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Abstract

There is evidence that the right dorsolateral prefrontal cortex (DLPFC) may play a certain role in 

decision making related to reward value and time perception and, in particular, in the inhibitory 

control of impulsive decision making. Using the theta burst stimulation (TBS) and a delay 

discounting (DD) task, we investigated the potential role of right DLPFC in impulsive decision 

making defined by the rate of discounting delayed reward. Healthy right-handed volunteers 

underwent three stimulation sessions, intermittent TBS (iTBS), continuous TBS (cTBS), and 

sham. The steepness of the discount function (k-value), reaction time for choice and consistency 

were measured for each subjects. cTBS of the DLPFC reduced by 36.88 % the k-value of the DD 

task compared to sham condition. In contrast, iTBS did not affect impulsivity level. There were no 

changes neither in reaction time for choice nor consistency after either the iTBS or cTBS 

compared with the sham stimulation. These results demonstrate that cTBS-induced modulation of 

cortical excitability of the right DLPFC may affect and reduce impulsive decision making. These 

observations may provide some insights into the role of the right DLPFC in modulating 

impulsivity level and calculating reward value at different time scales under less ambiguous 

circumstances.
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In everyday life, individuals tend to compare potential benefit versus cost and choose the 

most valuable option under a given situation. During this decision-making process, time is 

an important factor in calculating the value of a reward. Patients with impulsive behavior 

such as drug abuse, pathologic gambling, obsessive-compulsive disorder, and attention 

deficit hyperactivity disorder1–3 may assign different weights to rewards in relation to time.
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To measure impulsivity in several decision-making or response choice circumstances, 

several tasks, such as the go/no-go task, the stop task, as well as the gambling task, have 

been used. In the case of the go/no-go and stop paradigms, these tasks focus on motor 

impulsivity and are not designed to assess how people solve complex decision problems by 

controlling their impulsivity. The gambling task is a task that mimics a real life situation, but 

this task was originally designed to measure the risk taking based on uncertainty of premises 

and outcomes.4 Delay discounting (DD) is a behavioral analytic approach to understand how 

each individual makes a choice between a smaller reward given immediately and a larger 

reward given after a time delay, thus assessing the degree of cognitive impulsivity or self-

control.5,6 In the DD task, subjects have the opportunity to choose between different 

amounts of monetary reward available with varying time delays without taking risks.

The involvement of prefrontal cortex (PFC) in decision making related to reward value and 

time perception has been already documented. Electrophysiologic studies in experimental 

animals have documented the activation of PFC neurons in response to time delay and 

expected reward amount with a neural activation pattern reflecting reward preference.7 There 

is evidence that the right hemisphere plays an important role in inhibiting impulsive 

behavior and, in particular, the inferior frontal cortex, orbitofrontal cortex, and dorsolateral 

prefrontal cortex (DLPFC) are critical for the control of this inhibition.8–10 The right 

DLPFC holds a certain role in the process of general decision making.11 Recently, some 

studies have shown how right DLPFC may affect decision-making processes12–15 by 

modulating its neuronal excitability using noninvasive stimulation tools such as repetitive 

transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS). 

However, although these studies focused on the risk-taking aspect of decision making under 

ambiguous situation, the role of right DLPFC on the choice of reward over various time 

domain under calculated risk and nonambiguous situation has not been addressed. We 

investigated whether individual choices related to the reward value and time delay can be 

modulated by changes in PFC excitability using noninvasive focal stimulation in normal 

healthy subjects. We used the DD task to test changes in level of impulsivity after theta burst 

stimulation (TBS) of the right DLPFC. Subjects underwent three different stimulation 

paradigms including continuous TBS (cTBS), intermittent TBS (iTBS), and sham 

stimulation. These offline TBS paradigms have two main advantages: they produce a long-

lasting inhibitory (cTBS) and excitatory (iTBS) effects limited to the underlying cortex16–19 

and prevent any exogenous influence of the sound and proprioceptive sensation (given by 

the TMS) during the task performance.20 We reasoned that TBS-induced changes in 

excitability level of the DLPFC in right hemisphere would affect decision making by either 

reducing (cTBS-induced cortical depression) or increasing (iTBS-induced cortical 

activation) impulsivity level and influencing reward value at different time scales.

