased chlorophyll content
decreased 2-oxogulonate (at a QTL on 6B) and in-
creased monostearin (at a QTL on 1AL).

Therefore, we were able to demonstrate that all ag-
ronomic QTLs overlap with at least one mQTL. Al-
though we could not determine specific biochemically
related groups of metabolites mapping to the afore-
mentioned regions, several of the mapped metabolites
remain unknown and are potentially under similar
genetic control; however, at this stage, we cannot de-
termine their definite relationships.

DISCUSSION

Drought stress, which has been identified as the
most devastating abiotic constraint on crop produc-
tivity (Francia et al., 2005; Reynolds et al., 2005), causes
substantial perturbations in plant metabolism (Bowne
et al., 2011, 2012). Previous QTL studies of agronomic
traits in wheat have lacked information on the bio-
chemical pathways underlying those traits and their
responses to drought. In this study, a drought-tolerant
wheat cultivar (Excalibur), a drought-susceptible cul-
tivar (Kukri), and a population of DH lines derived
from a cross between cv Excalibur and Kukri were
grown in the field under drought conditions and
evaluated for agronomic traits, and leaves sampled
from these materials were analyzed for metabolites
of known and unknown identity.

Correlated Responses

The metabolic composition and agronomic traits of
crop plants are expected to be influenced by genetics
and by physiological and environmental conditions.
When two or more characteristics have some kind of
shared genetic basis, due to either pleiotropic loci or
genetic linkage between loci (Gardner and Latta, 2007),
they will tend to be coinherited and to exhibit corre-
lated responses under selection. Estimates of genetic
correlation between traits providing indicators of
common genetic control can be used in the prediction
of correlated responses to selection. Whether traits are
genetically correlated, they may also respond to some
of the same environmental factors, leading to positive
or negative environmental correlations among traits.
Phenotypic correlations among traits depend on ge-
netic correlations, environmental correlations, and trait
heritabilities (Cheverud, 1988; Falconer, 1989). Pheno-
typic correlation coefficients, therefore, are limited in
their capacity to accurately reflect dependencies based
on common genetic factors such as regulatory genes,
especially under environmental conditions that affect
multiple traits simultaneously. This may be particularly
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Figure 6. Pathway map of the primary metabolism showing genetic correlations between metabolites detected in the DH
population. Edges with positive genetic correlations are displayed in red, whereas edges with negative genetic correlations are
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true under stress conditions, given that the genetic
component of the overall stress response is usually small
relative to the environmental component (Reynolds
et al., 2009).

Here, we estimated phenotypic and genetic corre-
lation coefficients (1) among agronomic traits, (2)
among metabolites, and (3) between agronomic traits
and metabolites. In most cases, phenotypic correlation
estimates were lower than genetic correlations. Thus,
examination of the genetic correlations made it possi-
ble to detect genetic relationships between metabolites
and agronomic traits that would have been masked by
environmental influences if only phenotypic correla-
tions had been examined.

We found strong genetic correlations between plant
maturity-related traits (thermal time to heading and
days to senescence) and a range of agronomic traits,
including grain yield under drought conditions. These
strong correlations reflect the important influence of
genetically determined differences in plant phenology
on agronomic performance. They are consistent with
previous reports on experimental populations with
variable phenology, in which QTLs affecting flowering
time also affected yield under water-limiting condi-
tions (Reynolds and Tuberosa, 2008). Under conditions
of either cyclic or terminal drought, lines that develop
and mature at different rates would experience stress
at different growth stages. In our experiment, lines that
headed early may have achieved higher yields by ei-
ther avoiding or escaping part or all of the drought
stress.

