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Exosomes Derived from HIV-1-infected Cells Contain
Trans-activation Response Element RNA™®
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Background: Exosomes are extracellular vesicles that have been implicated in intercellular communication.

Results: Exosomes that originate from human cells infected with HIV-1 contain virus-derived small noncoding RNA.
Conclusion: Virus-derived small RNA present in exosomes exert functional consequences in naive recipient cells.
Significance: Viral RNA molecules present in exosomes may be critical mediators of intercellular viral spread in infected hosts.

Exosomes are nano-sized vesicles produced by healthy and
virus-infected cells. Exosomes derived from infected cells have
been shown to contain viral microRNAs (miRNAs). HIV-1
encodes its own miRNAs that regulate viral and host gene
expression. The most abundant HIV-1-derived miRNA, first
reported by us and later by others using deep sequencing, is the
trans-activation response element (TAR) miRNA. In this study,
we demonstrate the presence of TAR RNA in exosomes from cell
culture supernatants of HIV-1-infected cells and patient sera.
TAR miRNA was not in Ago2 complexes outside the exosomes
but enclosed within the exosomes. We detected the host miRNA
machinery proteins Dicer and Drosha in exosomes from
infected cells. We report that transport of TAR RNA from the
nucleus into exosomes is a CRM1 (chromosome region mainte-
nance 1)-dependent active process. Prior exposure of naive cells
to exosomes from infected cells increased susceptibility of the
recipient cells to HIV-1 infection. Exosomal TAR RNA down-
regulated apoptosis by lowering Bim and Cdk9 proteins in recip-
ient cells. We found 10*~10° copies/ml TAR RNA in exosomes
derived from infected culture supernatants and 10® copies/ml
TAR RNA in the serum exosomes of highly active antiretroviral
therapy-treated patients or long term nonprogressors. Taken
together, our experiments demonstrated that HIV-1-infected
cells produced exosomes that are uniquely characterized by
their proteomic and RNA profiles that may contribute to disease
pathology in AIDS.
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Exosomes are nano-sized vesicles that range from 30 to 100
nm in diameter and are produced by multiple cell types (1-3).
Exosomes originate from late endosomal compartments called
multivesicular bodies or de novo from the plasma membrane by
outward budding (4). Exosomes contain lipids, proteins, and
nucleic acids (MRNAs and miRNAs)? (5, 6). The proteomic
composition of exosomes has been well characterized (7-10).
Exosomes released into the intercellular space can fuse with
multiple target cells and exert regulatory influences on the tar-
get cell (11-15). Exosomal components have been explored as
potential biomarkers of the cellular disease state, particularly in
cancers (10, 16).

Viruses, upon infection, alter the host cell in ways that coun-
ter the host’s innate immune response and promote their sur-
vival and replication. One critical host strategy to combat viral
infections is RNA interference (RNAi), which selectively elim-
inates foreign nucleic acids (17-20). The steps that lead to gen-
eration of functional miRNAs have been well studied (21-31).
Viruses have co-evolved with the host RNAi machinery by
either encoding their own miRNAs or by encoding suppressors
of RNAi that can inhibit the host RNAi response (32—-37). DNA
viruses have been long known to produce their own miRNAs
(38-43). The notion that retroviruses such as HIV-1 encode
their own miRNAs is a subject of debate. An initial report by
Pfeffer et al. in 2005 (44) claimed that there were no HIV-1-
encoded viral miRNAs. This claim was later reinstated by Lin
and Cullen in 2007 (45) after analysis of roughly 1000 clones of
miRNAs obtained from HIV-1-infected cells. It was later
reported in 2007 by Klase et al. (46) that the TAR element of

2The abbreviations used are: miRNA, microRNA; TAR, trans-activation
response element; HAART, highly active antiretroviral therapy; LTNP, long
term nonprogressor; qRT, quantitative RT; PBMC, peripheral blood mono-
nuclear cell; AchE, acetylcholinesterase enzyme; pol, polymerase; nt,
nucleotide; WCE, whole cell extract; IP, immunoprecipitation; TRBP, TAR
RNA-binding protein.
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HIV-1 was processed to yield a viral miRNA as detected by
sensitive RNase protection assays (47). The TAR-derived
miRNA was demonstrated to regulate host cell gene expression
relevant to suppression of apoptosis in infected cells (48).
Within the next 2 years, two independent research groups
made confirmatory observations about the existence of HIV-1-
derived small noncoding RNAs. Yeung et al. (49) carried out
deep sequencing analysis and reported that multiple small viral
noncoding RNAs existed in HIV-1-infected cells. The sequenc-
ing of a total of 47,773 clones showed that 60% of them repre-
sented miRNAs. Within this population, the authors identified
125 noncoding RNAs that were HIV-1-specific. They also
reported that the TAR noncoding RNAs were the most abun-
dant followed by the Rev response element and Nef-noncoding
RNAs. A similar observation was made by Oullet et al. (50) that
the TAR element of HIV-1 was asymmetrically processed to
yield a viral miRNA. Viral miRNAs have also been reported to
originate from the Nef region of the HIV-1 genome, the RRE-
containing element, and miR-H1, also originating from the
LTR region (49, 51, 52). Schopman et al. (53) employed the
sensitive SOLIiD (tm) 3 Plus System to analyze viral interfering
RNA accumulation in HIV-1-infected T lymphocytes and
reported that HIV-1 may trigger the production of viral siRNAs
and viral miRNAs to modulate cellular and/or viral gene
expression. A recent study by Klase et al. (54) additionally dem-
onstrated that HIV-1-encoded noncoding RNAs do not nega-
tively influence viral replication.

Many viral miRNAs have been discovered in exosomes. This
has been demonstrated in the case of Epstein-Barr virus infec-
tions, both in cell culture systems and patient serum samples
(55-59). In the case of HIV-1, there is extensive data on viral
proteins contained in exosomes derived from infected cells
(60— 64). The viral Gag protein has been shown to be included
in exosomes originating from infected cells, and this inclusion
is dependent on the ability of the viral protein to form higher
order oligomeric structures with itself, the host ESCRT ma-
chinery, and the plasma membrane (4, 65— 69).

In this study, we hypothesized that the TAR RNA produced
in infected cells may be incorporated into exosomes. We found
that there are abundant levels of extracellular TAR RNA in the
cell culture supernatants of infected cells and in patient sera.
We also found that although HIV-1-infected cell lines produce
exosomes with TAR RNA, there were little detectable levels of
viral mRNA in these exosomes. Our data demonstrate that exo-
somes isolated from culture supernatants of primary latently
infected cells also contain TAR RNA. We provide evidence that
exosomes derived from HIV-1-infected cells contain both 5’
and 3" TAR miRNAs. Our proteomic analysis of exosomes
derived from infected cells showed the presence of the viral
proteins, such as Gag and Env. Within exosomes originating
from HIV-1-infected cells, we detected Drosha and Dicer pro-
teins, components of the miRNA machinery. Experiments
using leptomycin B indicated that CRM1-mediated nuclear
export of TAR RNA was required for the inclusion of TAR
RNA in exosomes. Purification of exosomes from HIV-1-in-
fected primary cells using density fractionation gradients con-
firmed inclusion of TAR RNA in exosomes. Treatment of unin-
fected cells with exosomes purified from HIV-1-infected cells
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revealed that the exosome-delivered TAR RNA could confer a
protective phenotype to recipient cells under conditions of cel-
lular stress. Our data suggest that prior exposure of uninfected
target cells to exosomes from infected cells made the target cells
more susceptible to HIV-1 infection. Finally, we have also
detected TAR RNA and specific components of the host
miRNA machinery in serum exosomes of HIV-1-infected
patient samples.

EXPERIMENTAL PROCEDURES

Cells—The human embryonic kidney cell line 293T was
obtained from the AIDS Reagent program and was maintained
in DMEM complete medium. TZM-bl, a modified HeLa cell
line expressing CD4 and CCR5, was obtained from the AIDS
Reagent program and maintained in DMEM complete
medium. Jurkat and CEM cell lines (uninfected T cells), J1.1 cell
lines (HIV-1-infected T cells), ACH-2 (HIV-1-infected cell
line), 8E5 (LAV-infected T cell line), and U937 (promonocytic)
cells were grown in RPMI complete medium. HLM-1 (HIV-1-
infected HeLa cell line/Tat ™) cells were grown in DMEM com-
plete medium. All cells were maintained at 37 °C and 5% CO,,. A
detailed description of all the cells used in this study with
description of the viruses that were used to infect these cells is
provided in supplemental Table 1. Bovine exosomes were
excluded from culture media by ultracentrifugation of the FBS
at 100,000 X g for 2 h prior to growth of cells for exosome
isolation.

Reagents and Antibodies—OptiPrep ™ (60% iodixanol w/v in
water) was purchased from Sigma. Protein A/G beads were pur-
chased from Santa Cruz Biotechnology (Santa Cruz, CA). Com-
plete culture media consisted of RPMI 1640 or DMEM supple-
mented with 10% fetal bovine serum (FBS), 1% L-glutamine, and
1% streptomycin/penicillin (Quality Biological). Media used for
serum starvation experiments consisted of 0.1% FBS, 1% L-glu-
tamine, and 1% streptomycin/penicillin. Leptomycin B was
purchased from Sigma. Antibodies used for Western blots were
obtained from Abcam (CD63, ab8219 (1:1000); cytochrome c,
ab13575 (1:1000); TRBP, ab42018 (1:1000); Dicer, ab14601
(1:1000); Drosha, ab12286 (1:1000); DGCRS, ab90579 (1:1000);
Ago-ab5070 (1:1000); B-actin ab49900 (1:5000)), Santa Cruz
Biotechnology (Bim, sc-11425 (1:250); CD45, sc-53666 (1:250);
Cdk9, sc-484 (1:1000); Hsp70, sc1060 (1:1000)), and AIDS Re-
agent program (Nef antibody 3689 (1:250)).

Clinical Samples—The clinical samples used in this study
were obtained through the Women’s Interagency HIV study at
the Washington D. C. site and have been described in detail by
Van Duyne et al. (68). LTNPs were defined as being HIV-1-
infected but free of disease for a minimum period of at least 5
years, a CD4 count of greater than 500 at all visits, and no prior
history of antiretroviral therapy. All samples were obtained
after informed consent and were approved by the ethics board
of George Washington University.

CD4 T Lymphocytes—Peripheral blood was obtained from
healthy donors. CD4™" T cells (CD4TL) were then isolated from
fresh PBMCs using negative selection kit according to the man-
ufacturer’s instructions (STEMCELL Technologies, Vancou-
ver, British Columbia, Canada). Cells were solicited from anony-
mous, healthy volunteer donors who had signed an informed
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consent approved by the Centre Hospitalier de 'Université
Laval research ethics review board. These cells were activated
with PHA-L (1 pg/ml) and maintained in complete culture
medium supplemented with IL-2 (30 units/ml) at a density of 2 X
10° cells/ml for 3 days. Then CD4TL was incubated with NL4—
3BalEnv R5 virus (800 ng of p24 for 40 X 10° cells/ml) for 2 h, and
after washes, activated CD4TL was added in complete RPMI 1640
medium supplemented with recombinant human IL-2 (30 units/
ml) for 5 days. Exosomes were purified after 5 days.

Exosome Purification—]Jurkat and J1.1 cells were grown in
appropriate media supplemented with 10% exosome-depleted
FBS. Exosome preparations were made from 80 to 100 ml of cell
culture supernatants (material produced from a culture of 1 X
10° cells per ml for 5 days). Cells were pelleted by centrifugation
at 300 X gfor 10 min. An additional centrifugation at 2000 X g
for 10 min was used to pellet dead cells. The supernatant was
collected and ultracentrifuged at 10,000 X g for 30 min to elim-
inate cell debris. This was followed by ultracentrifugation at
100,000 X g for 70 min two times to pellet the vesicular com-
ponents. The resulting exosome pellet was then resuspended in
an appropriate amount of PBS (15-150 wl). All spins were done
at 4 °C. We included a filtration step prior to the ultracentrifu-
gation steps through a 0.22-um filter to account for contami-
nation of our exosome preparations with other vesicles, and we
determined that no significant change to total protein could be
detected between filtered and unfiltered samples (data not
shown). Protein levels in exosomes were determined by stan-
dard Bradford assay. All exosome preparations were quality
controlled by electrophoresis in 4-20% Tris-glycine gels fol-
lowed by Coomassie or silver staining in addition to determi-
nation of protein concentration.

Exosomes were purified using ExoQuick reagent as per the
manufacturer’s instructions. Briefly, for every 250 ul of patient
serum, about 65 ul of ExoQuick reagent was added, and the two
components were incubated overnight. After 24 h, the exosomes
were centrifuged, and the pellets were resuspended in ~10 times
less volume than the starting material with PBS (containing Ca>™"
or Mg>"). Although the PBS-resuspended material was directly
utilized for TRIzol/RNA extraction, for Western blot analyses, the
material was diluted 10 times further in TNE-50 with 0.1% Non-
idet P-40 and passed through a Sephadex G-10 spin column (2 min
at 2000 rpm) prior to electrophoresis.

