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Abstract

Neural responses to visual stimuli are strongest in the classical receptive field, but they are also modulated by stimuli in a
much wider region. In the primary visual cortex, physiological data and models suggest that such contextual modulation is
mediated by recurrent interactions between cortical areas. Outside the primary visual cortex, imaging data has shown
qualitatively similar interactions. However, whether the mechanisms underlying these effects are similar in different areas
has remained unclear. Here, we found that the blood oxygenation level dependent (BOLD) signal spreads over considerable
cortical distances in the primary visual cortex, further than the classical receptive field. This indicates that the synaptic
activity induced by a given stimulus occurs in a surprisingly extensive network. Correspondingly, we found suppressive and
facilitative interactions far from the maximum retinotopic response. Next, we characterized the relationship between
contextual modulation and correlation between two spatial activation patterns. Regardless of the functional area or
retinotopic eccentricity, higher correlation between the center and surround response patterns was associated with
stronger suppressive interaction. In individual voxels, suppressive interaction was predominant when the center and
surround stimuli produced BOLD signals with the same sign. Facilitative interaction dominated in the voxels with opposite
BOLD signal signs. Our data was in unison with recently published cortical decorrelation model, and was validated against
alternative models, separately in different eccentricities and functional areas. Our study provides evidence that spatial
interactions among neural populations involve decorrelation of macroscopic neural activation patterns, and suggests that
the basic design of the cerebral cortex houses a robust decorrelation mechanism for afferent synaptic input.
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Introduction

Visual surroundings can change the neural response to a

stimulus presented in the center of the receptive field. Such

contextual modulation has been studied in cats [1–3] and monkeys

[4–10]. In humans, contextual modulation has been studied with

functional magnetic resonance imaging (fMRI), [11–13], and these

results mirror the effects reported in psychophysics [14,15]. In

most cases context suppresses (i.e. decreases) the response, but

facilitation have also been reported in behavioral [16–18], evoked

potential [19], single cell [5,10] and fMRI studies [11,20,21].

The network mechanisms underlying contextual modulation

have been modeled with physiologically plausible models [22–24].

In these models, the feedforward-feedback loop integrates signals

from spatially extensive areas of the visual field, thus providing the

early visual areas access to information from large regions of the

visual field. However, these models have not addressed the

potential benefits of contextual modulation. Barlow [25,26] and

others [27–29] have suggested that reduction of redundancy of the

output of a neural population, e.g. by removing correlations

(decorrelation) between neural responses, is beneficial because it

increases the efficiency of information transmission. Contextual

modulation has been associated with efficient information

transmission [30,31] and indeed, context affects neuronal depen-

dencies locally in the monkey primary visual cortex [32] and cat

area 17 [1]. Vanni and Rosenström [21] studied contextual

modulation and introduced a model in which contextual

suppression and facilitation decorrelate not only local but also

the macroscopic center and surround activation patterns in fMRI.

Their cortical decorrelation (CD) model predicts that suppression

and facilitation strength depends on signal correlation (overlap)

between the center and surround fMRI activation patterns.

However, it is unclear whether the same decorrelation process

takes place in all areas of the visual cortex and beyond the subset

of most active fMRI voxels. In addition, Vanni and Rosenström

[21] did not validate their model against alternative and possibly

better models.

The purpose of this study was to investigate how the correlation

between spatial activation patterns induced by visual stimuli relates

to suppressive (i.e. sublinear summation of center and surround

response in case of combined center and surround stimulation)

and facilitative (i.e. supralinear summation of center and surround

response in case of combined center and surround stimulation)

interaction strength. To address this issue, we studied how the

BOLD signal spread and BOLD signal sign relate to contextual

modulation in the visual cortex. Our results show that BOLD
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signals spread over large distances of visual cortex. In addition, our

study generalizes the results of Vanni and Rosenström [21] and

also validates such macroscopic pattern decorrelation model

against linear and non-linear alternatives. Our findings are in line

with the CD model and provide further evidence that pattern

decorrelation is one of the computational roles of contextual

modulation. The same match between the model and the data in

different eccentricities and functional visual areas suggest that the

spread of the BOLD signals reflect the synaptic input to postulated

local mechanisms [33,34], which modulate the neural responses

and eventually reduce correlations between overlapping neural

activation patterns.

Methods

Subjects
Fifteen subjects (age 20–44 years, 12 males) attended the

experiment. All subjects had normal or corrected–to–normal

vision, and gave their written informed consent before the

measurements. The study was approved by the ethics committee

of the Hospital District of Helsinki and Uusimaa.

General Stimulus Design
Stimuli were produced with MatlabTM (Mathworks, Natick,

MA, USA) and PresentationTM software (Neurobehavioral

Systems, Albany, NY, USA) controlled the timing and positioning

of the stimuli. The stimuli were projected with a 3–micromirror

Christie C3TM data projector (Christie Digital System, Kitchener,

Ontario, Canada) onto a back–projection screen in the magnet

room. The subjects viewed the stimulus at 34–cm distance via a

surface mirror in front of their eyes. Dim photopic background

light was on during the experiments.