Methods

Subjects and design

Seven right-handed young healthy subjects (mean age: 22.4 ± 4.3 years; age range: 18–29 

years; four women) were enrolled in this study. Handedness was assessed using the 

Edinburgh handedness inventory.21 Baseline impulsivity scores were collected before the 
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TBS experiment using Barratt Impulsivity Scale-11 (BIS). Exclusion criteria included 

history of psychiatric and/or neurologic disorder (particularly epilepsy), any previous 

exposure to stimulant drugs, pregnancy, migraine, or previous experience of enrollment in 

rTMS experiments. Subjects were screened for depression with the use of the Beck 

Depression Inventory (BDI) with an exclusion criterion of a score of >10. To rule out 

structural lesions in the brain and to provide anatomic reference for the analysis, a T1-

weighted magnetic resonance image (MRI) was obtained for each subject. Written informed 

consent was obtained in all cases. The study protocols were approved by the Ethical 

Committee of the Center for Addiction and Mental Health Research, University of Toronto.

All subjects underwent three different stimulations (cTBS, iTBS, and sham) over the right 

DLPFC and conducted the behavioral task 3 minutes after the completion of TBS in each 

stimulation session. Stimulation conditions were counterbalanced across the subjects. There 

was at least a 45- minute interval between each TBS condition (Figure 1) to minimize the 

carry-over effect of the prior TBS.

TBS

TBS was carried out with the biphasic Magstim Rapid2 magnetic stimulator (The Magstim 

Company Ltd, Whitland, UK), using a figure-of-eight focal coil (70 mm diameter). The coil 

was held in a fixed position by a mechanical arm over the target area and was oriented so 

that the induced electric current flowed in a posterior-anterior direction. Stimulus intensities, 

expressed as a percentage of the maximum stimulator output, were set at 80% of the active 

motor threshold (AMT). AMT was defined from the contra-lateral first dorsal interosseus 

(FDI) muscle with AgCl surface electrodes fixed on the skin with a belly-tendon montage as 

the lowest stimulus intensity able to elicit five motor-evoked potentials (MEPs) of at least 

200 μV averaged over 10 consecutive stimuli delivered over the motor cortex at intervals 

longer than 5 seconds. During the determination of AMT, subjects were instructed to 

maintain a steady muscle contraction of 20% of maximum voluntary contraction. Detailed 

descriptions of TBS paradigms have been reported elsewhere.17

Each burst consists of three stimuli pulses at 50 Hz, with each train being repeated every 200 

milliseconds (5 Hz). During the iTBS, trains of bursts were repeated for 2 seconds every 10 

seconds for 192 seconds (600 pulses) and cTBS consisted of continuous repetition of trains 

for 40 seconds (600 pulses). It has been shown that these two stimulation paradigms have an 

opposite effect in the underlying cortex, as cTBS depresses cortical excitability and iTBS 

enhances neural excitability.17 The sham stimulation was delivered with the coil positioned 

at a perpendicular angle to the target area using either the iTBS or cTBS protocol, in a 

counterbalanced manner, across the subjects.

Location of the target site

To target the right DLPFC, we used a procedure that takes advantage of the standardized 

stereotaxic space of Talairach and Tournoux22 and frameless stereotaxy.23,24 A high-

resolution MRI (GE Signa 1.5 T, T1-weighted images, 1-mm slice thickness) of every 

subject’s brain was acquired and transformed into standardized stereotaxic space using the 
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algorithm of Collins et al.25 The coordinates selected for right DLPFC (x = 40, y = 32, and z 

= 30) were similar to those used in our previous studies.24

The Talairach coordinates were converted into each subject’s native MRI space using the 

reverse native-to-Talairach transformation.23 The positioning of the TMS coil over these 

locations, marked on the native MRI, was performed with the aid of a frameless stereotaxic 

system (Rogue Research, Montreal, Canada).