Coregulation of metabolites may indicate that either
a specific biological function controls different com-
ponents or that a specific step in a biochemical path-
way is affected. Here, almost all genetic correlations
among metabolites were positive, indicating that there
were hardly any notable tradeoffs involved in primary
metabolism. Metabolites that are biochemically related
had stronger genetic correlations compared with
biochemically unrelated metabolites, indicating that
genetically controlled changes in the content of one
metabolite could modify the pools of other bio-
chemically related metabolites (Fig. 2; Supplemental
Data Sets S1 and S2). These findings, which are
similar to those of Carreno-Quintero et al. (2012),
may be due to genes encoding rate-limiting enzymes
in the pathways and/or major regulators that influ-
ence the pathways.

Consistent with the fact that plant responses to
drought stress are known to involve changes in the
cellular antioxidative defense pathways (Reddy et al.,
2004) and the synthesis of osmotically active com-
pounds (Bartels and Sunkar, 2005), we found several
clusters of highly genetically correlated metabolites
belonging to both of these pathways. For example,
metabolites of ascorbate metabolism (including glu-
carate, galactonate, threonate, ascorbate, and deriva-
tives) were highly genetically correlated with each
other and were positively genetically correlated with
grain yield and grain yield-related agronomic traits
(Supplemental Fig. S2; Supplemental Data Set S5).
During drought stress, an imbalance between electron
generation and consumption occurs due to a down-
regulation of PSII activity. Diversion of excess light
energy in the PSII core and antenna produces reactive
oxygen species such as oxide ions, hydrogen peroxide,
and hydroxide, which can cause substantial cellular
damage (Peltzer et al., 2002). This damage can be
mitigated by several types of nonenzymatic plant an-
tioxidants, including ascorbic acid-like scavengers as
well as pigments such as carotenoids, flavanones, and
anthocyanins (Conklin, 2001; Reddy et al., 2004). As-
corbate (vitamin C) can act as an important water-
soluble antioxidant by serving as a cofactor for a
large number of enzymes and as a donor/acceptor in
electron transport at the plasma membrane and in the
chloroplasts (Conklin, 2001). Additionally, ascorbate has
a role in either protecting or regenerating oxidized ca-
rotenoids and tocopherols (Imai et al., 1999). We found
positive correlations between metabolites of ascorbate
metabolism, ascorbate, a-tocopherol, and grain yield as
well as several yield-related agronomic traits. This in-
dicates that an effective system to scavenge reactive
oxygen species may be needed in order to achieve high
yield under detrimental environmental conditions.

Drought also induces osmotic stress in plants (Zhu,
2002). The biosynthesis and accumulation of compatible
solutes can help plants cope with osmotic stress (Zhang
et al., 2000; Ashraf and Foolad, 2007). These compounds
are small, electrically neutral, nontoxic molecules that do
not interfere with the normal metabolism of the plant.
During osmotic stress, they are accumulated to high
levels in the cytosol. They prevent water loss, stabilize
membranes and proteins, help maintain cell turgor, and
protect cells by scavenging reactive oxygen species
(Pinhero et al., 1997; Valliyodan and Nguyen, 2006).