Stimuli
Figure 1 a–e shows the 5 different stimuli where center, near

and far surround were presented sequentially or simultaneously.

The center and surrounds comprised a sinusoidal pattern at 0.5 c/

deg spatial frequency. The contrast of the sinusoid was 15% and

the stimuli were centered on the fixation. Display mean luminance

was 40 cd/m2. The center stimulus was a 1.3 degrees wide ring

extending from 1 to 2.3 degrees eccentricity (Ring1 in

Figure 1).The near surround was 1.5 degrees wide and extended

from 2.5 to 4.0 degrees eccentricity (Ring2). Thus a small gap

always separated the center and the near surround stimuli. The far

surround was 3.3 degrees wide extending from 8.7 to 12 degrees

eccentricity (Ring5).

We functionally localized voxels of interest at different

eccentricities in a separate run. The contrast of the checkerboard

pattern reversed 8 times per second. The contrast of the pattern

was 80%, and each ring included two rings of 24 identical radially

expanding quadrilaterals. All the five rings (Fig. 1 f) were active in

a multifocal design [35].

Procedure
The order of the stimuli was pseudo–random and subjects were

engaged in an attention control task during the stimulation. Four

letters (Z, L, N and T) appeared at the fixation repeatedly for

150 ms each [36]. During the letter stream, 1–4 X-letters replaced

some letters randomly and the subjects reported the number of X-

letters in each block with a response pad during the rest period

(only fixation). On average subjects identified correctly the number

of X-letters in 73612% blocks (no significant difference between

stimulus and rest blocks, Friedman test, P = 0.43), which is clearly

above the chance level (25%). The moderate performance suggests

that the task was difficult enough to engage attention. Eye

movements most probably do not constitute a major problem in

our study, because the stimuli were symmetric around the fixation,

the difficult task reduced the incentive for saccades, and our

subjects were experienced. In general healthy subjects keep

fixation with less than 10 arcmin accuracy [37].

The subjects participated in two separate sessions: functional

visual area mapping experiment (described in more detail below)

and the main experiment. The main experiment comprised five

experimental runs and one functional localizer run. For each

experimental run in the main experiment, 158 time points were

acquired with 1.8 s repetition time, resulting in 4 minutes and 44

seconds duration. Each run comprised 30 blocks, and duration of

one block was 9 seconds, including 6.75s stimulation (together with

task at fixation, see above), and 2.25s rest periods. Separate task-

only blocks with no stimuli enabled contrasting activation with a

baseline condition where the task was comparable to active blocks.

The functional localizer, acquired with the same volume as the

main experiment, enabled individual definition of voxels of interest

(VOI) separately for the five eccentricities. The functional localizer

run had the same imaging parameters as the main experiment, but

164 time points, resulting in 4 minutes and 55 seconds duration.

The functional localizer run comprised of 4 subsequences, each

comprising 7 blocks of 9 sec duration. The temporal sequences of

the five rings were mutually orthogonal resulting in linearly

independent estimates of BOLD response from each ring (for

details of the multifocal fMRI see [35]).

FMRI Acquisition Parameters
FMRI data were acquired with General Electric Signa HDxt

3.0 T MRI (General Electric Medical System, Milwaukee, WI,

USA) with an 8–channel phased array head coil. Five echo planar

imaging runs were acquired for each subject. The acquisition

matrix was 64*64, field of view 18 cm, resulting in 2.8 mm in–

plane resolution, 29 slices, slice thickness 2.8 mm, 30 ms echo time

and flip angle 60 degrees.

Preprocessing
Data were analyzed with SPM8 (Wellcome Department of

Imaging Neuroscience, London, UK) MatlabTM toolbox. Stan-

dard preprocessing techniques, including image conversion to

NIFTI format, slice time correction, and realignment with

reslicing were applied before model estimation [38]. The first

four images of each run were removed in order to keep only stable

data. Freesurfer [39,40] was used to visualize the signals on the

inflated cortical surface. We followed the standard segmentation

procedure, and an expert evaluated the quality of segmentation of

each subject during and after the segmentation.

Definition of Measured and Theoretical Modulation
Coefficient (d)
We term the functional response in visual cortex to presenting

the center stimulus alone as C, and surround alone as S (SN: Near

surround and SF: Far surround). When the center and surround

stimuli are presented simultaneously, the two patterns interact. In

CD model we first measure the response pattern (voxel activation

pattern) to center stimuli alone (C) and another response pattern to

surround stimuli (S), both in the same set of voxels. It is not

possible to measure the individual center and surround activity

patterns when the center and surround are simultaneously

presented. However, for modeling purpose we assume that the

response to simultaneous presentation of center and surround is a

sum of decorrelated center and surround activity patterns

Interactions as Decorrelation in Visual Cortex
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(Equation 1). The combined response is denoted by m(C,S) to

emphasize that it is a measured (m) function of the original C and

S activation patterns.

m(C,S)~C
0
zS

0 ð1Þ

In equation 1 the C’ and S’ denote the decorrelated activity

patterns.