OptiPrep Gradient Separation—Iodixanol (OptiPrep) gradi-
ents were prepared in PBS in 1.2% increments ranging from 6 to
18%. Ultracentrifuged microvesicle/exosome sample (210 ul)
was layered on top of the gradient and centrifuged for 1.5 h at
250,000 X gin an SW41 Ti rotor. Gradient fractions were col-
lected from the top of the gradient in 1-ml increments and were
transferred to polycarbonate ultracentrifuge tubes. They were
then diluted with 21 ml of PBS and ultracentrifuged at
100,000 X g for 70 min in a Ti-70 rotor. The resulting pellets
were then resuspended in 15-100 ul of PBS and concentrated
to a volume of 10-15 ul

Acetylcholinesterase Enzyme (AchE) Activity Assay—AchE
activity of exosomes after OptiPrep purification was carried out
as described in detail by Cantin et al. (69). Briefly, 50 ul of every
fraction was resuspended in 1.25 mm/liter acetylthiocholine
and 0.1 mm/liter 5.5-dithiobis(2-nitrobenzoic acid) in a final
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volume of 1 ml. Changes in absorption were monitored at 412
nm during a 10-min incubation period at 37 °C.

SDS-PAGE and Western Blot Analysis—Cell extracts were
resolved by SDS-PAGE on 4-20% Tris-glycine gels (Invitro-
gen). Gels were stained using Coomassie Blue stain or silver
stain by standard procedures. For Western blot analyses, pro-
teins were transferred to Immobilon membranes (Millipore) at
80 mA for 16 h. Membranes were blocked with Dulbecco’s
phosphate-buffered saline (PBS) + 0.1% Tween 20 + 5% dry
milk for 1 h at room temperature. Primary antibodies against
specified proteins were incubated with the membranes over-
night at 4 °C. Membranes were washed twice with PBS + 0.1%
Tween 20 and incubated with HRP-conjugated secondary anti-
body for 2 h at 4°C. Membranes were washed two times with
PBS + 0.1% Tween 20 and once with PBS prior to imaging. HRP
luminescence was elicited with Super Signal West Dura Extended
Duration Substrate (Pierce) and visualized by a Molecular Imager
ChemiDoc XRS system (Bio-Rad). The band intensities were cal-
culated using Quantity One 4.6.5 software (Bio-Rad).

Transmission Electron Microscopy—Samples were prepared
as follows: Jurkat and J1.1 exosomes (5 ug) were adsorbed onto
300 mesh Formvar-coated grids, stabilized with evaporated
carbon film (Electron Microscopy Science, FCF300-Ni), and
fixed in 4% glutaraldehyde (5 ul) (Electron Microscopy Sci-
ences, 16210) at 4 °C for 5 min. After four rinses with auto-
claved deionized water, fixed samples were stained for 2 min
with uranium acetate (10 ul), dried for 20 min, and imaged with
the transmission electron microscope (JEOL JEM 1200EX).

Ago2 Immunoprecipitation and RT-PCR for TAR miRNA—
For immunoprecipitations, up to 3 ml of culture supernatants
and 200 ul (~200 ug) of purified Jurkat and J1.1-derived exo-
somes were incubated with 10 ug of anti-Ago2 or IgG antibody
overnight at 4 °C. The next day, 30 ul of a 30% slurry of protein
A/G beads was added to each reaction and incubated at 4 °C for
2 h. The beads were washed twice with TNE buffer, and the
Ago2-associated RNA was extracted using TRIzol. Total RNA
isolated from the immunoprecipitated complexes was utilized
for RT-PCRs using the QuantiMiR small RNA quantification
system (SBI) following the manufacturer’s instructions. Briefly,
50% of the isolated RNA sample was used as input material for
athree-step assay that tags all small RNA species with a poly(A)
tail followed by annealing of an oligo(dT) adaptor and cDNA syn-
thesis. One-third of the cDNA was then utilized in RT-PCRs per-
formed using a universal reverse primer and forward primer
against miR16, 5" TAR miRNA, and 3" TAR miRNA (70, 71).
Amplified products were resolved in a 4—20% polyacrylamide gel,
stained with ethidium bromide, and visualized using a Molecular
Imager ChemiDoc XRS system (Bio-Rad).

Luciferase Assay—For transfections, TZM-bl cells were
seeded in a 96-well culture plate (50,000 cells per well). Twenty
four hours later, the cells were transfected with 0.2 ug of Tat
plasmid (positive control) or incubated with exosomes derived
from Jurkat or J1-1 cells. Twenty four hours after transfection/
incubation, luciferase activity was assayed using BrightGlo
luciferase assay (Promega). Luminescence was measured with
Promega GloMax MultiDetection System. Data shown repre-
sent the average of three experimental repeats.
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MALDI-TOF Mass Spectrometry—Protein bands of interest
were excised from silver-stained gels (silver stain kit, Pierce).
Gel pieces were vortexed and washed with 100% acetonitrile to
dehydrate the gel pieces and were re-swelled with up to 200 ng
of trypsin by incubation on ice for 30 min. Residual trypsin was
removed; 20 ul of 25 mm NH,HCO, was added to the gel pieces,
and the reactions were incubated overnight at 37 °C. Peptides
were extracted with a 1X distilled H,O wash with brief vortex-
ing and sonication, followed by three washes with 60% acetoni-
trile, 5% TFA. Extracted peptides were pooled together, and a
Speed Vacuum was utilized to reduce the volume to ~10 ul.
Twenty microliters of 0.1% TFA was added to each tube, and
peptides were desalted using C, ¢ ZipTips (Millipore) according
to the manufacturer’s instructions. Peptides were spotted on
MALDI sample plate 1:1 with a-cyano-4-hydroxycinnaminic
acid matrix solution: 10 mg of a-cyano-4-hydroxycinnaminic
acid, 500 ul of 100% acetonitrile, 500 ul of 0.1% TFA. Positive
control calibration peptide solution of bradykinin, angiotensin
II, P14R, and ACTH was spotted along with negative control
empty gel slice. Mass peaks obtained were entered into
Mascot and ProFound databases for peptide mass fingerprint-
ing analysis.

LC-MS/MS Analysis—Whole exosome preparations were
lysed in 8 M urea, and after that, they were reduced using DTT
and acetylated using iodoacetamide by standard procedures.
The reduced and alkylated proteins were trypsin-digested
(trypsin, Promega) overnight at 37 °C. The digested peptides
were eluted using ZipTip purification (Millipore), and identifi-
cation of the peptides was performed by linear trap quadrupole-
tandem MS/MS equipped with a reverse phase liquid chroma-
tography nanospray (ThermoFisher). The reverse phase
column was slurry-packed in house with 5 um 200-A pore size
C, g resin (Michrom BioResources) in a 100-um X 10-cm fused
silica capillary (Polymicro Technologies) with a laser-pulled tip.
After sample injection, the column was washed for 5 min at 200
nl/min with 0.1% formic acid; peptides were eluted using a
50-min linear gradient from 0 to 40% acetonitrile and an addi-
tional step of 80% acetonitrile (all in 0.1% formic acid) for 5 min.
The linear trap quadrupole-MS was operated in a data-depen-
dent mode in which each full MS scan was followed by five
MS-MS scans where the five most abundant molecular ions
were dynamically selected and fragmented by collision-induced
dissociation using normalized collision energy of 35%. Tandem
mass spectra were matched against the National Center for
Biotechnology Information mouse database by Sequest Bio-
works software (ThermoFisher) using full tryptic cleavage con-
straints and static cysteine alkylation by iodoacetamide. For a
peptide to be considered accurately identified, it had to be the
top number one matched and had to achieve cross-correlation
scores of 1.9 for [M + H]'*, 2.2 for [M + 2H]?*", 3.5 for [M +
3H]**, ACin >0.1, and a maximum probability of randomized
identification of 0.01.

Fas Antibody Treatment and Cell Cycle Analysis—Jurkat
cells (1 X 10° cells/100 ul) were pretreated with exosomes
derived from Jurkat or J1.1 cells after which the cells were incu-
bated with Fas antibody. Anti-Fas antibody (clone CH11-05-
201) recognizes the human cell surface antigen Fas expressed in
various human cells, including myeloid cells, T lymphoblastoid
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cells, and diploid fibroblasts. Samples at 20 wg/ml were used to
induce apoptosis of human Jurkat cells. Samples were treated
with exosomes for 2 h followed by incubation with anti-Fas
antibody (1, 3, and 5 ul) for 48 h. Cells were washed with 1X
PBS and fixed with 70% ice-cold ethanol. Following rehydration
in 1X PBS, cells were stained in PBS containing 25 ug/ml pro-
pidium iodide (Sigma), 10 ug/ml RNase A (Sigma), and 0.1%
Nonidet P-40 (Calbiochem). Cells were analyzed on a Accuri
C6 flow cytometer (BD Biosciences). Cell cycle analysis and
measurement was performed using Accuri C6-CFlow software
(BD Biosciences).

Reverse Transcriptase (RT) Activity Analysis—RT analyses
were performed by previously published methods (72). Briefly,
10 ul of cell culture supernatants were incubated in a 96-well
plate with RT reaction mixture containing 1X RT buffer (50
mM Tris-HCL, 1 mm DTT, 5 mm MgCl,, 20 mm KCl), 0.1% Tri-
ton, poly(A) (1 unit/ml), pd(T) (1 units/ml), and [*H]TTP. The
mixture was incubated overnight at 37 °C, and 10 ml of the
reaction mix was spotted on a DEAE Filtermat paper, washed
four times with 5% Na,HPO, and three times with water, and
dried. RT activity was measured in a Betaplate counter (Wallac,
Gaithersburg, MD).

Chromatin Immunoprecipitation Assay (ChIP)—293T cells
were transfected (20 pg) with a pol III-driven plasmid express-
ing scrambled DNA or wild type TAR (generous gift of Dr. John
Rossi, City of Hope), collected 48 h post-transfection, and pro-
cessed for ChIP analysis. For ChIP, ~5 X 10° cells were used per
IP. ChIP assays were performed as described previously (46).
Briefly, cells were harvested by trypsinization, washed with
PBS, and resuspended in 1% formaldehyde for 10 min at 37 °C.
Cells were washed twice with PBS and resuspended in 500 ul of
SDS Lysis Buffer (1% SDS, 10 mm EDTA, 50 mwm Tris-HCI, pH
8.1) per IP. Cells were sonicated for six 10-s pulses and clarified
by centrifugation at 14,000 rpm for 10 min at 4 °C. Supernatants
were collected and diluted 10-fold in ChIP dilution buffer
(0.01% SDS, 1.1% Triton X-100, 1.2 mm EDTA, 16.7 mm Tris-
HCI, pH 8.1, 167 mm NaCl). Extracts were precleared with
ChIP-prepared A/G beads (protein A/G beads with 10 mg/ml
salmon sperm DNA and 10 mg/ml BSA) for 1 hat 4 °C. Extracts
were then spun at 3000 rpm for 10 min at 4 °C, and lysates were
transferred to a new tube. Specific antibodies (5 ug) were incu-
bated overnight, rotating at 4 °C. ChIP-prepared A/G beads
were added the next day and allowed to rotate for 2 h at 4 °C.
Samples were spun for 5 min at 3000 rpm at 4 °C and washed
successively with 1X low salt buffer (0.1% SDS, 1% Triton
X-100, 2 mMm EDTA, 20 mm Tris-HCI, pH 8.1, 150 mm NaCl),
2X high salt buffer (0.1% SDS, 1% Triton X-100, 2 mm EDTA,
20 mM Tris-HCL, pH 8.1, 500 mm NaCl), 1X LiCl wash buffer
(0.25 m LiCl, 1% Nonidet P-40, 1% deoxycholate, 1 mm EDTA,
10 mm Tris-HCI, pH 8.1), and 1X TE. Complexes were eluted
off the beads two times with elution buffer (1% SDS, 0.1 m
NaHCO,). Eluates were then reverse cross-linked with 5 m
NaCl and 50 pg/ml proteinase K for 5 h at 55 °C. DNA was
phenol/chloroform extracted, precipitated, and resuspended in
50 ul of TE. PCR was performed against the Cdk9 promoter and
the Bim promoter using the following primers: Cdk9, forward
5-'GGAAGAGGCGGGGTCG-3' and reverse 5'-ACTCCAG-
GCCCCTCCG-3'; Bim, forward 5-TAAATATGGGCTC-
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CCACCCC-3" and reverse 5'-ACACCAGGCGGACAATG-
TAA-3".