Figure 6. (Continued.)
displayed in blue. Corresponding correlation values are placed next to the edges, and significant correlations (P , 0.05) are
marked with asterisks. Metabolites colored in pale gray were not measured in this study. Metabolites with mapped QTLs are
displayed in boldface, and colocalizations with agronomic traits are visualized using boxes A to F; red boxes indicate a positive
genetic correlation, and blue boxes indicate a negative genetic correlation, of the metabolite with the agronomic traits of this
particular cluster (according to the clusters of agronomic traits in Fig. 3). Boxes are as follows: A, leaf rolling, screening L2.2,
grain size G2.2, glaucousness, thermal time to heading, days to senescence; B, tiller number, number of aborted tillers, head
length, crown rot symptom severity; C, chlorophyll content, fertile spikes per seed, grain size G2.8, total seeds per spike; E,
grains per m2, grain yield; F, harvest index, peduncle length, flag leaf length, test weight, thousand grain weight, spikes per m2.
The image was made using a modified author-created pathway map in VANTED (Junker et al., 2006).
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During osmotic adjustment, nitrogen-containing com-
pounds (including Pro, Asp, and Glu, polyamines, and
quaternary ammonium compounds like glycinebetaine)
accumulate, as do Suc, sugar alcohols, and sugars
(Vinocur and Altman, 2005). Plants accumulate Pro by
either activating Pro biosynthesis or by inactivating Pro
degradation to Glu via D1 pyrroline-5-carboxylate
(Bohnert and Sheveleva, 1998). Pro acts as a free radi-
cal scavenger, is involved in osmotolerance, and is
known to protect membranes and proteins when rela-
tive water content decreases. Similarly, the accumulation
and maintenance of a high sugar pool containing non-
reducing sugars and oligosaccharides has been reported
to act as a replacement for water by providing a
hydration shell around proteins. Although there is
evidence from some previous studies that enhanced
accumulation of Pro (Hong et al., 2000) and sugars
(Hoekstra et al., 2001; Bogdan and Zagda�nska, 2006;
Urano et al., 2009) improves the osmotic stress toler-
ance of plants, there have also been reports that the
accumulation of organic compatible solutes makes
only minor contributions to osmotic stress tolerance
(Gagneul et al., 2007; Hill et al., 2013). Here, metabo-
lites of Glu and Pro metabolism (including Gln, Orn,
Arg, and 5-oxo-Pro) and sugar metabolism (raffinose,
Fru, and Glc) were highly genetically correlated with
grain yield and other yield-related agronomic traits.
Further research on these metabolites could lead to op-
portunities to use engineered osmoprotectants to protect
major crops from stress conditions (Supplemental Fig. S2;
Supplemental Data Set S7).
We found higher levels of both Gln and Glu to be

strongly genetically associated with late maturity and
low grain yield. This is consistent with the role of these
compounds in nitrogen metabolism. During periods of
nitrogen availability, inorganic nitrogen is taken up
from the soil and enzymatically converted into Glu
and Gln, which can be incorporated into nitrogen-
containing organic compounds, such as amino acids
and nucleotides, providing nitrogen reserves for sub-
sequent use in growth, defense, and reproductive
processes (Forde and Lea, 2007). In wheat, Glu and Gln
levels peak at flowering (Kichey et al., 2006). During
grain filling, leaves transition from absorption and
assimilation of organic and inorganic molecules to
remobilization and translocation of assimilates to the
grain. Our results for these metabolites, therefore,
would be strongly influenced by phenological differ-
ences on the day of sampling, which was close to or
during this transition period. Glu and Gln levels
would have declined more in the leaves of earlier
maturing (and ultimately higher yielding, probably
due to avoidance of drought stress) lines than in the
leaves of later maturing (and lower yielding) lines.

Mapping of Metabolic and Physiological Variation in
Wheat Leaves

In the second part of this study, we combined QTL
mapping with metabolomics. A genetic map of more

than 430 molecular markers (Edwards, 2012) was used
for mapping QTLs, and high heritabilities enabled the
detection of QTLs for 22 agronomic and 205 metabolic
traits (Fig. 4). As the two parents have some common
ancestry, it is not surprising that some regions of the
genome lack polymorphic markers, probably indicat-
ing that these regions are identical by descent.

Given that metabolites, particularly primary me-
tabolites, are part of a densely interconnected meta-
bolic network, we expect that many genetic effects on
metabolites might be too small to detect as a metabo-
lite QTL. For many metabolites, we detected just one
QTL, in some cases with quite a large effect. In several
distinct genomic regions, mQTLs were detected for
numerous metabolites (Fig. 5; Supplemental Table S3).
This is consistent with findings in several other mQTL
studies (Keurentjes et al., 2006; Lisec et al., 2008; Rowe
et al., 2008; Carreno-Quintero et al., 2012). It indicates
that a large number of metabolites could be influenced
by the manipulation of small genomic regions (Saito
and Matsuda, 2010). However, it is currently not clear
whether these distinct genomic regions exist due to
only one gene that has pleiotropic effects or due to
several closely linked genes in the same genomic re-
gion. The unknown compounds NA18 and NA55
both share QTLs with 26 other metabolites (Fig. 5;
Supplemental Table S3), making those interesting tar-
gets for identification through analytical experiments.