Equation 2 defines d as a modulation index that indicates the

quantity and sign (positive suppressive interaction, negative

facilitative interaction) of contextual modulation. In our analysis

we are dealing with two types of d values, dM which comes from

the measurement (Equation 2) and dT which comes from the CD

model, only based on C and S responses (Equations 3 and 4). The

dM and dT are compared when evaluating the model. In practice,

we first measure the C, S, and m(C,S) responses, and then

calculate the dM coefficient for each voxel.

dM~1{m(C,S)=(CzS) ð2Þ

Thus, if there is no interaction between the component

responses, dM equals zero. If response disappears totally

(m(C,S) = 0), then dM is 1, indicating full suppressive interaction.

If response comprise facilitative interaction so strongly that it is

doubled (m(S,C) = 2 * (C+S)), then dM is21. Although dM can take

any real-value, it is likely that the most extreme values arise from

noise; when the denominator C+S approaches zero, the result of

Equation 2 approaches infinity. However we have not discarded

the d values which are over 1 or below 21 in our results.

A single scalar theoretical d–coefficient (dT) (between [21 1])

can fully remove correlation between any two vectors of voxel

responses, C and S [21]:

C
0
~C{dT � S

S
0
~S{dT � C

ð3Þ

Equation 4 shows the formula for calculating the theoretical d in

which var() is the variance function and cov() is the covariance

function [21]. All correlation values are calculated with the

Pearson’s formula (covariances divided by the product of standard

deviations).

dT~
(var(C)zvar(S))2{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(var(C)zvar(S))2{4cov(C,S)2

q

2cov(C,S)
ð4Þ

When studying the association of spatial correlation and neural

interaction, we first selected a group of voxels (voxels of interest,

VOI), whose BOLD signals for center and surround stimuli

constituted the two response vectors. Next, the measured mean dM
value for the VOI was compared to a theoretical dT value.

Retinotopic Mapping, Calculation of Percent Signal
Change and Selecting Voxels of Interest
Our stimuli in the main experiment activated V1, V2d, V2v

and V3d in most subjects (average number of active voxels in each

area was 270 in the right hemisphere). The borders of these areas

were defined according to a 24–region multifocal localizer,

adapted from the original 60–region stimulus [35]. Subjects

Figure 1. The main experiment comprised five different stimuli (a–e). a) Center (C, Ring1) alone, b) near surround (SN, Ring2) alone
c) far surround (SF, Ring 5) alone d) center and near surround and e) center and far surround. The contrast of stimuli in this figure is
higher than in the actual stimuli (15%). f) Eccentricity of the borders of the rings. The functional localizer for eccentricity representation comprised all
five rings in a multifocal design.
doi:10.1371/journal.pone.0068046.g001
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attended a separate fMRI session for mapping of lower–order

retinotopic areas (multifocal design of checkerboard contrast

reversal stimuli) and ventral stream areas (block design with

achromatic objects) in their right hemisphere [41].

The BOLD signal change was calculated as follows. The BOLD

signal for the effect of interest was divided by the mean BOLD

signal, separately for each run. Next we multiplied the quota with

100 to get the percent BOLD signal change. This analysis was

repeated separately for each voxel, and then the values across the

different voxels within a volume of interest were averaged.

In the main experiment we had five effects of interest: i) center,

ii) near surround, iii) far surround, iv) center and near surround at

the same time and v) center and far surround at the same time.

These contrasts include implicit rest (not modeled with a separate

regressor), i.e. each condition is contrasted to rest with one

regressor.

All VOI selections are summarized in Table 1. We used three

different ways to select the voxels of interest: 1) Voxels were

selected based on active voxels for either the center, near

surround, or far surround in the main experiment. This selection

spans all visual functional areas in both hemispheres. The VOIAVA
was built from all five effects of interest together (Fig, 1 a-e). 2)

Voxels were selected based on active voxels in multifocal

functional localizer (PFWE=0.05, corresponding to T .4.7),

providing representations for five different eccentricities (Fig. 1

f). 3) Voxels were selected from the main experiment stimuli, but

assigned to distinct functional areas of the right hemisphere

according to separate retinotopic mapping experiment. The active

voxels were selected from contrast where all five regressors were on

(see above). In practice, functional area labels on Freesurfer

surface were intersected with the active voxels in the main

experiment, which includes voxels active for the stimuli, but

excludes voxels with just measurement noise.

Statistical Analysis
We used R–squared as a measure of goodness of fit between dM

and the dT. As we had measurement errors in both correlation

between center and surround responses and d–coefficient, we used

orthogonal distances in calculation of the numerator in standard

R–squared (Equation 5). The model error is the square of

minimum distance from each data point to the model. The

denominator of standard R–squared was calculated from the

distance of each data point to the average of all data points.

R{squared~1{
Serr

Stot

Serr~
Xn
i~1

(yi{f )2

Stot~
Xn

i~1

(yi{y)2

y~
1

n

Xn

i~1

yi

ð5Þ

In Equation 5, n is the number of data points, y are the data

points and f is the model.