RNA Isolation and Quantitative RT-PCR—For quantitative
analysis of HIV-1 RNA, total RNA was isolated from various
samples, including cell culture supernatants, exosome fraction
of cell culture supernatants, serum specimens of HIV-1-in-
fected individuals, and lysates of CEM cells treated with exo-
somes from HIV-1-infected J1.1 cells; RNA was isolated using
TRI Reagent-LS (MRC, Cincinnati, OH) according to the man-
ufacturer’s protocol. A total of 0.5 ug of RNA from the RNA
fraction was treated with 0.25 mg/ml DNase I RNase-free
(Roche Applied Science) for 60 min in the presence of 5 mm
MgCl,, followed by heat inactivation at 65 °C for 15 min. A
250-ng aliquot of total RNA was used to generate cDNA with
the GoScript reverse transcription system (Promega, Madison,
WI) using TAR-specific reverse primer TARfl-R (5'-GTGGG-
TTCCCTAGTTAGC-3’) or oligo(dT) reverse primers. Subse-
quent quantitative real time PCR analysis was performed with 2
wl of undiluted and 10~ * and 10~ 2 diluted aliquots of RT reac-
tion mixes using iQ SYBR Green Supermix (Bio-Rad) with the
following pairs of primers: 1) TAR-specific primers TARfll-F
(5'-GGTCTCTCTGGTTAGACC-3") and TARfIl-R (see
above) amplified 60 nt; TAR sequence: 2) LTR-specific primers
NFkB1-2-F (5'-TTCCGCTGGGGACTTTCC-3') and TAR-
fll-R amplified 158 nt; fragment of U3-R sequence of HIV-1
LTR: 3) env-specific primers Env2019F (5'-GGCAAGTCTGT-
GGAATTGG-3') and Env2187R (5'-TGGGATAAGGGTCT-
GAAACG-3') amplified 168 nt; a fragment of the HIV-1 Env
gene. In the RNA samples from culture media of the latently
HIV-1-infected cells, the count of Vif, Vpr, Tat, Rev, Vpu, and
Nef RNA was measured using quantitative real time PCR anal-
ysis with iQ SYBR Green Supermix. The following primer sets
were used: 1) Vif-F18 (5'-GGTGATGATTGTGTGGCAAG-
3’) and Vif-R245 (5'-CCCAAATGCCAGTCTCTTTC-3'); 2)
Vpr-F34 (5'-AGGGAGCCATACAACGAATG-3') and Vpr-
R208 (5'-TAAACGGCAGTTGTTGCAGA-3'); 3) Tat-F33
(5'-GAAGCATCCAGGAAGTCAGC-3’) and Tat-r225 (5'-
GGAGGTGGGTTGCTTTGATA-3'); 4) Rev-F107 (AGGCC-
CGAAGGAATAGAAGA-3") and Rev-R282 (5'-CGTCCCAG-
AAGTTCCACAAT-3"); 5) Vpu-F51 (5'-AGCAATAGTTGT-
GTGGTCCAT-3’) and Vpu-R233 (5'-ATATCCCAAGGAG-
CATGGTG-3'); and 6) Nef-F31 (5'-ATTGGATGGCCTGCT-
GTAAG-3’) and Nef-R206 (5'-GGAAAACCCACCTCT-
TCCTC-3'). Serial dilutions of DNA from 8E5 cells (CEM cell
line containing a single copy of HIV-1 LAV provirus per cell)
were used as the quantitative standards. A schematic represen-
tation of the primers used in the study is included in supple-
mental Fig. 1. To normalize HIV-1 RNA quantifications in exo-
some-treated CEM cells, the B-globin gene was also quantified
by real time PCR using B-globin-specific primers as follows:
forward primer BGF1 (5'-CAACCTCAAACAGACACCA-
TGG-3') and reverse primer BGR1 (5'-TCCACGTTCACCT-
TGCCC-3’). Real time PCRs were carried out in triplicate using
the PTC-200 Peltier Thermal Cycler with Chromo4 Continu-
ous Fluorescence Detector (both from MJ Research) and Opti-
con Monitor 2.03 software.

Poly(A) RT-PCR for Small RNA Quantitation—For poly(A)
RT-PCR detection of small RNAs, the miRNA fraction was iso-
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lated from DNase I-treated total RNA samples using the
mirVana miRNA isolation kit (Ambion, Austin, TX). Then the
3’ poly(A) tailing and RT reaction with oligo(dT) primer con-
taining 5’ adaptor sequence were performed in a 500-ng aliquot
of miRNA-enriched fractions using the QuantiMiR kit (SBI,
Mountain View, CA) according to the manufacturer’s protocol.
A manufacturer-provided universal reverse primer and specific
microRNA forward primers identical in sequence to the
microRNA of interest (TAR, miR-16 and U6 snRNA) were used
for quantitative real time PCR with iQ SYBR Green Supermix.
Serial dilutions of the synthetic Caenorhabditis elegans miRNA
cel-mir-238 were used as quantitative standards. Real time
PCRs were carried out in triplicate. Comparative Ct (AACt)
method was applied to analyze data and determine copy
numbers.

Infectivity Assay Using Exosomes—To determine functional
activity of the exosomes, multiple cell types, including CEM,
H9, THP1, U937, and U87MG, were grown to early-mid log
phase of growth in complete media (10% serum). Cells (0.5 X
10%/ml) were seeded in a 12-well plate and incubated with Jur-
kat- or J1.1-derived exosomes for 24 h. Next, 89.6 virus (0.5
ng/p24/ml; 100 pl) was added to the mixture, and culture
supernatants were collected 5 and 7 days post-addition of virus
and assayed for reverse transcriptase (RT) activity.

Latent Infection of Primary Cells with HIV-1—Primary cells
latently infected with HIV-1 were generated essentially as
described in Marini et al. (73), with some modifications. Total
CD4" T cells were enriched by negative selection with the
CD4™" T cell isolation kit (Miltenyi Biotec) from the PBMCs of
healthy seronegative donors. CD4™" T cells were activated with
monocyte-derived dendritic cells (1 monocyte-derived den-
dritic cell/10 CD4™ T cells), 500 ng/ml Staphylococcus entero-
toxin B, and 50 units/ml IL-2. After 4 days, half of the cells were
infected with 2 X 10 TCID,,/10° cells of HIV-1,;; (ABI) for
2 h at 37°C; the other half of the cells was left uninfected.
Infected and uninfected cultures were expanded for 10 —15 days
in medium containing 25 units/ml IL-2. When the infected cul-
ture contained 10—15% infected cells as determined by flow
cytometry after intracellular staining with anti-p24 antibodies
(clone KC57, Beckman Coulter), both infected and uninfected
cultures were placed in resting phase for 7 days in medium
containing 1 ng/ml IL-7. At the end of the 7-day resting phase,
the cultures were restimulated with anti-CD3/CD28 for 3-5
days. At the end of the 3-5 days, cultures were harvested and
processed for exosomes.

Statistical Analysis—Quantitative data were analyzed by
two-way analysis of variance (OriginPro version 8.0) and Stu-
dent’s ¢ test (Microsoft Excel). Standard deviation was calcu-
lated in all quantitative experiments for at least three in-
dependent preparations. The difference was considered to be
statistically significant when p < 0.05.

RESULTS

TAR RNA Can Be Detected in Sera of HIV-1-infected Patients
and in Culture Supernatants of Infected Cells—Earlier studies
have demonstrated that HIV-1 produces its own viral miRNAs
with TAR miRNA being the predominant species (46 —53). On
average, an infected cell may produce up to 10*~10° copies of
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of 8E5, ACH-2, U1, HLM-1,J1.1 cells and PHA and IL-2 activated peripheral blood lymphocytes, infected with HIV-1 NL4-3 for 72 h, was quantitated by RT-SYBR
Green real time PCR with the primers specific for HIV-1 TAR, U3-R LTR, and Env sequences. Relative RNA count is shown as percentage of the peak count
detected for TAR HIV-1 RNA in each sample of the cell culture supernatant. Error bars show the standard deviation from three independent preparations = S.D.
Single asterisk indicates p =< 0.05; double asterisk indicates p = 0.01. B, total RNA isolated from culture supernatants of U1 and HLM-1 cells was analyzed by
gRT-PCR with primers specific for TAR RNA and viral mRNAs, including vpu, vpr, vif, nef, tat, env, rev, and unspliced HIV-1 RNA as described in A. Results are
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bars show the standard error of two independent measurements.

TAR RNA; however, only a small fraction of that population is
utilized by the virus to regulate viral and host transcription.
Therefore, we speculated that the excess of TAR RNA exerted
its regulatory influence on other bystander cells in an extracel-
lular manner. We tested whether extracellular TAR RNA
(unprocessed RNA that contains stem and loop structure, min-
imally consisting of the first 57 bases or pri-miRNA) could be
detected in culture supernatants of early log phase growing
HIV-1-infected cells. We carried out qRT-PCR analysis of
supernatants from infected 8E5, ACH-2, U1, J1.1, and HLM-1
cells with TAR RNA and control primers. A schematic repre-
sentation of the primers utilized in the qRT-PCR studies is pro-
vided in supplemental Fig. 1. The data revealed the presence of
TAR RNA in supernatants of all the infected cell types tested,
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albeit at different concentrations (Fig. 14). When compared
with the other LTR region (U3 primer, supplemental Fig. 1) and
a different HIV-1-derived RNA (Env), we observed that TAR
RNA was in vast excess in the culture supernatants of all cell
types tested. We performed similar qRT-PCR analysis of TAR
RNA in the culture supernatants of HIV-infected primary cells
(Fig. 1A, activated PBL) and observed TAR RNA in these super-
natants as well. Furthermore, we performed independent qRT-
PCRs to determine whether other virus-derived mRNAs were
also present in culture supernatants of these cells. To address
that question, we performed the same kind of qRT-PCR analy-
sis of RNA isolated (as described above for TAR RNA) from
supernatants of Ul and HLM-1 cell cultures with primers that
would amplify all other viral mRNAs, including Vif, Vpr, Tat,
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FIGURE 2. Exosomes isolated from HIV-1-infected cells possess typical characteristics. A, Jurkat and J1.1-derived exosomes obtained from 5-day-old cell
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microscopy and the multiple representative exosomes indicated.

Rev, Vpu, Env, and Nef, and we found that TAR RNA was in
excess over all other viral mRNAs (Fig. 1B). The total copy
numbers of these mRNAs did not exceed 5% of the TAR RNA
copy number.

To check whether the increased amount of extracellular TAR
RNA was present in the serum of HIV-1-infected individuals,
we quantified TAR RNA in serum specimens from different
groups of HIV-1-infected patients. We performed qRT-PCR
for TAR RNA using control samples from uninfected serum
samples, sera from HIV-1-infected individuals undergoing
HAART treatment, and LTNPs (68). Our results demonstrated
that the HAART-treated patient serum samples contained
~1.7 X 10® copies of TAR-pre-miRNA/ml, whereas LTNPs
possessed about 4 X 10 copies/ml (Fig. 1C). We had made
similar observations of TAR RNA in serum samples of HIV-
positive individuals using RNase protection assay as well (data
not shown). Collectively, our data demonstrated that HIV-1-
derived TAR RNA (pri-miRNA) was detected as an extracellu-
lar species in patient samples and in cell culture supernatants.

HIV-1-infected Cells Produced Exosomes with Typical
Characteristics—W e hypothesized that the extracellular popu-
lation of TAR RNA is less likely to exist as nascent RNA species
and more likely to be enclosed in a protected environment such
as membrane-bound vesicles. Our reasoning came from previ-
ous experiments where addition of purified, free TAR RNA
(T7-based, in vitro synthesized) to culture supernatants or
patient serum samples resulted in rapid degradation of TAR in
less than 5 min (98% degradation of 10 copies/ml stock at
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37 °C; data not shown). Therefore, we focused on exosomes,
which have attracted attention in recent years as extracellular
membranous vesicles that contain both viral and cellular
miRNAs. We chose J1.1 cells, which are chronically infected T
cells, produce high-titer viruses without killing the host cell,
and are amenable to isolation of virus-free exosomes by centri-
fugation methods. We isolated exosomes from HIV-1-infected
J1.1 and Jurkat cells (uninfected parental cell) using a series of
ultracentrifugation steps. First, we determined the kinetics of
exosome accumulation in the culture supernatant of Jurkat
cells over time. We cultured Jurkat cells in exosome-free media
and isolated exosomes after 1, 2, and 5 days. The enriched exo-
some population and comparable whole cell extracts (WCEs)
were separated on 4-20% Tris-glycine gels and stained with
Coomassie Blue to visualize total protein levels. Multiple iso-
lates demonstrated that the 5-day-old culture supernatant con-
tained the highest concentration of exosomes from infected or
uninfected cells (data not shown).