Behavioral task

A computerized DD task was used for data acquisition (Figure 2). The task was based on the 

Kirby’s DD inventory.26 The task was composed of 120 trials; in each trial the amounts of 

monetary reward for immediate and delay options were decided by the fixed k value and the 

delay time based on the hyperbolic function of DD, V = A/(1 + kD), where V is the value of 

the delayed outcome (i.e., the indifference value), A is the delayed reward, D is the length of 

the delay, and k expresses the steepness of the discount function.27–29 Based on this 

function, higher k-values are associated with preference for immediate small-size reward 

and lower k-values are expression of delayed large-size reward. Thus, low k-values are an 

index of minor impulsivity. Subjects were instructed that they had to make preference 

judgments about hypothetical rewards shown on a computer screen.

All reward choices were made by pressing either the ← or → key on keyboard with the 

subject’s dominant hand (right hand for all subjects). The available time delays were 12 in 

total (1 week, 2 weeks, 3 weeks, 1 month, 3 months, 6 months, 1 year, 2 years, 3 years, 4 

years, 5 years, and 10 years) and there were two categories of delayed reward magnitude: 

small (1–500 CAD) and large (600–1000 CAD). The predefined k-values were 0.0005, 

0.0028, 0.0050, 0.0275, 0.05, 0.075, 0.1, 0.3, 0.5, and 0.7 for the 120 trials; the same number 

of trials was assigned for each k-value and reward magnitude. The examples of choice trial 

are presented on Table 1. The choice stimulations were presented on the screen for 3 seconds 

and the interstimulation interval was 2 seconds.

The following instruction was read to all subjects before the experiment and a sample 

behavioral test was conducted to confirm that the subjects properly understood the 

instruction: “After every rTMS stimulation you will be shown two options on the computer 

screen and asked to decide between a gain NOW and a gain sometime in the FUTURE. The 

future gain may be several days from now or as remote as 10 years from now. For example, 

you may see: ‘a gain of $1000 in 1 year’ in your right-hand side and ‘a gain of $990 now’ in 

your left-hand side. If you prefer the option in the left side, please press the LEFT key. If 

you prefer the right-side option, please press the RIGHT key.” The trial order was 

randomized for each session across the subjects.

Analysis

The outcome measures of this study were as follows: (1) individual discounting value k, (2) 

reaction time for choice decision, and (3) consistency of choice, a percentage of the same 

option choice for a given k-value. The k-values were estimated separately in small and large 

reward magnitude as the geometric mean between the lowest implied indifference k-value in 

which subjects chose the delayed option, and the highest implied indifference k-value in 
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which subjects chose the immediate option.26,30 The geometric mean is a type of mean that 

indicates the central tendency of a set of numbers and is used because the task required 

subjects to express preferences.30 We expected that changes in the individual k-value would 

vary in a relative fashion of reward amount and delay period. If the response consistence was 

more than 66% for one response (small, immediate, or large delay option) within the given 

k-value, then that k-value was assigned to immediate choice preference or delay choice 

preference.

To compare the effect of TBS each subject was analyzed with a nonparametric Friedman test 

corrected by exact test, using SPSS (version 13.0 for Windows) software (SPSS, Chicago, 

IL) to test the effect of the TBS protocol used. As a post hoc analysis, we also conducted 

nonparametric Wilcoxon signed rank test to test the TBS effect using the sham condition as 

a baseline. The significance level for all statistical analysis was set at P < .05.

Results

The Figure 3 and Table 2 show the total k-value across the stimulation conditions. There 

were significant differences among the three stimulation conditions (Friedman test, χ2 = 

7.71, df = 2, P < .05) in total k-value of the DD task. The post hoc analysis revealed that 

cTBS-induced inhibition of the right DLPFC reduced individual k-value of the DD task 

compared with the sham condition (cTBS: 0.0085 ± 0.011 versus sham: 0.0149 ± 0.014, 

Wilcoxon test, Z = 2.37, P < .05). This reduction in k-value indicated a decreased 

impulsivity and the mean magnitude of change in k-value after the cTBS was −36.88% 

± 29.84%. In contrast, iTBS had no effect on k-value when compared with the sham 

condition (iTBS: 0.0155 ± 0.019 versus sham: 0.0149 ± 0.014, Wilcoxon test, Z = 0.34, P = .