Many QTLs for 20% of the metabolic traits colocalized
with at least one agronomic QTL (Supplemental Tables
S7 and S8). Such colocalization could be due to linkage
or pleiotropy. Pleiotropy could involve direct effects of
metabolite flux on agronomic traits or separate effects
of regulatory genes on metabolic pathways and other
mechanisms that influence agronomic traits.

Given the complexity of both metabolic pathways
and agronomic performance, it is likely that there are
epistatic interactions between genetic loci (Rowe et al.,
2008) affecting the traits examined in this study. An
exploration of these interactions would require an
analysis of a larger population size than used here to
give statistically meaningful results but would be
worth exploring. Similarly, exploration of mQTL-
environment interactions would be interesting, espe-
cially with metabolic profiling of the same population
grown under a range of stress conditions.

CONCLUSION

Flag leaf samples were taken from a DH mapping
population derived from a cross between a drought-
tolerant and a drought-sensitive wheat cultivar grown
in the field under terminal drought stress. Parallel
analysis of relative metabolite abundance and an
evaluation of agronomic traits, including grain yield as
an indicator of drought tolerance, allowed us to esti-
mate the genomic positions and effects of individual
metabolite and agronomic trait QTLs. Our results
confirm that metabolites can be mapped to distinct
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genetic regions, much like agronomic traits in con-
ventional QTL mapping. The information from this re-
search alone is not sufficient to determine whether a
genetic locus and a phenotype are connected directly,
for example, via a specific gene, or through multiple
steps and pathways, such as transcription factors or
other regulatory sequences. This is confounded due to
the lack of a fully assembled and annotated wheat ge-
nomic sequence. With additional experimentation, it
may be possible to determine whether coincident QTLs
are due to linkage or pleiotropy and to more clearly
define aspects of the biological basis of agronomic and
metabolic traits. Although QTL mapping using a pop-
ulation of several hundred lines does not provide suf-
ficient resolution to identify individual genes, it opens
new opportunities to investigate the biochemical path-
ways underlying economically important traits.

High-resolution mapping of specific genomic regions
would help clarify whether coincident QTLs are due to
linkage or pleiotropy. Additional genetic resources, in-
cluding 3,000 cv Excalibur/Kukri recombinant inbred
lines (Fleury et al., 2010), are available for such studies,
as are new marker platforms (Paux et al., 2012) and
genotyping by sequencing (Poland et al., 2012). With
increases in the availability of genomic sequence infor-
mation for wheat, it should be possible to select genes or
other sequences in the target regions to undergo func-
tional analysis to investigate their roles in drought tol-
erance. This will provide a basis for future studies and
validation of results obtained through the work pro-
posed here. The information presented here represents a
rich resource for further investigation and annotation of
relevant genes as the wheat genome is sequenced and
may pave the way to an improved understanding of the
performance of cereal crops under drought. The me-
tabolite QTL analysis provides useful information to
support positional cloning and genetic analysis projects.
In isolation, mQTL results do not support gene identi-
fication, but when combined with physiological and
agronomic traits, as shown here, they support the de-
velopment of testable hypotheses about possible mech-
anisms or processes underlying agronomic traits.

MATERIALS AND METHODS

Bread Wheat Cultivars and Mapping Population

The plant population consisted of 233 DH lines produced from a cross
between ‘Excalibur’ (RAC177/‘Monoculm’//RAC311S; released by the Uni-
versity of Adelaide in 1991) and ‘Kukri’ (76ECN44/76ECN36//RAC549;
MADDEN/6*RAC177; released by the University of Adelaide in 1999). Ex-
calibur is a drought-adapted bread wheat (Triticum aestivum) cultivar that
yields well in South Australian wheat regions but has low grain quality and is
susceptible to rust. Kukri is a hard white wheat cultivar that has excellent
grain quality and is rust resistant but has low drought and heat tolerance and
produces lower grain yield compared with cv Excalibur when grown under
water-limiting conditions (Izanloo et al., 2008).