We next asked whether exosomes from these two cell cul-
tures are similar in protein composition. To evaluate the pro-
tein profile of Jurkat-derived and J1.1-derived exosomes, we
separated equivalent amounts of exosomes (~20 ug) isolated
from these two different cells by SDS-PAGE and silver-stained
the gel. WCEs (50 ug) from both cells were included as controls.
We observed that exosomes from J1.1-derived cells contained
lower overall protein diversity compared with the Jurkat-de-
rived exosomes (Fig. 24, compare lanes 5 and 6). We observed
protein bands that were common and unique to either cell
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FIGURE 3. Exosomes derived from HIV-1-infected cells contain TAR RNA. A, total RNA was isolated from J1.1-derived exosomes and analyzed by qRT-PCR
with primers specific for TAR RNA, U3-R LTR sequence, and unspliced HIV-1 RNA as described in A. Error bars show the standard deviation from three
independent RNA preparations; double asterisk indicates p = 0.01. B, primary cells from a healthy donor (PBMCs) were activated with anti-CD3/CD28 and then
infected with HIV-1,,5 (ABI). Culture supernatants were harvested in 3, 6, and 9 days after inoculation; exosomal fraction was separated, and then the total RNA
was purified and analyzed by quantitative RT-PCR with primers specific for TAR and unspliced HIV-1 RNA. Results are presented as a mean of three independent
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We performed electron microscopy analysis of exosomes
isolated from both Jurkat and J1.1 cells and have provided

types. We consistently observed an intense band in Fig. 24,
lanes 5 and 6, that migrated close to the 65-kDa mark. The band

was excised and subjected to MALDI-TOF mass spectrometry
and was determined to be the transmembrane protein CD63, a
classical exosomal tetraspanin marker. We then analyzed the
Jurkat- and J1.1-derived exosomes for other well defined exo-
somal marker proteins by Western blots. Equivalent amounts
of exosomal proteins and WCEs from both cell types were ana-
lyzed by Western blots with antibodies against CD45, Hsp70,
B-actin, Alix, and CD63. Although B-actin levels in both sets of
exosomes were comparable (compare lanes 2 and 4), there were
higher levels of Hsp70 in the Jurkat exosomes (Fig. 2B). J1.1-
derived exosomes contained higher amounts of the tetraspan-
ins CD63 and CD45 compared with the Jurkat-derived exo-
somes (Fig. 2B). Finally, we did not detect cytochrome ¢ (an
intracellular protein that is typically absent in exosomes) in
our exosome preparations, although cytochrome ¢ could be
detected in the corresponding WCEs, thus validating the purity
of the exosome preparations.
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examples of representative exosomes (Fig. 2C). The morphol-
ogy of Jurkat and J1.1-derived exosomes was similar to pub-
lished morphological features of exosomes. Cumulatively, we
observed that exosomes isolated from Jurkat and J1.1 cells pos-
sessed some of the well documented characteristics of exo-
somal membranous vesicles with differences in some of the
other proteins.

J1.1-derived Exosomes Contain TAR RNA—Our experiments
above with HIV-1-infected cells demonstrated an excess of
TAR RNA in the culture supernatants (Fig. 14). We next asked
whether the exosomes we isolated from J1.1 cells contained
TAR RNA. To answer that question, we performed qRT-PCR
using the J1.1 exosome material and TAR-specific primers. We
determined that there were on average 5 X 10° copies of TAR
RNA in the exosomes (Fig. 3A4). We also performed similar
qRT-PCRs with primers designed to amplify total coding
HIV-1 RNA and were not able to detect significant levels of
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FIGURE 4. J1.1-derived exosomes contain viral components. A, TZM-bl cells were incubated for 24 h with increasing concentrations of either Jurkat or
J1.1-derived exosomes and analyzed by luciferase assay for reporter gene activity. TZM-bl cells transfected with a Tat-expressing construct was included as a
positive control for luciferase activity. The error bars show the standard deviation of three independent measurements. B, uninfected CEM cells were incubated
with J1.1-derived exosomes for 24,48, and 72 h. Whole cell pellets were lysed to obtain total RNA. The RNA was then analyzed by gRT-PCR with TAR RNA specific
primers. Untreated CEM cells were used as a negative control. Results are presented as a mean for three independent RNA preparations * S.D. C, uninfected
CEM cells were incubated with J1.1-derived exosomes for 72 h after which total RNA was isolated and utilized in the QuantiMiR assay for analysis of small RNA
species using primers to miR16, 5’, and 3’ TAR miRNA. Total RNA obtained from CEM cells that were not incubated with exosomes was tested as a negative
control, although RNA from J1.1 cells were utilized as the positive control for 5" and 3" TAR miRNA. The resultant PCR products were resolved on a polyacryl-
amide gel, stained with ethidium bromide, and visualized. D, J1.1 exosomes were lysed with urea, trypsinized overnight, and analyzed by LC-MS/MS to identify
viral components. The probability of correct peptide identification, Xc score, molecular weight, and accession number of the identified proteins is indicated.

total viral RNA. We performed studies with exosomes isolated
from PBMCs infected with dual-tropic 89.6 virus. Quantifica-
tion of TAR RNA in exosomes by qRT-PCR revealed that high
levels of TAR RNA could be detected in this instance as well
(Fig. 3B).

We next asked whether exosomes produced by latently
infected primary cells also contained TAR RNA. To that effect,
exosomes were isolated from latently infected primary cells and
analyzed by qRT-PCR with TAR-specific primers. We observed
that the exosomes derived from latently infected cells also con-
tained high amounts of TAR RNA (~5 X 10° copies), although
the presence of Env RNA was close to the background (Fig. 3C).

Asanext step, we asked whether the TAR RNA present in the
exosomes existed as the processed 5’ and 3" TAR miRNA
forms. To address that question, we isolated RNA from exo-
somes derived from both Jurkat and J1.1 culture supernatants
using TRIzol and subjected the isolated RNA to analysis for
miRNA content (QuantiMiR miRNA analysis kit). We utilized
miR16 as a positive control for the presence of miRNAs in the
RNA pool and as a point of reference for migration of miRNAs
in an acrylamide gel (Fig. 3D). Accordingly, we could detect
miR16 in the Jurkat-derived exosome preparations, although
we did not detect any band corresponding to 5’ or 3" TAR
miRNA. In the case of exosomes derived from J1.1 cells,
although we found miR16, we were also able to detect bands
corresponding to both 5" and 3" TAR miRNA (Fig. 3D, lanes 5
and 6). We observed that the levels of 3 TAR miRNA was
roughly three times more than the 5" TAR miRNA, which is in
agreement with our earlier published results (46) and that pub-
lished by Provost and co-workers (50).
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It has recently been reported that the majority of extracellu-
lar small noncoding RNAs are present as Ago complexes and
not necessarily contained in the exosomes (74, 75). To deter-
mine whether extracellular TAR RNA was indeed present in
Ago2 complexes, we performed IP reactions utilizing both cul-
ture supernatants of Jurkat and J1.1 cells and isolated exosomes
from both cell types using anti-Ago2 antibody. The IP reactions
were carried out using an excess of culture supernatant (3 ml)
equivalent to ~200 ug of isolated exosomes (as determined by
B-actin protein levels). At least 50% of the IP reaction was uti-
lized as input material for RT-PCR-based detection of TAR
RNA (QuantiMiR detection assay). miR16, which is a host-de-
rived miRNA and has previously been shown to be present with
extracellular Ago2 complexes, was used as a positive control
(74). Although we were able to detect miR16 in our Ago2 IPs
using RT-PCR, we were unable to detect a signal above the IgG
background that corresponded to 3’ or 5 TAR miRNAs (Fig.
3E). Thus, our results suggested that the majority of extracellu-
lar TAR RNA was likely to be contained inside exosomal vesi-
cles and not in extra-exosomal free Ago2 complexes.

Cumulatively, our results demonstrated that exosomes
derived from both chronically infected and latently infected
cells contain TAR RNA and that a small fraction of this TAR
RNA (=1%) could exist as 5’ and 3’ miRNAs in exosomes. Clear
association of TAR miRNA with Ago2 could not be observed.

J1.1-derived Exosomes Contain Viral Proteins—To further ver-
ify that the exosomes obtained from J1.1 cells did not contain
whole virus, we performed luciferase reporter assays using
TZM-bl cells with an integrated HIV-1 LTR. Luciferase expression
in the presence of transfected Tat served as a positive control (Fig.
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4A). Increasing concentrations of Jurkat-derived exosomes
served as a negative control. We observed that incubation of
TZM-bl cells with increasing concentrations of J1.1-derived
exosomes failed to elicit luciferase expression (Fig. 44), indicat-
ing a lack of intact viral particles or the presence of Tat protein
in these exosomes. We observed a similar lack of luciferase
induction even when the exosomes were transfected into
TZM-bl cells by electroporation (data not shown).

We confirmed that this lack of luciferase induction was not
due to the inability of the exosomes to fuse with the target cells
and/or release their internal cargo. To address that possibility,
we incubated CEM cells with exosomes from J1.1 cells for vary-
ing lengths of time (24, 48, and 72 h) and performed qRT-PCR
of total RNA from the CEM cell lysates (HIV-1 negative cells)
with TAR-specific primers. We reasoned that the only way
TAR RNA can be detected in CEM cell lysates would be if the
J1.1 exosomes had successfully fused with the target cell and
released their cargo inside the target cell. Our qRT-PCR analy-
sis revealed the presence of TAR RNA inside CEM cells 24 h
after incubation with J1.1 exosomes, although no TAR RNA
was detected in the control untreated cells (Fig. 4B, compare
lanes 1 and 2). Although the RNA levels increased at 48 h, the
increase was less than 1 log and did not increase by 72 h (Fig.
4B). Thus, our experiment suggested that the majority of the
exosomal cargo was released into the target cells by 24 h post-
incubation of exosomes with cells.

As a next step, we asked whether the TAR RNA that was
introduced into target cells by fusion of exosomes (such as CEM
shown in Fig. 4B) could be processed to yield TAR miRNA in
the target cells. We incubated CEM cells with J1.1-derived exo-
somes for 72 h, extracted total RNA using TRIzol, and analyzed
for 5' and 3" TAR miRNA content using the QuantiMiR
microRNA method. We utilized CEM cells, which were not
incubated with exosomes, as a negative control and total RNA
from J1.1 cells as a positive control for the presence of 5" and 3’
TAR miRNAs. We utilized miR16 as an internal positive con-
trol. The data shown in Fig. 4C demonstrate that J1.1 cells (pos-
itive control, lanes 1-3) contain both 5" and 3" TAR miRNAs,
which are absent in the CEM cells (negative control, lanes 4 —6).
Both samples contain miR16. In the case of CEM cells that were
incubated with J1.1-derived exosomes (Fig. 4C, lanes 7-9), we
observed the presence of 3" TAR miRNA, although there was a
comparatively lesser amount of 5" TAR miRNA. Therefore, our
data suggest that at least a part of the exosomal TAR RNA is
processed into miRNAs in the recipient cells.

Finally, we performed liquid chromatography-tandem mass
spectrometry (LC-MS/MS) analysis of the J1.1-derived exo-
somes to determine what viral proteins may have been incor-
porated into the exosomes. The LC-MS/MS study revealed that
J1.1-derived exosomes contained multiple molecules of Gag
protein (Fig. 4D). This is expected as it has previously been
demonstrated that the inherent nature of Gag to form higher
order oligomers with itself and interact with the plasma mem-
brane directed its efficient inclusion in extracellular membra-
nous vesicles (65). We detected a precursor form of the HIV-1
Env (gp160), but not the mature gp120 protein. Previous stud-
ies have demonstrated the viral protein Nef to be included
inside vesicles derived from infected cells (60 — 64); however, we
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could not detect reasonable peptide hits corresponding to Nef
in J1.1 exosomes by mass spectrometry. Therefore, we carried
out Western blot analysis of J1.1-derived exosomes with a
Nef-specific antibody. Exosomes obtained from Jurkat culture
supernatants were also analyzed in parallel. We were able to
identify low levels of Nef in J1.1 exosome preparations only
when concentrating the exosome sample by 10-fold (200 ug of
total protein utilized) (data not shown). Thus, our experiments
demonstrated that TAR RNA introduced into recipient cells,
due to exosome fusion, could be processed to miRNAs in the
recipient cell. Finally, we observed evidence for the presence of
viral proteins in the exosomes derived from HIV-1-infected
cells.

J1.1-derived Exosomes Contain Dicer and Drosha Proteins—
We next asked whether components of the host miRNA
machinery, including Dicer, Drosha, Ago2, Exportin, DGCR8
(PASHA), and TRBP, were included in the exosomes along with
TAR RNA. We carried out Western blot analyses of J1.1-de-
rived exosomes with antibodies against components of the
miRNA machinery (Fig. 54). We observed that J1.1-derived
exosomes contained both Dicer and Drosha proteins. Ago2,
Exportin, DGCRS, and TRBP could not be detected in either of
the two exosomes. This observation is suggestive of the pres-
ence of pri-miRNA (TAR possibly bound to Drosha) in the
exosomes.