74) (Figure 3). The decrease in k-value did not change with the increase in reward 

magnitude (Wilcoxon test, Z = −0.51, P = .61) implying that cTBS-induced reduction in 

impulsivity was unrelated to the magnitude of reward. Additional analysis using repeated 

measure of analysis of variance (ANOVA) (3 [stimulation condition] × 2 [reward delay]) 

revealed that subjects showed no differences in k-value between “near-future (<1 year)” and 

“far-future (>1 year)” regardless stimulation condition (F1,6 = 3.07, P = .13) with no 

interaction between delay time and stimulation condition (F2,12 = 1.91, P = .19).

The correlation analysis did not reveal any relationship between baseline BIS scores (mean ± 

SD: 59.6 ± 7.7) and cTBS-induced percentage changes in k-values (Pearson correlation, r = 

0.63, P = .13), suggesting that individual impulsivity baseline did not contribute and 

influence k-value changes.

The specific cTBS-induced reduction in impulsivity k-value was not an expression of 

changes in motor performance and response in choice consistency. In fact, there were no 

effects of TBS stimulation on reaction time (Friedman test, χ2 = 0.00, df = 2, P > .99; Figure 

4A) and on consistency in response choice (Friedman test, χ2 = 3.42, df = 2, P = .18; Figure 

4B).
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Discussion

The pattern of DD observed in our study indicated that cTBS of the right DLPFC induced 

healthy subjects to trade immediate reward for delayed larger amount of reward. In other 

word, cTBS-induced inhibition of the right DLPFC influenced decision making by reducing 

impulsive choices and favoring delayed-large rewards instead of immediate-small rewards. 

There were no changes on reaction time and response consistency after TBS indicating that 

the changes of k-value after cTBS were not the result of different time consuming or 

changes of consistency in decision making.

DD and risk taking require the same decision-making process but DD is closely related with 

the subjective value of delayed reward, as there is no punishment and no unpredictable state. 

Mental demands are more dependent on the calculation of time and reward size than on the 

calculation of the reward gaining probability during the task. Although the rewards in a DD 

task were hypothetical, several studies have shown that hypothetical and actual rewards 

produce similar patterns of discounting.31,32

There are two possible mechanisms of impulsive response that can modulate the DD value. 

The first mechanism relates to the inhibitory control exerted by the PFC shown to be 

impaired particularly by lesion of the right PFC.33,34 It should be acknowledged, however, 

that the ventromedial PFC, involving medial orbitofrontal cortex and anterior cingulate 

cortex (encompassing BA 25, lower BA 24/32, and medial BA 11/12/10) also plays an 

important inhibitory role on behavior and decision making.35,36 Thus, it is not unlikely, 

given the strong anatomic connections37 and coactivation38 between DLPFC and 

orbitofrontal cortex, that our observations may have been mediated by functional 

interactions between these two prefrontal areas.

The second mechanism may envisage changes in impulsivity level as consequence of 

alteration in time perception. Wittmann and Paulus39 demonstrated that the subjective 

experience of time is associated with a higher level of impulsivity. Interestingly, right 

DLPFC has been indicated as a critical region for time processing.40–43 In particular, Koch 

et al.42 showed that lesion in the right PFC caused an underestimation of time duration 

compared with normal subjects. The same observation was replicated by rTMS-induced 

inhibition over the right DLPFC with selective underestimation of perception of time 

intervals.43 Based on these premises, we should also consider the alternative that the “virtual 

lesion-like effects” of the DLPFC induced by our cTBS paradigm may have increased the 

selection of delay options (reduced k-value) as a result of underestimation of time delay. In 

this regard, a number of studies have suggested an alteration in time perception associated 

with impulsivity. In fact, patients with psychiatric disorders, including substance abuse44–46 

and neurodegenerative diseases,47 who have experienced impulsive behavior and have 