The CD model can predict the modulation index (dM) by taking

into account the pattern of activation for individual presentation of

center and surround stimuli. However, we need to control weather

any other model which relates correlation between center and

surround responses to the modulation index can describe the data

better than CD model. We defined four different models, which

were compared with error measure. Our model had zero free

parameters. The three other models were: i) a linear relation (with

slope one and no offset from zero) between correlation between

center and surround and dM, comprising zero free parameters, ii) a

3rd order polynomial fit to each set of data point separately (Fig.

S1) with four free parameters (a1–a4 in a 3rd order polynomial

function: Y= a1+a2X+a3X2+a4 X3) and iii) a linear fit to each set

of data point separately with two free parameters (a and a2 in a

linear function: Y= a1+a2X). For both polynomial fit and linear fit

we used leave-one-out cross validation method to calculate the

error. We took one data point out and made the fitting to all the

remaining data points and measured the error from the fitted

curve to the omitted point. Next we iterated the process across all

the data points and then took the average of all these errors.

In addition to error measure we used Akaike information

criterion (AIC) to compare relative goodness of fit of the

mentioned models. The AIC takes the number of free parameters

of each model into account as a punishment factor for the

goodness of fit. In our analysis, AIC was calculated based on the

least squared error of the data points [42] from the models.

Next, we compared the goodness of fit of the model for the local

and global voxel selections. Because the total number of active

voxels in each VOI affects the goodness of fit to the CD model, we

resampled the data, in order to keep the number of tested voxels

the same in different VOIs. Therefore we were able to compare

fitting of decorrelation model (with no free parameters) in different

functional visual areas and eccentricities. In resampling, 20 voxels

were selected randomly from suprathreshold voxels within a VOI.

Next, the difference between mean dM and dT was calculated to

Table 1. Description of voxels of interests.

VOI Description

Voxels across all areas for the main stimuli

VOIC Center (Fig. 1 a)

VOISN Near Surround (Fig. 1b)

VOISF Far Surround (Fig. 1c)

VOIAVA All visual areas

Voxels representing different eccentricities

VOI1u–2.3u Ring 1 of Figure 1e (1u–2.3u eccentricity)

VOI2.3u–4.0u Ring 2 of Figure 1e (2.3u24.0u eccentricity)

VOI4.0u–6.1u Ring 3 of Figure 1e (4.0u26.1u eccentricity)

VOI6.1u–8.7u Ring 4 of Figure 1e (6.1u28.7u eccentricity)

VOI8.7u–12u Ring5 of Figure 1e (8.7u212u eccentricity)

Voxels at different functional areas

VOIV1 Area V1

VOIV2d Area V2d

VOIV2v Area V2v

VOIV3d Area V3d

VOIV3v Area V3v

VOIV3AB Area V3AB

VOIhV4 Area hV4

VOIVO Area VO

VOILO Area LO

VOIV5 AreaV5

Definition of all voxels-of-interest selections. See methods for details.
doi:10.1371/journal.pone.0068046.t001
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determine error between data and CD model. The procedure was

repeated 100 times to determine the average error for both near

and far surround within one VOI, and the whole procedure was

repeated separately for each VOI.

In order to test if there is a significant suppressive interaction or

facilitative interaction in group average data in different functional

visual areas and in different eccentricities, we used sign–test with

null hypothesis that data come from a continuous distribution with

0 median against the alternative that median is not 0.

We used the Mann–Whitney U test to analyze relationship

between BOLD response sign and suppressive interaction and

facilitative interaction. The null hypothesis of the test is that data

in the two vectors (dM when C and S responses across voxels have

the same signs and dM when C and S have different signs) are

independent samples from identical continuous distributions with

equal medians.

Results

Cortical Spread of BOLD Signal and Contextual
Modulation
We measured the BOLD signal at different eccentricities to

analyze the BOLD signal spread along the cortex. Figure 2 shows

the BOLD signal change (%) for near (Fig. 2 a–c) and far (Fig. 2 d–

f) surround conditions for Subject 3. The positive BOLD signal

spread significantly (Table S1) outside the above the threshold

activation, i.e. the primary retinotopic representation, particularly

in the V2 and V3. Significantly negative BOLD signals were also

consistently found (Table S1) in voxels, which were far from the

primary representation in the V1 and V2. This finding is

consistent with earlier studies showing negative BOLD signals

abutting the positive BOLD signals in cortical sensory areas, and

corresponding reduction in neural activation when the BOLD

signal was negative [43–45]. In line with previous single cell studies

[10], the far surround produced less suppressive interaction than

the near surround, or even facilitative interaction (+ in Table S1,

in rows of m(C,S)-(C+S)), especially in the population of voxels

where either the C or S or both responses were close to zero or

negative (Fig. 2). In the example subject in figure 2 most such

responses were found in V1 and V2.