The pri-miRNA form (stem loop structure at the 5" LTR) is
generated in the nucleus and is exported to the cytoplasm in a
CRM1-dependent manner. To determine whether a CRM1-
mediated export of the TAR RNA-Drosha complex was
required for TAR RNA to be included in the exosomes, we
treated J1.1 cells with an inhibitor of the CRM1 pathway,
namely leptomycin B. Leptomycin B treatment was carried out
in the nontoxic range (10 nM concentration as determined by
prior titrations) for 5 days after which exosomes were isolated.
Exosomes isolated from leptomycin B-treated and -untreated
cells were subjected to qRT-PCR using TAR RNA-specific
primers (Fig. 5B). We observed a decrease in exosomal TAR
RNA in the leptomycin B-treated cells supporting the idea that
inclusion of TAR RNA in exosomes may require an active
CRM1-mediated nuclear export of the TAR-Drosha complex.
When we performed a similar qRT-PCR with oligo(dT) prim-
ers, we observed that the exosomal TAR RNA contained a poly-
adenylated 3’ terminus (Fig. 5C). This may be due to the pres-
ence of a short stretch of “A” nucleotides in the TAR structure
at positions 60, 67, and 70, which also serve as a poly(A) signal.
Control qRT-PCRs carried out with Env-specific primers
excluded possible contamination of our exosome preparations
with virus (Fig. 5, B and C). We evaluated total protein content
of exosomes derived from leptomycin B-treated and -untreated
cells by PAGE and silver staining. Our analysis revealed com-
parable total protein in both sets of exosomes and similar levels
of B-actin from Western blots (data not shown). Collectively,
our results indicated that J1.1-derived exosomes contained
components of the host miRNA machinery and that inclusion
of TAR RNA in exosomes required CRM1-mediated export
from the nucleus.
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Exosomes from HIV-1-infected Primary T Cells Contain TAR
RNA—OQur studies thus far have been performed utilizing
infected cultured cell lines. We next asked whether exosomes
originating from primary T cells infected with HIV-1 also con-
tained TAR RNA. To that end primary, activated CD4 cells
isolated from healthy donors were infected with HIV-1 (Bal/
Env), and exosomes were isolated by a combination of ultracen-
trifugation and velocity gradient separation (69). The percent-
ages of iodixanol used to generate the gradient and the
separation scheme for exosomes (AchE+) and viruses (p24-+)
are shown in Fig. 6A. Confirmatory AchE activity assays com-
paring mock-infected and HIV-1-infected primary cells dem-
onstrated the highest AchE activity in the fraction containing
12% iodixanol (Fig. 6B). Therefore, we concluded that the 12%
iodixanol fraction was enriched for exosomes. Total RNA was
isolated from all the fractions by TRIzol extraction and ana-
lyzed by qRT-PCR for TAR RNA. We observed an increase in
TAR RNA amounts in 12% iodixanol fraction (Fig. 6D). It was
important to note that although the 12% fraction was enriched
for TAR RNA, all the other viral RNAs, including Env, were
lower in these fractions. This was in contrast to what was
observed in the fractions with higher percentages of iodixanol,
which also contained TAR RNA, but were highly enriched for
all other viral RNAs as well suggesting that those contained
viral particles. We also quantified p24 levels in these fractions
and observed separation of p24 peaks between exosome and
virus fractions particularly in the case of the 12% fraction (Fig.
6D). We were unable to observe Tat protein in these fractions
(data not shown). Collectively, these experiments indicated
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that exosomes derived from primary HIV-1-infected cells also
contained TAR RNA.

J1.1-derived Exosomes Down-regulate Apoptosis in Recipient
Cells—We next performed experiments to decipher the func-
tional significance of exosomes derived from uninfected (Jur-
kat) and HIV-1-infected (J1.1) cells. Earlier experiments from
our laboratory have shown that HIV-1 TAR RNA down-regu-
lated apoptosis in host cells under conditions of cellular stress
(48). Therefore, we asked whether TAR RNA present in the
exosomes could confer a similar protective phenotype in the
recipient uninfected cells when the cells are subjected to cell
death-inducing stressors. One such molecule that is docu-
mented to induce cell death is the Fas ligand. When cells are
treated with Fas ligand, caspase cleavage is activated that results
in apoptosis by both the extrinsic and the intrinsic pathway. We
therefore incubated recipient Jurkat cells with Jurkat- or J1.1-
derived exosomes for 2 h after which increasing concentration
of Fas antibody was added. The Fas antibody is expected to
function similar to ligand-induced activation of apoptosis. We
incubated the cells with Fas antibody for a total of 48 h after
which the cells were processed for flow cytometry analysis by
propidium iodide staining. The analysis indicated that addition
of Jurkat-derived exosomes inherently increased the sub-G,
population when compared with the J1.1-derived exosomes
(tabular colummn, 18.7% in Jurkat + Jurkat exosome lane versus
14.5% in Jurkat + J1.1 exosome lane, Fig. 7A). The increase in
the sub-G, population from Jurkat-derived exosomes was con-
centration dependent with increasing antibody (tabular col-
umn, 19.5,16.5, and 29.3% at 1, 3, and 5 ul of Fas antibody, Fig.
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7A). This was in contrast with what was observed with the J1.1-
derived exosomes where addition of Fas antibody did not
increase the sub-G, population (tabular column, 13.8, 14.3, and
14.02% for 1, 3, and 5 ul of Fas antibody, Fig. 7A).

At the highest concentration of Fas antibody, in the case of
Jurkat cells treated with Jurkat-derived exosomes, a pro-
nounced spreading of cells (based on total cell size) was
observed (panel 5, top set, Fig. 7A). This spreading effect was
mainly due to aggregation of the sub-G; cells with the IgM
pentamer antibody. Such a strong spreading phenomenon was
not observed when Jurkat cells were pretreated with J1.1-de-
rived exosomes and Fas antibody (panel 4, bottom set, Fig. 7A).
We also quantified the populations of cells in various stages of
the cell cycle (G,, S, G,/M) in all samples and have provided the
data in a tabular format (Fig. 7A). The numbers indicate that at
the highest concentration of Fas antibody, about 29% of the
cells exposed to Jurkat-derived exosomes were in the sub-G;
range. In contrast, when cells were exposed to J1.1-derived exo-
somes, even at the highest concentration of Fas antibody,
almost three times less sub-G; population (14%) was observed.
Based on the number of cells in the G, phase (tabular column),
we hypothesize that the increase in sub-G, population in the
case of Jurkat-derived exosomes may have originated from
the G, pool of cells. Cumulatively, these observations under-
score our previous observation that TAR RNA exerts a protec-
tive phenotype in cells when exposed to cell death-inducing
stressors.

As a next step, we attempted to characterize the reason
behind the protective phenotype associated with TAR RNA.
Previous data obtained from our laboratory had indicated that
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the proapoptotic protein Bim was modulated in the presence of
TARRNA (data not shown). We performed a sequence analysis
of the BIM promoter region (—500 to +500 from the transcrip-
tional start site, NCBI reference sequence NG_029006.1)
against 5' and 3’ TAR miRNA seed sequences (GGGA and
AGAGA respectively) and observed complementarity to
regions both up- and downstream of the transcriptional start
site (nt —29to —43, —83to —97, —145to —159, —178 to —192,
—198 to —212, —356 to —370, —447 to —561, +244 to +258,
and +312 to +326). Furthermore, TAR miRNA displays com-
plementarity at multiple positions in the BJM mRNA, including
one site in the ORF (nt 348 —365) and multiple positions in 3’
UTR (nt 895-914, 1008 1029, 1287-1308, 1947-1968, 2303—
2337,and 2943-2964). TAR miRNA could therefore potentially
exert its protective function by down-regulating Bim expres-
sion in a transcriptional and/or post-transcriptional manner.
To verify if down-regulation of Bim protein does occur in the
presence of TAR in cells, we first transfected a plasmid encod-
ing TAR RNA into 293T cells and 48 h post transfection, cells
were lysed and analyzed by Western blot for endogenous levels
of Bim protein. We observed that transfection of the TAR plas-
mid down-regulated levels of Bim protein (Fig. 7B). We also
observed that transfected TAR resulted in decreased levels of
Cdk9 (complementary target sites at nt 18 —42, 285-300, and
560-586), although it did not induce any change in the levels of
Cdk2 protein. Therefore, our experiments support the hypoth-
esis that TAR RNA could exert its protective effect by down-
regulating the pro-apoptotic protein Bim.

We then asked whether TAR RNA in the exosomes could
also down-regulate Bim protein in target cells. We incubated
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293T cells with Jurkat- and J1.1-derived exosomes and 24 h
later, performed Western blot analysis with Bim and Cdk9 anti-
bodies. The results demonstrated that exosomal TAR RNA
from the J1.1 exosomes also down-regulated Bim expression
and therefore could contribute to the observed decrease in apo-
ptosis (Fig. 7C). We performed chromatin immunoprecipita-
tion (ChIP) analysis to determine suppression of transcription
from the BIM and CDK9 promoter in the presence of TAR
RNA. 293T cells were transfected (20 ug) with a pol III-driven
plasmid expressing scrambled DNA or wild type TAR and ChIP
assays were carried out using antibodies to RNA polymerase II,
HDACI1, Ago2, and SUV39H1. Control reactions were per-
formed using IgG antibodies. Our rationale to this approach
was that if the promoters of BIM and CDK9 were influenced by
TAR, we would observe a change in the recruitment of tran-
scription regulatory factors on the promoters. Accordingly, the
ChIP analysis revealed that in the case of the Bim promoter, in
the presence of wild type TAR, an increased recruitment of
repressive components such as HDAC1 and SUV39H1 was
observed. Along these lines, we also observed a decrease in the
recruitment of RNA polymerase II on the Bim promoter. Sim-
ilarly, we observed an increased recruitment of HDAC1 and
SUV39H1 on the CDK9 promoter suggestive of transcriptional
repression (Fig. 7D).

We then asked whether the presence of TAR in the J1.1-
derived exosomes was significant to the down-regulation of
Bim in the recipient cells. To address that question, we per-
formed a transfection of antagomirs to both 5" and 3" TAR
miRNAs into the parental J1.1 cells. Exosomes were purified
from both transfected and untransfected J1.1 control cells and
were subsequently incubated with the 293T recipient. Total
lysates were obtained after 24 h, and Bim Western blots were
performed and bands quantified. The data, as shown in Fig. 7E
(compare lanes I and 2), indicate that in the presence of antago-
mirs to TAR RNA, the Bim levels increased in the 293T cells.
We also performed a second experiment to evaluate the effect
of the Nef component in the exosome on the Bim phenotype.
To determine whether the presence of Nef in exosomes has any
effect on Bim expression in the recipient 293T cells, we purified
exosomes from cells infected with Nef' and Nef™ viruses,
respectively. The exosomes were then added to 293T cells, and
24 h later, total lysates were analyzed for Bim expression. As
shown in Fig. 7E (compare lanes 3 and 4), the total level of Bim
in the recipient cell did not change because of the presence or
absence of Nef in the exosomes thus indicating that Nef may
not play a notable role in modulating Bim expression in the
recipient cell. Collectively, our results imply that the TAR RNA
contained within J1.1-derived exosomes were functionally
competent and down-regulated apoptosis by decreasing Bim
and Cdk9 protein levels in recipient cells.

J1.1-derived Exosomes Increase Susceptibility of Naive Cells to
HIV-1 Infection—Next, we asked whether J1.1-derived exo-
somes could exert a bystander effect by altering the pattern of
infection in naive cells. Specifically, we asked whether exposure
to exosomes derived from infected cells makes a naive target
cell more susceptible to infection by low titer HIV-1 infection.
To answer that question, we utilized multiple cell lines as recip-
ient cells, including CEM, H9 (T cells), THP1, U937 (pro-
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monocytic), and U87MG (astroglioma cells). All recipient cells
were seeded in a 12-well plate and incubated with Jurkat- or
J1.1-derived exosomes for 24 h after which time low concentra-
tion of dual-tropic virus (89.6) was added to the cells. Culture
supernatants were collected 5 and 7 days post-addition of virus
and assayed for the presence of reverse transcriptase (RT) activ-
ity in the supernatants. The results were prominent in CEM
cells where 5 days post-infection cells pre-exposed to J1.1-de-
rived exosomes showed a 4-fold increase in infectivity when
compared with CEM cells infected with virus alone (Fig. 84,
panel CEM, compare lanes 2—4). We observed a similar signif-
icant 4-fold increase in infectivity in U937 cells when pre-ex-
posed to J1.1-derived exosomes as compared with cells directly
infected with virus (Fig. 84, panel U937). THP-1 cells also
showed a similar increase in susceptibility to HIV-1 infection
upon pre-exposure to J1.1-derived exosomes, although the
level of infectivity was not as pronounced as observed with
CEM and U937 cells. Other cell types such as H9 and U87MGs
also demonstrated an increase in infectivity (1.5-3-fold) when
the cells were pre-exposed to J1.1-derived exosomes (data not
shown). Infectivity analyses performed 7 days post-addition of
exosomes followed a similar pattern of viral replication (data
not shown).