Field Experimental Conditions

The field experiment was conducted in 2006 at the Roseworthy Campus at
the University of Adelaide. The field experiment was randomized using a

nearest-neighbor design with two replicates of each DH line, with additional
plots of the parental lines and control varieties that included cv Axe, Carinya,
Drysdale, Espada, Excalibur, Frame, Gladius, Kukri, Krichauff, RAC875,
Stylet, Tincurren, Westonia, Wyalkatchem, and Yitpi. The plots were 1.25 m
wide and 5 m long with six rows. Plots were reduced by herbicide application
to 3.2 m long, just prior to anthesis. Seeds were sown on a volume basis,
aiming for an average of 200 seeds m22. The agronomic management regime
followed local practice. The sampling of flag leaves was performed between 10
AM and 3 PM on one day, when most lines were at late anthesis. Flag leaf
samples were immediately stored at 280°C until extracted.

Gas Chromatography-Mass Spectrometry
Metabolite Profiling

Chemicals for Metabolite Profiling

N-Methyl-N-(trimethylsilyl)-trifluoroacetamide (TMS) was purchased from
Grace. HPLC-grade methanol was obtained from Scharlau. All other chemi-
cals were purchased from Sigma-Aldrich.

Sample Extraction

Amodifiedmethod for the preparation of plant extracts has been developed
based on the method described by Jacobs et al. (2007). For each line, 30 mg of
flag leaf tissue was weighted into cryo mill tubes (Precellys lysing kit; Bertin
Technologies), and 0.5 mL of 100% methanol was added to the plant sample.
Homogenization was performed for 30 s at 6,000 rpm using a cryo mill
(Precellys 24; Bertin Technologies). After the addition of 20 mL of internal
standard solution (20 mL per sample from a stock solution containing 1 mg
mL21 [13C]sorbitol in water), samples were extracted for 15 min at 70°C in a
thermomixer at 750 rpm. Subsequently, the sample was mixed vigorously
with 1 volume of water and then centrifuged for 10 min at 13,000 rpm. The
supernatant was transferred into a new reaction tube, and 50-mL aliquots were
transferred into glass vial inserts and dried in vacuo for further TMS derivatization.

Gas Chromatography-Mass Spectrometry Analysis

The gas chromatography (GC)-mass spectrometry (MS) system comprised
a 7890A gas chromatograph and a 5975C Triple-Axis, quadrupole, mass se-
lective detector (Agilent). A Gerstel MPS2XL GC-MS autosampler performed
the derivatization procedure immediately prior to injection. The samples and
the derivatization reagents were added to a glass vial and then placed in the
autosampler tray. The autosampler then mixed sample with derivatization
reagents automatically using the following program. Plant extracts were deriv-
atized for 120 min at 37°C using 20 mL of methoxyamine hydrochloride (30 mL of
30 mg mL21 in pyridine) per sample. This was followed by trimethylsilylation
with 40 mL of TMS reagent per sample for 30 min. Finally, 2 mL of retention time
standard mixture (0.029% [v/v] n-dodecane, n-pentadecane, n-nonadecane,
n-docosane, n-octacosane, n-dotriacontane, and n-hexatriacontane dissolved
in pyridine) was added per sample prior to injection onto the GC column.