The group average followed the findings of Subject 3, and

showed that the subthreshold BOLD signals spread significantly

(Table S2) beyond the maximum retinotopic responses. Figure 3

shows the group average BOLD signal changes in cortical visual

areas V1–V3, for representations of the five different eccentricities

separately. From these data, we calculated at which eccentricity (in

degrees) the BOLD signal crossed zero (Table 2, polynomial fit of

2nd degree with 95% CI). In some cases no crossing took place in

the sampled eccentricities, indicating positive signal spread to all

sampled eccentricities. From the center to peripheral direction, the

BOLD signal in V1 changed to negative value at cortical position

which was representing 5.4u more peripheral part of the visual

field than the outer edge of the center stimulus. The corresponding

distances were 5.9u in the V2 and 7.8u in the V3. For near

surround stimuli, in central direction, the BOLD was on average

positive at the innermost ring in the V1, V2 and V3,

corresponding to 1.3u more central representation than the inner

edge of near surround stimuli; for peripheral direction from near

surround, BOLD became negative on average at cortical position

corresponding to 5.4u (V1), 5.7u (V2) and 6.4u (V3) more

peripheral representation than the outer edge of the near

surround. For far surround stimuli, in central direction, the

BOLD remained positive over all sampled eccentricities in V1, V2

and V3, corresponding to 7.7u more central representation than

Figure 2. BOLD signal changes (%) for one subject (S3) as a
function of eccentricity (VOI1u22.3u–R8.7u212u). The C, S, m(C,S) and
C+S signals, for V1, V2 and V3 areas, are plotted separately for near
surround (a–c) and far surround (d–f) conditions. The lower panel of
each graph shows the subtraction m(C,S) – (C+S) revealing suppressive
interaction or facilitative interaction amplitude. Voxel selection was
thresholded at PFWE = 0.05. Error bars display the standard errors of the
means across active voxels. Note that the data for C is the same in the
left and right columns.
doi:10.1371/journal.pone.0068046.g002
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the inner edge of far surround stimuli. Overall, these values are

well in line with the mean BOLD signal spreads in V1, V2 and V3

in Zuiderbaan et al. [46]. We computed the cortical distances in

V1 using the Schwartz formula [47]. The BOLD signals remained

positive for distances that consistently exceeded 8 mm and in some

cases (central direction, SF) even 28 mm (the red line in Fig. 3 d,

upper panel). For the central stimulus, the BOLD signals

consistently crossed to negative values in the most peripheral

VOIs of V1 and V2 (Fig. 3 d and e, Table S2).

Figure 3 suggests that when both the center and the surround

stimuli evoked positive BOLD signal in the same voxels,

suppressive interaction prevailed. Facilitative interaction was less

frequent than suppressive interaction. In the group average fMRI,

facilitative interaction was significant only in area V2 for VOI8.7u–

12u in SF condition (p = 0.03, sign–test). Individual variation

apparently reduced the significant facilitative interactions in group

average data. At individual level, facilitative interaction was found

in 9 subjects in 83 out of 450 various conditions (15 subjects* 5

rings * 3 functional visual areas* 2 near and far surround

conditions = 450).

Description of the Relationship between BOLD Signal
Overlap and Decorrelation (d) Coefficient
Figures 4 and 5 demonstrate how the patterns of activation for

the C and S stimuli are correlated, and how this correlation is

related to the decorrelation coefficient in the CD model. This part

is intended to explain the nature of the decorrelation effect. The

center stimulus evoked a clear activation in multiple functional

areas (Fig. 4 a). As expected, the subthreshold positive BOLD

response exceeded the area of thresholded activation, but the

response turned consistently negative at sufficient distances from

the thresholded activation in V1, V2 and V3 as described above

(Fig. 4 b, Fig. 2). The data for near and far surround conditions

were otherwise similar with the center only condition, but the

activations were shifted according to the retinotopy (Fig. 4 c–d).

The BOLD signal change (%) for center and surround alone

(Fig. 4 c–d), do not sum linearly when presented together (Fig. 4 e–

f). Figure 4 g-h shows the difference between the simultaneous

presentation and the linear sum, and reveals that the activation for

center and surround presented simultaneously is not a simple sum

of the components. Subtracting C+S from m(C,S) shows that the

response to the combined stimuli may sum sublinearly (suppressive

interaction; blue coloring in Fig. 4 g–h) or supralinearly (facilitative

interaction; red–yellow coloring) relative to the unweighted sum of

the components. The suppressive and facilitative interactions

showed clear clustering in the cortex. Comparison of Figures 4 (b–

h) shows that, especially in V1, V2 and V3, the facilitative

interaction is found in most cases in areas of negative BOLD for

either the center or surround stimuli, whereas suppressive

interaction dominates where the response is predominantly

positive. The BOLD activation patterns for the center, near

surround, far surround (Figure 4 b–d) are significantly different

with each other (Kolmogorov-Smirnov test, p,0.005). In addition,

the interaction effect (the difference between m(C,S) compared to

C+S) is significant (p,0.005) for both near and far surrounds

(Figure 4 f–h).