As a next step, we sought to establish a direct link between
the TAR RNA component of the exosome and the increase in
susceptibility of naive cells to viral infection. We addressed that
by introducing an antagomir to TAR and analyzing for
enhanced susceptibility to subsequent viral infection. Accord-
ingly, we transfected in antagomirs to both 5" and 3" TAR
miRNAs into the parental J1.1 cells. Exosomes were purified
from both transfected and untransfected J1.1 control cells and
were used in susceptibility studies. Specifically, U937 cells were
incubated with either control exosomes obtained from
untransfected J1.1 culture supernatants (lane 3, Fig. 8B) or exo-
somes obtained from J1.1 cells transfected with 5" TAR antago-
mir (lane 4), 3' TAR antagomir (lane 5), or a combination of
both (lane 6). After 24 h, the cells were infected with 89.6 virus
and monitored for 5 and 7 days. The results shown in Fig. 8B
indicate RT activity 5 days post-infection and a similar outcome
was observed 7 days post-infection (data not shown). As seen in
Fig. 8B, prior exposure of U937 cells to the control J1.1-derived
exosomes made the cells more susceptible to a subsequent
infection as seen in the increase in RT activity (compare 2nd
and 3rd lanes). Upon introduction of an antagomir to 5" TAR
miRNA, we did not observe any significant alteration in suscep-
tibility to subsequent viral infection. However, when we intro-
duced an antagomir to 3" TAR miRNA, we noticed a 2-fold
decrease in the RT activity suggesting that 3’ TAR miRNA
played a key role in increasing the susceptibility of target cells to
viral infection (Fig. 8B, compare 4th and 5th lanes with 3rd
lane). Combining the 5" and 3’ TAR antagomirs did not display
any noticeable synergistic effect. Cumulatively, our data sug-
gest that 3" TAR miRNA may play a role in priming the recipi-
ent cell and increasing its susceptibility to viral infection.

Exosomes Derived from Jurkat Cells Infected with HIV-1
(89.6) or Transfected with pNL4-3 Also Contain TAR RNA—
J1.1is a clonal cell line that displays differences from the paren-
tal Jurkat cell line. To directly correlate the presence of TAR
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RNA in exosomes to HIV-1 infection, we carried out experi-
ments where we transfected Jurkat cells with the pNL4-3 plas-
mid and isolated exosomes from the culture supernatants 5
days post-transfection. Additionally, we infected Jurkat cells
with the dual-tropic virus 89.6 and isolated exosomes from the
culture supernatants 5 days post-infection. We validated our
exosome preparations by performing standard Western blots
for key components such as CD45, Hsp70, and cytochrome ¢
and determined the purity of the preparations (Fig. 94).

Next, we performed qRT-PCR analysis of the exosomes for
the presence of TAR RNA. The results shown in Fig. 9B indicate
that exosomes isolated from culture supernatants of Jurkat cells
infected with 89.6 virus showed ~10° copies of TAR RNA,
although all other viral RNAs were markedly low. Mock-in-
fected Jurkat cells were maintained as negative controls, and
exosomes isolated from mock-infected Jurkat cells did not con-
tain TAR RNA (Fig. 9B). Similarly, exosomes isolated from cul-
ture supernatants of Jurkat cells transfected with pNL4-3 also
contained comparable levels of TAR RNA as seen with exo-
somes from infected Jurkat cells. We isolated exosomes from
supernatants of pUC19-transfected cells as a negative control
and exosomes isolated from J1.1 culture supernatants as a pos-
itive control. As expected, although in the exosomes from
pUC19-transfected cell culture supernatants there was absence
of TAR RNA, ~10° copies of TAR could be detected in exo-
somes isolated from J1.1 culture supernatants. Therefore, our
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data demonstrated that inclusion of TAR RNA in exosomes was
a direct consequence of infection and was unlikely to be a cell
type (J1.1)-specific phenomenon.

We then asked whether these exosomes could render a naive
recipient cell susceptible to subsequent viral infection similar to
the phenomenon we observed with exosomes isolated from J1.1
culture supernatants. To that end, we incubated U937 cells with
exosomes isolated from culture supernatants of Jurkat cells that
were either infected with 89.6 virus (Fig. 9C) or transfected with
pNL4-3 (Fig. 9D), 24 h prior to infection with HIV-1. Exosomes
isolated from culture supernatants of Jurkat cells that were
mock-infected or transfected with pUC19 were utilized in sim-
ilar experiments alongside as negative controls. Exosomes iso-
lated from J1.1 culture supernatants were utilized as positive
control (data not shown). The data demonstrated that prior
exposure of U937 cells to exosomes derived from 89.6-infected
or pNL4-3-transfected cells made naive U937 cells susceptible
to subsequent infection by HIV-1 as determined by RT assays.
Taken together, the data obtained from these series of experi-
ments demonstrated that exosomes originating from HIV-1-
infected cells contain TAR RNA and exert distinct physiologi-
cal effects on naive cells in a cell type-independent manner.

TAR RNA Could Be Detected in Exosomes Isolated from
Patient Samples—Our studies performed with cultured cell
lines and primary cells have thus far demonstrated the presence
of TAR RNA, Dicer, and Drosha inside exosomes. We then
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Jurkat culture supernatants (D) were utilized in infectivity experiments using U937 cells. Briefly, U937 cells were incubated for 24 h with each set of exosomes
and then infected with 89.6 strain of HIV-1 (0.5 ng/p24/ul; 100 wl). Supernatants were analyzed 5 days post-infection for RT activity. Data were obtained from

three independent replicates of each sample. Error bars show *+ S.D.

asked if samples from infected patients have TAR RNA as well

as Dicer and Drosha in their circulating exosomes. To answer

that question, we purified exosomes from pooled serum sam-

ples that corresponded to the uninfected control group,

HAART-treated group, and LTNPs (six samples in each group).

Approximately 300 ul of serum samples were utilized for exo-

some purification using the ExoQuick purification protocol.

Pelleted exosomes were resuspended in PBS, and 30% of the

material was utilized for the analysis of TAR RNA by qRT-PCR.

We observed that every microliter of starting material con-

tained about 17 copies of TAR RNA in HAART-treated sam-

ples and about 30 copies in LTNPs (Fig. 104). Our calculations
indicated that there were ~3.5 X 10° copies per ml of TAR
RNA in the serum exosomes of HAART-treated patients. Sim-
ilarly, there were ~6 X 10° copies per ml concentration of TAR
RNA in the serum exosomes of LTNPs. Env RNA was also ana-
lyzed by qRT-PCR and shown to be negative in these pooled
samples further indicating that there is little contamination of
full-length virus with these crude exosome preparations (use of
the ExoQuick purification method).

We next asked whether we could detect Dicer and Drosha in
serum exosomes. We diluted the ExoQuick purified material by
a 1:10 ratio, passed the diluted sample through a Sephadex G-10
spin column, and analyzed the diluted sample by Western blot
with antibodies against Dicer, Drosha, and B-actin. We were
able to detect both Dicer and Drosha in the serum exosomes of
HIV-1-infected, HAART-treated patients and LTNPs (Fig.
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FIGURE 10. TAR RNA, Dicer, and Drosha can be detected in serum exo-
somes. A, exosomes were isolated from pooled sera obtained from unin-
fected (control), HAART-treated, and LTNP HIV-1-infected patient groups and
analyzed by gRT-PCR with TAR- and env-specific primers. Results are pre-
sented as a mean of three independent measurements = S.D. B, serum exo-
somes were analyzed by Western blot using antibodies against Dicer, Drosha,
and B-actin. The ExoQuick-purified material was diluted by a 1:10 ratio
(TNE-50 + 0.1% Nonidet P-40), passed through a Sephadex G-10 spin column,
and analyzed by Western blot.

10B). Our analysis of enriched serum exosomes revealed that
although Dicer showed a slight increase in the HAART -treated
patient samples over the uninfected control samples, there was
an increase in the levels of Dicer in the LTNP samples (Fig. 10B,
compare lane 3 with lanes I and 2). In the case of Drosha,
however, we did not detect the same level of increase in the
LTNP samples, although there was a modestly higher amount
(~11%) present than the HAART-treated sample. There was
no difference in the levels of B-actin in all three samples. We
also found that exosomes isolated from LTNP serum samples

JOURNAL OF BIOLOGICAL CHEMISTRY 20029



Exosomes and TAR RNA

contained higher levels of TAR RNA compared with HAART-
treated samples. We did not observe any disease-specific asso-
ciation of Ago2 or Exportin with any of the serum exosome
preparations (data not shown). Collectively, these studies reveal
that exosomes isolated from patient samples also contain TAR
RNA, Dicer, and Drosha as we observed in the case of exosomes
isolated from infected cells.

DISCUSSION

In recent years, exosomes have attracted much attention as
intercellular messengers that mediate multiple functions and
decisions involving cell survival or death. In the context of viral
infections, multiple recent publications have demonstrated
exosome-mediated intercellular transport of small RNA mole-
cules and proteins from infected to naive target cells. In this
study, we show that exosomes that originate from HIV-1-in-
fected cells contained TAR RNA (Fig. 3).

Some recent publications have questioned the existence of
small RNA molecules in vesicles and have suggested that stable
detection of small RNA molecules in an extracellular environ-
ment is largely due to the existence of Ago2 ribonucleoprotein
complex (74, 75). Turchinovich et al. (75) suggested that the
majority of miRNAs in circulation were in fact independent of
exosomes. They made this suggestion based on their analysis of
three host-derived miRNAs. It is possible that these three
miRNAs may be circulating as Ago2 complexes in culture
supernatants and/or serum, and this may also partly be a reflec-
tion of their synthesis and abundance. This may however not
necessarily apply to most or all of the host and virally derived
noncoding RNA species. Although our analysis could detect
miR16 (one of the miRNAs that was published by Turchinovich
et al. (75)) as being present in circulation as an ribonucleopro-
tein with Ago2, we could not detect any TAR miRNA (either 3’
or 5’ strand) complexed with Ago2 (Fig. 3E). Our data demon-
strated that the majority of TAR RNA that we detected in an
extracellular environment was in fact TAR pre-miRNA (mini-
mally, the first 57 nucleotides including the stem loop struc-
ture) that was transported into exosomes originating from
infected cells.

Proteomic analysis of J1.1-derived exosomes for the presence
of viral proteins revealed that they contained significant levels
of Gag protein, which is in agreement with published data by
Fanget al. (65) (Fig. 4D). In addition to Gag, we also detected an
unprocessed form of the viral Env protein (Fig. 4D). Inclusion of
gp160 in exosomes may be related to modifications/processing
of the protein in the endoplasmic reticulum and Golgi regions
of the cell. It may be possible that modifications on gp160 may
lead to higher order structures that may mediate exosome
inclusion. Alternatively, association of gp160 with specific host
proteins may drive this phenomenon. These speculations may
be amenable to better hypothesis-driven experiments as part of
future studies.

It would be intriguing to speculate that the functional rele-
vance of the Env protein may be seen in HIV-associated neuro-
logical disease as both Env and Tat proteins have been shown to
contribute to the pathogenicity of this form of neurologic dam-
age seen in HIV-1-infected individuals. The viral Env protein
has been demonstrated to induce apoptosis of neuronal cells by
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activating the PTEN signaling cascade (76). Additionally, our
data suggested that prior exposure to exosomes from infected
cells made U87MGs (astroglioma cells) more susceptible tar-
gets to HIV-1 infection (data not shown). Therefore, exosomes
from infected cells (i.e. T cells, macrophages, or dendritic cells)
may potentially cross the blood-brain barrier and induce neu-
ronal damage in a manner that is independent of an actual
infection (77). Along these lines, we are currently trying to
determine whether inhibition of exosome production in ani-
mals infected with HIV-1 inhibits deleterious by-stander neu-
ronal damage seen in HIV-associated neurological disease.

We were able to observe limited amounts of Nef protein in
J1.1-derived exosomes only after concentrating the exosomes
10-fold (i.e. a final concentration of 200 ug) suggesting that the
level of Nef protein in these exosomes was low (data not
shown). Nef may be incorporated in exosomes by anchoring
exosome lipid raft microdomains, i.e. membrane regions rich in
cholesterol, through both its N-terminal myristoylation and a
stretch of basic amino acids within the « helix 1. Additionally,
specific sequence regions in Nef that may interact with host
proteins (Mortalin, in the case of Nef) may facilitate inclusion in
exosomes (78).

The exact mechanisms that mediate fusion of exosomes with
target cells remain a subject of intense investigation. A direct
link to fusion of exosomes and target cells are the tetraspanins
(79). Both Jurkat- and J1.1-derived exosomes contain CD63 and
CD81. These two tetraspanins are among 33 of the total tetra-
spanins identified to date that are expressed in multiple cell
types and have been associated with diverse complex processes
that include membrane fusion (80). Tetraspanins have been
demonstrated to interact with each other and with multiple
integrins that may mediate fusion between the exosome mem-
branes and membranes of target cells (81). These tetraspanin-
enriched microdomains are sites of interactions of tetraspanins
with integrins and cellular co-receptors such as CXCR4 (82).
Exosomal uptake into target cells mediated by tetraspanins may
involve clathrin-coated pits, may be AP-2-mediated, may
involve caveolae-mediated endocytosis, or may be ceramide-
mediated (82, 83). The fact that our proteomic analysis has
revealed that Rab GTPases are present in both Jurkat- and J1.1-
derived exosomes indicates that multisubunit tethering com-
plexes involving SNAREs may also play a role in exosome (ves-
icle) fusion with target membranes (84).