One microliter of TMS-derivatized sample was injected onto the GC col-
umn using a hot-needle technique. The injector was operated in splitless mode
isothermally at 250°C. Helium was used as the carrier gas with a flow rate of
0.8 mL min21. Chromatographic separation was performed on a 30-m VF-5MS
column (with 10-m Integra guard column, i.d. 0.25 mm, and 0.25-nm film
thickness [Varian]). The MS transfer line to the quadrupole was fixed at 280°C,
the electron impact ion source at 250°C, and the MS quadrupole at 150°C. The
mass spectrometer was tuned according to the manufacturer’s protocols using
Tris-(perfluorobutyl)-amine (CF43). The analysis was performed under the fol-
lowing oven temperature program. The injection temperature was set at 70°C,
following by a 7°C min21 oven temperature gradient to a final 325°C, and then
held for 3.6 min at 325°C. The GC-MS system was then temperature equilibrated
for 1 min at 70°C prior to injection of the next sample. Ions were generated by a
70-eV electron beam at an ionization current of 2.0 mA, and spectra were
recorded at 2.91 scans per second with a mass-to-charge ratio of 50- to 550-atomic
mass units scanning range. Retention time locking of the chromatographic peak of
mannitol prior to the sample run ensured repeatable retention times across sys-
tems regardless of operator, detector type, or column maintenance.

Data Handling, Mining, and Statistics

Analytes were semiquantified after mass spectral deconvolution (AnalyzerPro;
SpectralWorks). The chemical identification was manually supervised using the
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public domain mass spectra library of the Max-Planck-Institute for Molecular
Plant Physiology (http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.
html) and the in-house Metabolomics Australia mass spectral library. All
matching mass spectra were additionally verified by analysis of reference
standard compounds. Compounds that were present in the library, denoted
as “NA” (not assigned), as well as compounds that could not be further
annotated, denoted as “U” (unknown), were included in the analysis to
investigate the degree of associations with identified metabolites. Relative
response ratios were calculated using the metabolite peak area divided by
both the peak area of the internal standard sorbitol and the sample dry
weight (g), as described by Roessner et al. (2001).

Suc is by far the most highly abundant metabolite in the tissue extracts. As
we were aiming for a nonbiased metabolite approach that included the de-
tection and identification of as many metabolites as possible, we deliberately
“overloaded” the GC column with respect to Suc in order to detect and
identify the majority of the tissue metabolites that were present at low
abundance. Compounds that were detected in less than 50 lines were con-
sidered not informative enough for the analysis. Data represent two biological
replicates per line measured in two replicate extractions (technical replicates).

Exploratory Analysis and Transformation

An initial exploratory analysis showed that nearly all phenotypic agronomic
traits were normally distributed (data not shown). The traits grain size G2.8 and
spikes per m22 were the exception: these required log and square root trans-
formation, respectively, prior to formal analysis. In contrast, the distributions
of the metabolite traits were heavily skewed to the right (data not shown). For
this reason, all metabolite traits were log transformed prior to formal analysis.
For each metabolite, to help satisfy modeling assumptions, absolute mea-
surements that deviated from mean values by more than 4 SD units were
considered extreme outliers and set as missing values.

Linear Mixed-Model Analysis

Each of the agronomic and metabolic traits were initially analyzed using a
linear mixed model that appropriately partitions and accounts for genetic and
nongenetic information arising from the field and laboratory experiments. Let y
be a vector of trait observations, then the linear mixed model has the form:

y ¼ Xbþ Zuþ Zg gþ e ð1Þ
where b is a set of nongenetic fixed effects with associated design matrix X, u
is a set of nongenetic random effects with indicator matrix Z, and g is a set of
random genetic effects associated with the genetic lines involved in the ex-
periment with indicator matrix Zg. In this model, the residual error, e, captures
extraneous variation or correlation that may arise from known dependencies
between the observations in the experiment. The set of effects (u, g, and e) are
considered to be mutually independent.