Figure 5 a shows how dT and dM are calculated and Figure 5 b

shows how m(C,S) BOLD signal deviates from the unweighted

sum of C+S for all the voxels activated by the center stimulus

(VOIC, Table 1). The interaction effect (m(C,S)–(C+S)) was

significantly different in near compared to far surround (Kolmo-

gorov-Smirnov test, p,0.005). Clearly, there was more suppres-

sive interaction when the surround was near the center (illustrated

as larger distance from the slope of one), compared to when it was

far from the center.

Figure 5 c and d shows that in this subject the spatial correlation

(similarity of activation patterns) between C and S response vectors

was positive when the surround was near the center (r = 0.62,

p,0.01), and zero when the surround was far from the center

(r =20.02). The spatial correlation was defined as the Pearson’s

Figure 3. The group mean BOLD signal changes (%) as a
function of eccentricity. See Fig. 2. for further explanation.
doi:10.1371/journal.pone.0068046.g003
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correlation between the evoked cortical patterns for the center and

the surround stimuli.

Figure 5 e shows the mean dM, which indicates the average

measured modulation due to interactions. The near surround d is

positive, indicating average suppression, and the far surround d is

zero. In summary, when the correlation was high, the d was

positive, and when the correlation was low, the d was close to zero,

as suggested by the CD model [21].

Group Analysis Suggests that Surround Modulation
Decorrelates Overlapping Activation Patterns
We analyzed how correlation between center and surround

mean response patterns relates to suppressive interaction and

facilitative interaction in all subjects (N=15). Figure 6 shows the

individual mean dM values for near surround (left column) and far

surround (right column) plotted as a function of correlation

between center and surround (C,S) in the center VOI (Fig. 6 a–b),

and in the near surround (Fig. 6 c) and far surround (Fig. 6 d)

VOIs. The black curves in Fig. 6 a–d show the predicted dT. We

have 15 (N subjects) * 4 (Fig. 6 a-d; VOIC for near and far

surrounds, VOISN for near and VOISF for far surround) = 60

correlation coefficients between the center and surround response

patterns; in 56 data points out of 60 the correlation was significant

(p,0.05). In VOIC (average number of voxels 367) the data points

cluster close to the model prediction (dT, solid curve) for both the

near and far surround conditions. Although there are individual

differences in distribution of dM for different subjects, the data

follows reasonably well (goodness of fit $90%) the model

prediction also for the near surround condition in the VOISN,

and for the far surround condition in the VOISF. The far surround

in VOISN and near surround in VOISF comprised no primary

representation of either stimuli, which resulted in division with

close to zero values in Eq. 2, and noisy dM values. Therefore, the

plots for the far surround in VOISN and near surround in VOISF
are omitted for clarity.

In addition to our model which has no free parameters, we

compared fitting of the data points to three other conceptually

very simple models (see methods): linear relation between

correlation of activation patterns and dM (linear model, no free

parameters), 3rd order polynomial fit (four free parameters) and

linear fit (two free parameters). Figure 6 shows that CD model has

significantly smaller average error compared to linear model

(p,0.05, Friedman test) and linear fit (p,0.05). However no

significant difference was found between the CD model and the

3rd order polynomial fit (Fig. 6 e). In one case, the 3rd order

polynomial fit with four free parameters even finds the general

form of the fixed-parameter decorrelation model when there are

both positive and negative data points (Figure 6 d, Figure S1 d).

The four models are not directly comparable, because they have

different numbers of free parameters. In a separate test, we

compare AIC (see methods) of all the mentioned models, which

takes into account the number of free parameters in a model. To

be able do this, we calculated the least squared error for all the

models in all the data points. Based on the AIC measure, the CD

model has the highest probability to give the best fit among the

existing models in VOIC near surround (Fig. 6 a), VOISN near

surround (Fig. 6 c) and VOISF far surround (Fig. 6 d). Our model

was not the best model only in VOIC far surround (Fig. 6 b)

condition, where the 3rd order polynomial fit provided better fit to

the data points. In summary, given the four different models and

four conditions, our model was the best in 15/16 pairwise model

comparisons. This indicates that our data is in unison with the

decorrelation model.

Relation between Measured and Theoretical Correlation
Coefficient (d) at Different Eccentricities and at Different
Functional Areas
To further analyze whether the CD model was more

appropriate in one part of the cerebral cortex than another, we

constructed two further voxel selections (Table 1), one along visual

field eccentricity, and another for different functional areas. The

null hypothesis was that there is no difference between voxel

selections, which would mean that the decorrelation is similar

everywhere.

Figure 7 shows the relationship between dM and dT in different

eccentricities (left column), and different functional areas (right

Table 2. At what eccentricity positive BOLD turns to negative BOLD.