We observed that certain cell types displayed increased sus-
ceptibility to infection by HIV-1 if they had been exposed to
J1.1-derived exosomes (Fig. 8). For example, U937 cells, if
exposed to J1.1 exosomes, showed a 4-fold increase in viral
replication (Fig. 84). U937 cells have suboptimal levels of Dicer
protein (85). Therefore, the processing of TAR pre-miRNA in
these cell types to exert their function may rely on the Dicer that
is present in the incoming exosomes. Independent CAT assays
suggest that Dicer present in exosomes may be functional in
recipient cells (data not shown). Cumulatively, our experiments
exploring the functional significance of J1.1-derived exosomes
suggested that when the cells were faced with stress conditions
that would normally activate apoptotic responses, exosome-
mediated regulatory processes might function to down-regu-
late apoptosis.
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We also asked whether our data, which suggest unique phe-
notypes and compositions associated with J1.1-derived exo-
somes, might be the result of defective virus contamination in
our exosome preparations. A survey of the literature of what
was defined as a defective virus included many parameters,
including viruses with mutations that would perturb their abil-
ity to perform critical functions. Along those lines, mutant
viruses that bear small mutations or deletions in the Env region,
Integrase domain, and accessory proteins, including Vpr, Vif,
and Nef, have been described (86-93). However, qRT-PCRs
experiments using exosomes derived from infected cells or
patient material did not result in significant amplification of
viral mRNA. Our proteomic studies revealed that the unpro-
cessed form of Env (gp160) was present in the exosome prep-
arations, although we could not detect processed gp120 nor
gp41 nor other viral proteins, including Tat (Fig. 4D). Thus,
many lines of evidence suggest that our exosome preparations
contain little contaminating virus.

Finally, we asked the question whether TAR RNA is present
in the exosomes of patient sera. Exosomes purified from
HAART-treated patients and LTNPs revealed significant levels
of TAR RNA (Fig. 104). The lack of Env RNA attested to the
purity of the exosome preparations without viral contamina-
tion. We were also able to identify both Dicer and Drosha pro-
teins in the serum exosomes (Fig. 10B). Current experiments
using humanized mouse models and human latently infected
cells in vitro are in progress to address the amount of TAR
associated with the degree of disease and viral progression. Col-
lectively, our data demonstrate that exosomes derived from
HIV-1-infected cells are likely to have profound influences on
host-virus interaction and disease progression.

Acknowledgments— We thank the members of the Kashanchi labora-
tory for helpful discussions and critical review of the manuscript. Dr.
Jonathan Karn (Case Western Reserve University) also helped in the
design of the CRM I-mediated export of TAR. We also thank Dr. John
Rossi (City of Hope) for the pol III-TAR and control vector and Drs.
Jan Miinch, Michael Schindler, and Frank Kirchhoff for
PNL4.3_92BR020.4nef+_IRES_EGFP and pNL4.3_92BR020.4nef-
_IRES _EGFP plasmids obtained via the National Institutes of Health
AIDS Research and Reference Reagent Program. Dr. Tim McCaffery
(George Washington University Medical Center) generously donated
the FAS antibody. Clinical samples utilized in this study were pro-
vided by the Washington D. C., Metropolitan Consortium of the
Women’s Interagency HIV Study Collaborative Study Group (Princi-
pal Investigator, Mary Young). The Women’s Interagency HIV Study
is supported by National Institutes of Health Grants UO1-AI-35004,
UO1-AI-31834, UO1-AI-34994, UO1-AI-34989, UO1-AI-34993,
and UO1-AI-42590 from NIAID and by the Eunice Kennedy Shriver
NICHD Grant UO1-HD-32632.

REFERENCES

1. Mathivanan, S., Ji, H., and Simpson, R. J. (2010) Exosomes: extracellular
organelles important in intercellular communication. /. Proteomics 73,
1907-1920

2. Denzer, K., Kleijmeer, M. J., Heijnen, H. F., Stoorvogel, W., and Geuze,
H. J. (2000) Exosome: from internal vesicle of the multivesicular body to
intercellular signaling device. J. Cell Sci. 113, 3365—3374:

3. Stoorvogel, W., Kleijmeer, M. ]., Geuze, H. J., and Raposo, G. (2002) The

JULY 5,2013+VOLUME 288+-NUMBER 27

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Exosomes and TAR RNA

biogenesis and functions of exosomes. Traffic 3, 321-330

Booth, A. M., Fang, Y., Fallon, J. K, Yang, ]. M., Hildreth, J. E., and Gould,
S.7J. (2006) Exosomes and HIV Gag bud from endosome-like domains of
the T cell plasma membrane. J. Cell Biol. 172, 923-935

Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., and Lotvall,
J. O. (2007) Exosome-mediated transfer of mRNAs and microRNAs is a
novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9,
654—659

Eldh, M., Ekstréom, K., Valadi, H., Sjéstrand, M., Olsson, B., Jernas, M., and
Létvall, J. (2010) Exosomes communicate protective messages during ox-
idative stress; possible role of exosomal shuttle RNA. PLoS One 5, €15353
Simpson, R. J., Lim, J. W., Moritz, R. L., and Mathivanan, S. (2009) Exo-
somes: proteomic insights and diagnostic potential. Expert Rev. Proteo-
mics 6, 267-283

Rana, S., and Zoller, M. (2011) Exosome target cell selection and the im-
portance of exosomal tetraspanins: a hypothesis. Biochem. Soc. Trans. 39,
559 -562

Wang, Z., Hill, S., Luther, J. M., Hachey, D. L., and Schey, K. L. (2012)
Proteomic analysis of urine exosomes by multidimensional protein iden-
tification technology (MudPIT). Proteomics 12, 329 —338

Dimov, I, Jankovic Velickovic, L., and Stefanovic, V. (2009) Urinary exo-
somes. Scientific World Journal 9, 1107-1118

Ludwig, A. K., and Giebel, B. (2012) Exosomes: small vesicles participating
in intercellular communication. Int. J. Biochem. Cell Biol. 44, 11-15
Anand, P. K. (2010) Exosomal membrane molecules are potent immune
response modulators. Commun. Integr. Biol. 3, 405—408

Record, M., Subra, C,, Silvente-Poirot, S., and Poirot, M. (2011) Exosomes
as intercellular signalosomes and pharmacological effectors. Biochem.
Pharmacol. 81,1171-1182

Théry, C., Ostrowski, M., and Segura, E. (2009) Membrane vesicles as
conveyors of immune responses. Nat. Rev. Immunol. 9, 581-593
Simons, M., and Raposo, G. (2009) Exosomes—vesicular carriers for inter-
cellular communication. Curr. Opin. Cell Biol. 21, 575-581

Duijvesz, D., Luider, T., Bangma, C. H., and Jenster, G. (2011) Exosomes as
biomarker treasure chests for prostate cancer. Eur. Urol. 59, 823—831
Agrawal, N, Dasaradhi, P. V., Mohmmed, A., Malhotra, P., Bhatnagar,
R. K., and Mukherjee, S. K. (2003) RNA interference: biology, mechanism,
and applications. Microbiol. Mol. Biol. Rev. 67, 657—685

Geanacopoulos, M. (2005) An introduction to RNA-mediated gene si-
lencing. Sci. Prog. 88, 49-69

Grishok, A. (2005) RNAi mechanisms in Caenorhabditis elegans. FEBS
Lett. 579, 5932—5939

Montgomery, M. K. (2004) RNA interference: historical overview and
significance. Methods Mol. Biol. 265, 3—21

Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and
function. Cell 116, 281-297

Chendrimada, T. P., Gregory, R. I, Kumaraswamy, E., Norman, J., Cooch,
N, Nishikura, K., and Shiekhattar, R. (2005) TRBP recruits the Dicer com-
plex to Ago2 for microRNA processing and gene silencing. Nature 436,
740 -744

Ghildiyal, M., and Zamore, P. D. (2009) Small silencing RNAs: an expand-
ing universe. Nat. Rev. Genet. 10, 94—108

Winter, J., Jung, S., Keller, S., Gregory, R. I, and Diederichs, S. (2009) Many
roads to maturity: microRNA biogenesis pathways and their regulation.
Nat. Cell Biol. 11, 228 -234

Lee, Y., Ahn, C,, Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P.,
Radmark, O., Kim, S., and Kim, V. N. (2003) The nuclear RNase III Drosha
initiates microRNA processing. Nature 425, 415-419

Perron, M. P., and Provost, P. (2008) Protein interactions and complexes
in human microRNA biogenesis and function. Front. Biosci. 13,
2537-2547

Perron, M. P., and Provost, P. (2009) Protein components of the mi-
croRNA pathway and human diseases. Methods Mol. Biol. 487, 369 —385
Nagqvi, A. R, Islam, M. N., Choudhury, N. R., and Haq, Q. M. (2009) The
fascinating world of RNA interference. Int. J. Biol. Sci. 5, 97-117
Lejeune, E., and Allshire, R. C. (2011) Common ground: small RNA pro-
gramming and chromatin modifications. Curr. Opin. Cell Biol. 23,
258 -265

JOURNAL OF BIOLOGICAL CHEMISTRY 20031



Exosomes and TAR RNA

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

Verdel, A, Jia, S., Gerber, S., Sugiyama, T., Gygi, S., Grewal, S. I, and
Moazed, D. (2004) RNAi-mediated targeting of heterochromatin by the
RITS complex. Science 303, 672—676

Zofall, M., and Grewal, S. I. (2006) RNAi-mediated heterochromatin as-
sembly in fission yeast. Cold Spring Harbor Symp. Quant. Biol. 71,
487-496

de Vries, W., and Berkhout, B. (2008) RNAi suppressors encoded by path-
ogenic human viruses. Int. J. Biochem. Cell Biol. 40, 2007—-2012
Haasnoot, J., and Berkhout, B. (2011) RNAi and cellular miRNAs in infec-
tions by mammalian viruses. Methods Mol. Biol. 721, 23—41

Schiitz, S., and Sarnow, P. (2006) Interaction of viruses with the mamma-
lian RNA interference pathway. Virology 344, 151-157

van Rij, R. P., and Andino, R. (2006) The silent treatment: RNAI as a
defense against virus infection in mammals. Trends Biotechnol. 24,
186-193

Bivalkar-Mehla, S., Vakharia, J., Mehla, R., Abreha, M., Kanwar, J. R,,
Tikoo, A., and Chauhan, A. (2011) Viral RNA silencing suppressors (RSS):
novel strategy of viruses to ablate the host RNA interference (RNAi) de-
fense system. Virus Res. 155, 1-9

Scaria, V., Hariharan, M., Maiti, S., Pillai, B., and Brahmachari, S. K. (2006)
Host-virus interaction: a new role for microRNAs. Retrovirology 3, 68
Boss, 1. W., Plaisance, K. B., and Renne, R. (2009) Role of virus-encoded
microRNAs in herpesvirus biology. Trends Microbiol. 17, 544 —553
Dolken, L., Pfeffer, S., and Koszinowski, U. H. (2009) Cytomegalovirus
microRNAs. Virus Genes 38, 355—-364

Grundhoff, A., Sullivan, C. S., and Ganem, D. (2006) A combined compu-
tational and microarray-based approach identifies novel microRNAs en-
coded by human y-herpesviruses. RNA 12, 733-750

Nair, V., and Zavolan, M. (2006) Virus-encoded microRNAs: novel regu-
lators of gene expression. Trends Microbiol. 14,169 -175
Plaisance-Bonstaff, K., and Renne, R. (2011) Viral miRNAs. Methods Mol.
Biol. 721, 43— 66

Zhu, J. Y., Pfuhl, T., Motsch, N., Barth, S., Nicholls, J., Grisser, F., and
Meister, G. (2009) Identification of novel Epstein-Barr virus microRNA
genes from nasopharyngeal carcinomas. J. Virol. 83, 3333-3341

Pfeffer, S., Sewer, A., Lagos-Quintana, M., Sheridan, R., Sander, C,
Grésser, F. A, van Dyk, L. F., Ho, C. K., Shuman, S., Chien, M., Russo, J. ].,
Ju, J., Randall, G., Lindenbach, B. D., Rice, C. M., Simon, V., Ho, D. D,,
Zavolan, M., and Tuschl, T. (2005) Identification of microRNAs of the
herpesvirus family. Nat. Methods 2, 269 -276

Lin, J., and Cullen, B. R. (2007) Analysis of the interaction of primate
retroviruses with the human RNA interference machinery. J. Virol. 81,
1221812226

Klase, Z., Kale, P., Winograd, R., Gupta, M. V., Heydarian, M., Berro, R,,
McCaffrey, T., and Kashanchi, F. (2007) HIV-1 TAR element is processed
by Dicer to yield a viral micro-RNA involved in chromatin remodeling of
the viral LTR. BMC Mol. Biol. 8, 63