For the agronomic traits, the fixed component of Equation 1 consisted of an
indicator type to differentiate the DH or parental lines existing in the data.
Other nongenetic fixed effects in this model included direction of seeding as
well as linear row effects to appropriately model trends appearing across the
rows of the field. Nongenetic random effects in the model include a field-block
effect as well as separate row and range effects where required. Due to the
experimental layout of the field trial, dependency between observations and,
therefore, the residuals is expected. This is captured through the residual
variance matrix using a separable AR1 3 AR1 (where AR1 is an autore-
gressive process of order 1) correlation structure (Gilmour et al., 1997). The
model also contains random genetic effects for the DH and parental lines.

For the metabolite traits, Equation 1 consisted of a fixed-type variable to ge-
netically distinguish the DH or parental lines as well as extraneous nongenetic
random effects stemming from the laboratory design, such as blocking or repli-
cation in the laboratory, sample batches, days in the sample batch, and day of
extraction. As the GC-MS laboratory experiment was a multiphase designed
experiment, the model also appropriately included information from the initial
field trial, such as field replication and plot error. For this model, the residual
error initially contained a simple correlation structure to model dependencies
between observations across days. This structure was then simplified across all
traits due to the nonsignificance of the correlation. Lastly, the model contained
random genetic effects for the DH and parental lines used in the experiment.

All models were analyzed using the flexible linearmixed-modeling software
ASReml-R (Butler et al., 2009) available in the open-source statistical software
platform R (R Development Core Team, 2011). ASReml-R allows complex

modeling of fixed effects, random effects, and residual correlation structures
combined with the residual maximum likelihood approach of Patterson and
Thompson (1971) to estimate model parameters. It has commonly been used in
manymodern plant-breeding experiments (Smith et al., 2002, 2004, 2005, 2006), and
an academic Discovery version is freely available from http://www.vsni.co.uk.

Phenotypic and Genetic Correlations

Pairwise phenotypic correlations between agronomic traits and also between
metabolic traits were calculated using Pearson’s correlation coefficient and were
based on complete pairwise data. Before calculating the pairwise genetic corre-
lations for the agronomic and metabolic traits, model-based predictions for the
DH and parental lines were obtained for each trait from their associated linear
mixed model described in the previous section. The collected set of predictions for
the DH lines from each experiment were then used to calculate Pearson pairwise
genetic correlations for the agronomic and metabolic traits. Similarly, pairwise
genetic correlations between the agronomic and metabolic traits were based on
the collated set of 177 mutual DH predictions extracted from each collected set of
predictions obtained for each experiment.

Let r be any of the pairwise estimated correlation coefficients. Under a null
hypothesis of zero correlation, the significance of r can be determined using
the test statistic:

t ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12 rÞ2

q
ðN2 2Þ

where N is the number of samples involved in estimating the correlation co-
efficient. Under the null hypothesis, this statistic is distributed as t with N 2 2
degrees of freedom. If the null hypothesis is rejected at the a = 0.05 signifi-
cance level, then the correlation coefficient is said to be significantly different
from zero.

The discussion of the genetic and phenotypic correlations is based on the
magnitude of the estimates as follows: (1) a correlation estimate of 0.5 or greater
was considered strong; (2) a correlation estimate between 0.3 and 0.5 was
considered moderate; and (3) a correlation estimate of less than 0.3 was con-
sidered weak.

Total phenotypic variance was partitioned into sources attributable to
genotype and error. Components of variance were used to estimate broad-sense
heritability according to the formula H2 = VG/(VG + VE), where VG is the
among-genotype variance component and VE is the residual (error) variance
component of the ANOVA.

Network Analysis

The genetic correlations between the metabolic and agronomic traits were
displayed on an author-created metabolite network of the primary metabolism
using the built-in graph editor in VANTED (Junker et al., 2006).