Center stimulus Peripheral
direction,
from 2.3u Near Surround stimulus

Far Surround stimulus
Central direction,
from 8.7u

Central direction,
from 2.3u

Peripheral direction,
from 4.0u

V1 Average
(95% CI)
Degrees

7.7u
(3.8u – .12u)

,1u
(2.3u – ,1u)

9.5u
(7.1u – 11.5u)

,1u
(,1u – ,1u)

Average
spread
(95% CI)
Millimeters

12.4 mm
(2.3 mm –
.19.2 mm)

.12.6 mm
(5.6 mm –
.12.6 mm)

8.5 mm
(4.1 mm –
11.4 mm)

.28.7 mm
(.28.7 mm – .28.7 mm)

V2 Average
(95% CI)
Degrees

8.2u
(4.6u – .12u)

,1u
(3.2u – ,1u)

9.7u
(8.1u – 11.1u)

,1u
(1.6u – ,1u)

V3 Average
(95% CI)
Degrees

10.1u
(4.7u – .12u)

,1u
(,1u – ,1u)

10.4u
(9.5u – 11.2u)

,1u
(,1u – ,1u)

Spatial spread of positive BOLD signal for center, near surround, and far surround in V1, V2 and V3. The angles indicate the average (95% CI) eccentricity representation
where the positive BOLD signal turns to negative BOLD signal. For central direction, the value at the title row indicates the inner edge eccentricity of the stimulus ring.
For peripheral direction, the value indicates the outer edge, correspondingly.
doi:10.1371/journal.pone.0068046.t002
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column). All plots comprise data from both near (dark rectangles)

and far surround (light circles) condition. In all areas we

concatenated suprathreshold voxels from all visually responsive

areas within one hemisphere. Figure 7 shows a particularly good

match between dM and dT in VOI1u–2.3u, VOI22.3u–4.0u and

VOIAVA (a, b and i). However, because this match is confounded

by the number of voxels in the selected areas, we conducted

resampling with fixed number of voxels for quantification of the

error in different VOIs. The average squared error (E, Fig. 7) after

resampling is similar in all VOIs for both near (ESN) and far (ESF)

surround representation.

We compared the error of the model in global (VOIAVA)

selections of voxels to different local selections of voxels (Figures S2

and S3). We found no significant differences in errors between the

local and global selection of voxels. The results were similar both

for the different eccentricities (p = 0.1, separately for the near and

far surround, Friedman’s test) and functional visual areas (SN,

p = 0.6; SF, p = 0.5). For.

In summary, the strength of suppressive interaction and

facilitative interaction follows the CD model [21] in all studied

areas with similar accuracy.

Response Signs Versus Modulation Sign
We found that the signs of signal changes (positive or negative

BOLD) were linked to interaction sign (suppressive interaction or

facilitative interaction). If both C and S activation signs were the

same for a voxel, suppressive interaction was observed (Table 3).

Figure 4. Relationship between BOLD signal overlap and
interaction in Subject 3. a) SPM T–values (thresholded at PFWE = 0.05,
corresponding to T .4.7) for C contrast visualised on segmented and
unfolded visual cortex. The white lines indicate the borders between
visual areas. b) BOLD signal change (%) for C, limited to mapped
functional visual areas. c) BOLD signal change (%) for SN. d) BOLD signal
change (%) for SF. e) BOLD signal change (%) for C and SN together
(m(C,SN)). f) BOLD signal change (%) for C and SF together (m(C,SF)). g)
Difference of % signal change between m(C,SN) and sum of C and SN. A
positive value (red-yellow) indicates facilitative interaction, and a
negative value (blue) indicates suppressive interaction. h) Correspond-
ing difference for m(C,SF) and C+SF.
doi:10.1371/journal.pone.0068046.g004

Figure 5. How to calculate theoretical and measured d and
their relation with correlation of center and surround respons-
es. a) Schematic view for calculating the theoretical and measured d (dT
and dM respectively). b) m(C,S) signal change plotted as a function of
C+S for the voxels of interests for the C stimulus (VOIC, PFWE = 0.01).
Black: C and SF. Gray: C and SN. The dashed line indicates the slope of
one, and the solid lines linear regressors of the data. c) S signal change
plotted as a function of C signal change for both near and far surround
(VOIC, PFWE = 0.01). The dashed line indicates the slope of one, and the
solid lines linear regressors of the data. d) Correlations between C and
SN and C and SF signals. e) Mean (SE) measured d–coefficient (dM) for
both near and far surround condition (PFWE = 0.01). BOLD % indicates
BOLD signal change in %.
doi:10.1371/journal.pone.0068046.g005
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However, facilitative interaction was more common when the C

and S were different in sign.

Mann–Whitney U test confirmed this qualitative finding. Most

(87%) of the subjects rejected null hypothesis (that data in the two

distributions are independent samples from identical continuous

distributions with equal medians, see method) for the near

surround (at p,0.001) and all the subjects rejected null hypothesis

for the far surround (at p,0.001) interactions. This indicates that

suppressive interaction and facilitative interaction are associated

with relative signs of center and surround responses.