Narayanan, A., Kehn-Hall, K., Bailey, C., and Kashanchi, F. (2011) Analysis
of the roles of HIV-derived microRNAs. Expert Opin. Biol. Ther. 11,
17-29

Klase, Z., Winograd, R., Davis, J., Carpio, L., Hildreth, R., Heydarian, M.,
Fu, S., McCaffrey, T., Meiri, E., Ayash-Rashkovsky, M., Gilad, S., Bentwich,
Z., and Kashanchi, F. (2009) HIV-1 TAR miRNA protects against apopto-
sis by altering cellular gene expression. Retrovirology 6, 18

Yeung, M. L., Bennasser, Y., Watashi, K., Le, S. Y., Houzet, L., and Jeang,
K. T. (2009) Pyrosequencing of small noncoding RNAs in HIV-1-infected
cells: evidence for the processing of a viral-cellular double-stranded RNA
hybrid. Nucleic Acids Res. 37, 6575— 6586

Ouellet, D. L., Plante, I, Landry, P., Barat, C., Janelle, M. E., Flamand, L.,
Tremblay, M. J., and Provost, P. (2008) Identification of functional
microRNAs released through asymmetrical processing of HIV-1 TAR el-
ement. Nucleic Acids Res. 36, 2353—-2365

Lamers, S. L., Fogel, G. B., and McGrath, M. S. (2010) HIV-miR-H1 evolv-
ability during HIV pathogenesis. Biosystems 101, 88 —96

Omoto, S., Ito, M., Tsutsumi, Y., Ichikawa, Y., Okuyama, H., Brisibe, E. A.,
Saksena, N. K,, and Fujii, Y. R. (2004) HIV-1 Nef suppression by virally
encoded microRNA. Retrovirology 1, 44

Schopman, N. C.,, Willemsen, M., Liu, Y. P., Bradley, T., van Kampen, A.,

20032 JOURNAL OF BIOLOGICAL CHEMISTRY

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Baas, F., Berkhout, B., and Haasnoot, J. (2012) Deep sequencing of virus-
infected cells reveals HIV-encoded small RNAs. Nucleic Acids Res. 40,
414-427

Klase, Z., Houzet, L., and Jeang, K. T. (2011) Replication competent HIV-1
viruses that express intragenomic microRNA reveal discrete RNA-inter-
ference mechanisms that affect viral replication. Cell Biosci. 1, 38

Pegtel, D. M., Cosmopoulos, K., Thorley-Lawson, D. A., van Eijndhoven,
M. A, Hopmans, E. S., Lindenberg, J. L., de Gruijl, T. D., Wirdinger, T.,
and Middeldorp, J. M. (2010) Functional delivery of viral miRNAs via
exosomes. Proc. Natl. Acad. Sci. U.S.A. 107, 6328 —6333

Pegtel, D. M., van de Garde, M. D., and Middeldorp, J. M. (2011) Viral
miRNAs exploiting the endosomal-exosomal pathway for intercellular
cross-talk and immune evasion. Biochim. Biophys. Acta 1809, 715-721
Zomer, A., Vendrig, T., Hopmans, E. S., van Eijndhoven, M., Middeldorp,
J. ML, and Pegtel, D. M. (2010) Exosomes: Fit to deliver small RNA. Com-
mun. Integr. Biol. 3, 447—450

Barth, S., Meister, G., and Grisser, F. A. (2011) EBV-encoded miRNAs.
Biochim Biophys Acta 1809, 631— 640

Gourzones, C., Gelin, A, Bombik, I, Klibi, J., Vérillaud, B., Guigay, J., Lang,
P., Témam, S., Schneider, V., Amiel, C., Baconnais, S., Jimenez, A. S., and
Busson, P. (2010) Extracellular release and blood diffusion of BART viral
micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells.
Virol. J. 7,271

Campbell, T. D., Khan, M., Huang, M. B, Bond, V. C., and Powell, M. D.
(2008) HIV-1 Nef protein is secreted into vesicles that can fuse with target
cells and virions. Ethn. Dis. 18, S2—14-19

Lenassi, M., Cagney, G., Liao, M., Vaupotic, T., Bartholomeeusen, K,
Cheng, Y., Krogan, N.J., Plemenitas, A., and Peterlin, B. M. (2010) HIV Nef
is secreted in exosomes and triggers apoptosis in bystander CD4™" T cells.
Traffic 11, 110-122

Ali, S. A, Huang, M. B., Campbell, P. E., Roth, W. W., Campbell, T., Khan,
M., Newman, G., Villinger, F., Powell, M. D., and Bond, V. C. (2010) Ge-
netic characterization of HIV type 1 Nef-induced vesicle secretion. AIDS
Res. Hum. Retroviruses 26, 173—-192

Muratori, C., Cavallin, L. E., Kratzel, K., Tinari, A., De Milito, A., Fais, S.,
D’Aloja, P., Federico, M., Vullo, V., Fomina, A., Mesri, E. A., Superti, F.,
and Baur, A. S. (2009) Massive secretion by T cells is caused by HIV Nef in
infected cells and by Nef transfer to bystander cells. Cell Host Microbe 6,
218-230

Shelton, M. N., Huang, M. B,, Alj, S. A, Powell, M. D., and Bond, V. C.
(2012) Secretion modification region-derived peptide disrupts HIV-1
Nef’s interaction with mortalin and blocks virus and Nef exosome release.
J. Virol. 86,406 —419

Fang, Y., Wu, N, Gan, X., Yan, W., Morrell, ]. C., and Gould, S. J. (2007)
Higher order oligomerization targets plasma membrane proteins and HIV
Gag to exosomes. PLoS Biol. 5, €158

Gan, X., and Gould, S. J. (2011) Identification of an inhibitory budding
signal that blocks the release of HIV particles and exosome/microvesicle
proteins. Mol. Biol. Cell 22, 817830

Shen, B., Wu, N, Yang, J. M., and Gould, S.J. (2011) Protein targeting to
exosomes/microvesicles by plasma membrane anchors. J. Biol. Chem.
286, 14383-14395

Van Duyne, R, Guendel, I, Kehn-Hall, K., Easley, R,, Klase, Z., Liu, C.,
Young, M., and Kashanchi, F. (2010) The identification of unique serum
proteins of HIV-1 latently infected long-term nonprogressor patients.
AIDS Res. Ther. 7,21

Cantin, R,, Diou, J., Bélanger, D., Tremblay, A. M., and Gilbert, C. (2008)
Discrimination between exosomes and HIV-1: purification of both vesi-
cles from cell-free supernatants. . Immunol. Methods 338, 21-30
Carpio, L., Klase, Z., Coley, W., Guendel, I, Choi, S., Van Duyne, R,
Narayanan, A., Kehn-Hall, K., Meijer, L., and Kashanchi, F. (2010) Erra-
tum to: microRNA machinery is an integral component of drug-induced
transcription inhibition in HIV-1 infection. . RNAi Gene Silencing 6, E386
Carpio, L., Klase, Z., Coley, W., Guendel, I., Choi, S., Van Duyne, R,
Narayanan, A., Kehn-Hall, K., Meijer, L., and Kashanchi, F. (2010)
microRNA machinery is an integral component of drug-induced tran-
scription inhibition in HIV-1 infection. J. RNAi Gene Silencing 6, 386 —400
Easley, R, Carpio, L., Dannenberg, L., Choi, S., Alani, D., Van Duyne, R,,

VOLUME 288+NUMBER 27-JULY 5,2013



73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

JULY 5,2013+VOLUME 288+-NUMBER 27

Guendel, I, Klase, Z., Agbottah, E., Kehn-Hall, K., and Kashanchi, F.
(2010) Transcription through the HIV-1 nucleosomes: effects of the PBAF
complex in Tat activated transcription. Virology 405, 322-333

Marini, A., Harper, J. M., and Romerio, F. (2008) An in vitro system to
model the establishment and reactivation of HIV-1 latency. J. Immunol.
181, 7713-7720

Arroyo, J. D., Chevillet, J. R., Kroh, E. M,, Ruf, . K,, Pritchard, C. C,,
Gibson, D. F., Mitchell, P. S., Bennett, C. F., Pogosova-Agadjanyan, E. L.,
Stirewalt, D. L., Tait, J. F., and Tewari, M. (2011) Argonaute2 complexes
carry a population of circulating microRNAs independent of vesicles in
human plasma. Proc. Natl. Acad. Sci. U.S.A. 108, 5003—-5008
Turchinovich, A., Weiz, L., Langheinz, A., and Burwinkel, B. (2011) Char-
acterization of extracellular circulating microRNA. Nucleic Acids Res. 39,
7223-7233

Zou, S., El-Hage, N., Podhaizer, E. M., Knapp, P. E., and Hauser, K. F.
(2011) PTEN gene silencing prevents HIV-1 gp120(IIIB)-induced degen-
eration of striatal neurons. J. Neurovirol. 17, 41—49

Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., and Wood, M. J.
(2011) Delivery of siRNA to the mouse brain by systemic injection of
targeted exosomes. Nat. Biotechnol. 29, 341-345

Bentham, M., Mazaleyrat, S., and Harris, M. (2006) Role of myristoylation
and N-terminal basic residues in membrane association of the human
immunodeficiency virus type 1 Nef protein. J. Gen. Virol. 87, 563-571
Boucheix, C., and Rubinstein, E. (2001) Tetraspanins. Cell. Mol. Life Sci.
58, 1189-1205

Charrin, S., le Naour, F,, Silvie, O., Milhiet, P. E., Boucheix, C., and Rubin-
stein, E. (2009) Lateral organization of membrane proteins: tetraspanins
spin their web. Biochem. J. 420, 133—154

Yunta, M., and Lazo, P. A. (2003) Tetraspanin proteins as organisers of
membrane microdomains and signalling complexes. Cell. Signal. 15,
559 564

Pols, M. S., and Klumperman, J. (2009) Trafficking and function of the
tetraspanin CD63. Exp. Cell Res. 315, 1584 —1592

Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F.,
Schwille, P., Briigger, B., and Simons, M. (2008) Ceramide triggers bud-
ding of exosome vesicles into multivesicular endosomes. Science 319,

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

Exosomes and TAR RNA

12441247

Brocker, C., Engelbrecht-Vandré, S., and Ungermann, C. (2010) Multisub-
unit tethering complexes and their role in membrane fusion. Curr. Biol.
20, R943-R952

Coley, W., Van Duyne, R., Carpio, L., Guendel, I, Kehn-Hall, K., Chevalier,
S., Narayanan, A., Luu, T., Lee, N., Klase, Z., and Kashanchi, F. (2010)
Absence of DICER in monocytes and its regulation by HIV-1. . Biol.
Chem. 285, 31930 -31943

Brandano, L., and Stevenson, M. (2012) A highly conserved residue in the
C-terminal helix of HIV-1 matrix is required for envelope incorporation
into virus particles. /. Virol. 86, 2347-2359

Furnes, C., Andresen, V., and Szilvay, A. M. (2008) Functional rescue of an
oligomerization-defective HIV-1 Rev mutant by fusion with an oligomeric
tag. Arch. Virol. 153, 357-362

Mohammed, K. D., Topper, M. B., and Muesing, M. A. (2011) Sequential
deletion of the integrase (Gag-Pol) carboxyl terminus reveals distinct phe-
notypic classes of defective HIV-1. J. Virol. 85, 4654 —4666

Paolucci, S., Gulminetti, R., Maserati, R., Dossena, L., and Baldanti, F.
(2011) Accumulation of defective HIV-1 variants in a patient with slow
disease progression. Curr. HIV Res. 9, 17-22

Poe, J. A., and Smithgall, T. E. (2009) HIV-1 Nef dimerization is required
for Nef-mediated receptor down-regulation and viral replication. J. Mol.
Biol. 394, 329 -342

Sandonis, V., Casado, C., Alvaro, T., Pernas, M., Olivares, L, Garcia, S.,
Rodriguez, C., del Romero, J., and Lépez-Galindez, C. (2009) A combina-
tion of defective DNA and protective host factors are found in a set of
HIV-1 ancestral LTNPs. Virology 391, 73— 82

Venkatachari, N. J., Walker, L. A., Tastan, O., Le, T., Dempsey, T. M., Li,
Y., Yanamala, N, Srinivasan, A., Klein-Seetharaman, J., Montelaro, R. C,,
and Ayyavoo, V. (2010) Human immunodeficiency virus type 1 Vpr: olig-
omerization is an essential feature for its incorporation into virus particles.
Virol. J. 7,119

Wang, S. H., Xing, H., He, X., Zhu, F. X, Meng, Z. F., Ruan, Y. H., and Shao,
Y. M. (2008) Nef mutations in long-term nonprogressors from former
plasma donors infected with HIV-1 subtype B in China. Biomed. Environ.
Sci. 21, 485-491

JOURNAL OF BIOLOGICAL CHEMISTRY 20033