demonstrated an impairment in time perception. In our study, the decrease in k-value did not 

change with the increase in reward magnitude, implying that cTBS-induced reduction in 

impulsivity was unrelated to the magnitude of reward. Some studies support this 

observation; the increase of k-values in the drug abuser group was preserved and showed the 

same pattern of k-value changes regardless of reward magnitude.1,26
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Our study was not designed to investigate the underlying neurochemical changes associated 

with decreased impulsivity; however, we could speculate that changes in the dopaminergic 

system may well be responsible for these observations. In fact, the acute administration in 

healthy humans of d-amphetamine, a prototypical stimulant that increases synaptic level of 

dopamine, decreases several forms of impulsive behavior, including the DD measures with 

decreased k-values.29 As suggested by animal and human studies, the prefrontal-basal 

ganglia network is very likely the underlying neural circuit engaged in the reward choice at 

different time scales. In rats, lesioning of the nucleus accumbens resulted in a tendency to 

choose small immediate rewards over large future rewards.48 Similarly, functional imaging 

studies have demonstrated the engagement of different corticostriatal neural loops (i.e., 

orbitofrontal cortex-ventral striatum versus DLPFC-dorsal striatum) in relation to time-

related decision making.49,50

There was no significant modulation of DD value after the iTBS. Although iTBS has been 

shown to have an excitatory effect over the motor cortex,17 it is not surprising that lack of a 

significant influence on the DD task. In fact, in the literature, there are several examples 

showing that although cTBS has a consistent effect on different complex behaviors, the same 

does not apply to iTBS. For instance, Franca et al.51 found that although cTBS applied over 

the occipital cortex affected phosphene threshold, no effect was observed with iTBS. 

Similarly, Wilkinson et al.52 showed that although cTBS over M1 affected probabilistic 

sequence learning, iTBS did not produce any consistent effect. On the same line, Voss et al.
53 provided evidence that cTBS again over M1 while affecting performance in a force-

matching task, iTBS did not produce any effect. Thus, whereas the reasons for this lack of 

iTBS effect on different behavioral performances are not immediately obvious, all those 

studies have claimed that differences in the physiology and functional state of the underlying 

cortex during the task at hand may be responsible for these observations. In fact, the 

modulatory effects of different rTMS interventions are critically dependent on the functional 

state of the stimulated cortex.17,54–57

In conclusion, we demonstrated that modulation of cortical excitability over the DLPFC 

induces changes in impulsivity level. The inhibition of the right DLPFC reduces the level of 

impulsive decision making. The current data provide insight into the role of the right DLPFC 

in decision making and in calculating the reward value at different time delays under less 

risky and nonambiguous circumstances in humans.
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Figure 1. 
Display of the research procedure.
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Figure 2. 
Visual display and timing of trials for delay discounting (DD) task.
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Figure 3. 
Mean total k-value for the each theta burst stimulation (TBS) conditions. Error bars 

represent the standard errors of the mean. *P < .05 using a nonparametric Freedman test. †P 
< .05 using a nonparametric Wilcoxon signed rank test.
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Figure 4. 
Mean reaction time (A) and consistency for response choice (B) in each theta burst 

stimulation (TBS) condition. Error bars represent the standard errors of the mean.
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Table 1

Example of trials in the two reward sizes with an associated discount rate (k) of 0.005

Choice option

Delay k Reward sizeaSIR LDR

44 55 1 y 0.005 Small

820 828 2 wk 0.005 Large

SIR, smaller-immediate reward; LDR, larger-delayed reward.

a
Categories of delayed reward size: small (1–500 CAD) and large (600–1000 CAD).
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Table 2

Mean and standard deviation of BIS score and k-value in each TBS session

BIS

k-Value

Sham iTBS cTBS

Mean 59.6 0.0149 0.0155 0.0086

SD 7.7 0.0135 0.0189 0.0107

BIS = Barratt Impulsivity Scale-11; TBS = theta burst stimulation; iTBS = intermittent TBS; cTBS = continuous TBS; SD = standard deviation.
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