Linkage Map

Initially, a total of 233 lines of the cv Excalibur 3 Kukri double haploid
population were genotyped with 438 polymorphic markers, consisting of 184
simple sequence repeats, 253 Diversity Arrays Technology markers, and the
Vrn-1A marker. The linkage map was originally constructed at the Australian
Centre for Plant Functional Genomics as described by Edwards (2012). After
construction of the genetic map, an exploratory review of the map revealed 26
distinct groups of apparently genetically identical lines. From these groups, 43
genetic lines were omitted from the data set and the genetic map was con-
structed, with genetic distances, based on the Kosambi mapping function,
reestimated using the hidden Markov algorithm of Lander and Green (1987)
implemented in the R/qtl package (Broman et al., 2003). The final genetic
linkage map for the population was based on data from 190 DH lines and had
a total length of 3,281 cM (1,220, 1,228, and 833 cM for the A, B, and D ge-
nomes, respectively) and an average distance of 7.81 cM between markers.
Missing genotypic data were imputed using the rules of Martinez and
Curnow (1992).

QTL Analysis

The whole-genome average interval mapping (WGAIM) approach of
Verbyla et al. (2007) was used for QTL analysis of the agronomic and meta-
bolic traits. WGAIM uses extensions of the linear mixed model (Eq. 1) derived
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for each trait by incorporating a whole-genome approach for the detection and
selection of QTLs. Initially, a working linear mixed model is proposed that
includes a whole-genome contiguous block of QTL markers/intervals as
random covariates. A simple likelihood ratio test of significance on the
working model is then conducted to determine the requirement to search for
QTLs on the genome. If it is significant, an outlier statistic is used to select the
most likely putative QTL, which is then moved to the fixed part of the model.
This process is repeated until no further QTLs are detected. Verbyla et al.
(2007) showed that WGAIM is much more powerful than the more commonly
used composite interval mapping approaches originally proposed by Zeng
(1994). In addition, the simultaneous use of the whole genome in the analysis
avoids repeated scans and the usual threshold calculations that are required
for multiple testing problems. This considerably reduces computing time
when a large number of traits require analysis. More importantly, during the
WGAIM algorithm, nongenetic sources of variation arising from the envi-
ronment or experimental design are estimated simultaneously with marker or
interval QTLs, avoiding a two-stage modeling approach to QTL analysis.
WGAIM has been implemented in the R package wgaim (Taylor et al., 2011),
which uses ASReml-R as its core linear mixed-modeling algorithm. This
package also includes QTL summary and diagnostic and plotting functions,
including linkage map plots with highlighted QTLs. Further details of its use,
including extended examples, can be found in Taylor and Verbyla (2011), and
wgaim is freely downloadable from the Comprehensive R Archive Network at
http://CRAN.R-project.org/package=wgaim.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Heat map of genetic and phenotypic correlations
between the measured metabolites.

Supplemental Figure S2. Heat map of the genetic correlations between the
agronomic traits and the measured metabolites.

Supplemental Figure S3. Frequency distribution of the number of mQTLs
detected for each metabolic trait.

Supplemental Figure S4. Frequency distribution of the broad-sense heri-
tability of each detected metabolic trait.

Supplemental Figure S5. Frequency distribution of the number of QTLs
detected for each yield or yield-related trait.

Supplemental Figure S6. Frequency distribution of the broad-sense heri-
tability of each detected trait in the DH population.

Supplemental Table S1. List of metabolite traits.

Supplemental Table S2. List of yield and yield-related traits.

Supplemental Table S3. List of metabolic QTLs.

Supplemental Table S4. List of agronomic QTLs.

Supplemental Data Set S1. Genetic and phenotypic correlations between
each of the measured metabolites.

Supplemental Data Set S2. P values of the genetic and phenotypic corre-
lations between each of the measured metabolites.

Supplemental Data Set S3. Genetic and phenotypic correlations between
each of the measured agronomic traits.

Supplemental Data Set S4. P values of the genetic and phenotypic corre-
lations between each of the measured agronomic traits.

Supplemental Data Set S5. Genetic correlations between the measured
agronomic and metabolic traits.

Supplemental Data Set S6. P-values of the genetic correlations between
the measured agronomic and metabolic traits.
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