Figure 6. Correlation between C and S vectors versus average
dM, for 15 subjects. The left and right columns show results for the
near and far surround conditions, respectively. a)–b) VOIC at PFWE ,0.01.
c) VOISN and d) VOISF. The error bars show standard error of means. The
solid curves indicate the prediction (dT) from the CD model. The
average error is the orthogonal distance from the model. e) Comparison
of the four models, the CD model, linear model, 3rd polynomial fit and
linear fit. The average normalized error is calculated for four cases: in
VOIC for both near and far surround condition, VOISN for near surround
and in VOISF for far surround condition. In each VOI all the errors for
individual data points are normalized to keep the maximum error in
that VOI equal to 1. The error bars show standard error of mean for
average error across all subjects.
doi:10.1371/journal.pone.0068046.g006

Figure 7. Optimally decorrelating dT values are plotted against
median of measured dM values for all subjects, separately for
near and far surround. a) – e) Eccentricities; VOI1u22.3u–VOI8.7u212u. f)
– h) Functional areas; VOIV1, VOIV2, and VOIV3. i) All cortical visual areas
(PFWE = 0.01, VOIC). ESN is the average squared error between dM and dT
in near surround for the 100 sets of resampled (N= 20) voxels. A fixed
selection size renders the errors independent from the number of
voxels in one area. ESF is the error for far surround. In each diagram, N
is the average number of supra–threshold voxels across subjects.
doi:10.1371/journal.pone.0068046.g007
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Discussion

We studied contextual modulation with fMRI and our results

can be summarized as follows: i) In lower–order retinotopic areas,

where we expect local activation for local stimuli, BOLD signal

change as well as contextually induced suppressive and facilitative

interactions emerged far from the maximum retinotopic response.

ii) The CD model [21] was consistently better than the other

models in predicting the relation between correlation and

interaction strength. iii) The CD model performance was similar

in all studied visual areas. This suggests that similar mechanisms

underlie these effects in all visual cortical areas, and that the same

model can be generalized outside the most active voxel population.

iv) Suppressive interaction was associated with different signs of

center and surround mean BOLD responses; in contrast,

facilitative interaction was associated with center and surround

BOLD responses of the same sign.

Cortical Spread of BOLD Signal and Contextual
Modulation
Our results showed contextual effects over very long distances in

the visual field. This is in line with a recent report by Haak et al.

[48] who showed that population receptive fields are significantly

displaced if the stimulation is limited to one part of the visual field.

These contextual effects follow the long-distance spread of BOLD

signal increments and decrements around the maximum retino-

topic response (Table 2). The positive BOLD signal spread exceeds

8 mm in V1 and in some cases more than 28 mm, which is

obviously more than the radius of horizontal connections (,
3 mm) in monkey V1 [8]. These values are consistent with distant

(7.15+/23.14 mm away from the nearest positively responding

area in V1) negative BOLD signals that have been found in

monkeys [43], as well as with earlier reports of the surround sizes

of fMRI population receptive fields [46].

The wide–spread BOLD signals are in line with earlier findings

of the very long–range spatial interactions in single V1 neurons

[10] and in human contrast perception [18], as well as with earlier

imaging data of distant surround modulation in human visual

cortex [49,50]. These widespread signals may reflect the

anatomical substrate which connects local neural populations to

functional networks. In recent network models [23,24] and in an

earlier first–pass model (for a review, see [51]), such long–range

interactions arise from the very rapidly conducting feedforward–

feedback loops between the primary visual cortex and extrastriate

areas. In the first-pass model, neurons in extrastriate areas integrate

signals from large areas of the visual field, and then feed back their

output to primary visual cortex. This results in modulation of

neuronal responses in the primary visual cortex, which is caused

by stimuli far away from the classical receptive field. After

receiving these signals, local mechanisms may be enough to carry

out the computations which result in the modulation of single

neuron responses [33,34].

Comparison to Earlier Models and Neural Data of
Contextual Modulation
We observed the strongest suppressive interaction when the

correlation between center and surround activation patterns was

the highest. Moreover, the theoretically computed fully decorr-

elating modulation index dT was in good harmony with the

measured values in nearly all studied eccentricities and visual

areas. These findings indicate that the same decorrelation

principle sets the strength of both facilitative and suppressive

interaction across visual areas. The same decorrelation principle

probably holds for other types of stimuli as well, as it has been

tested earlier with faces and objects [21]. Similar effects have been

observed electrophysiological studies, with contextual modulation

decreasing redundancy of neural responses in the primary visual

cortex of monkeys [31] and the area 17 of cats [1]. It is interesting

that also in the olfactory system of zebrafish, decorrelation of

activation patterns emerges when stimuli are presented simulta-

neously [52,53]. Together with previous evidence [1,32,52,53],

our study suggests that contextual modulation affects not only the

manner in which single neurons encode sensory stimuli, but also

the encoding by a population of neurons. This, again, is reflected

in the macroscopic pattern of activation, which can be measured

with fMRI. It is not surprising that we found decorrelation in the

macroscopic activation patterns, given that decorrelation has been

found in single neurons in the primary visual cortex [30], and that

macroscopic activation patterns comprise significant information

about cortical representations (reviewed in [54,55]).

Standard single cell [9,56] and psychophysical [17,57] models

of contextual modulation incorporate some type of divisive gain

control mechanism. These models relate closely to models of

divisive normalization [58,59], which describes the effect of

context on the contrast response of single cells. Although our

assumption of subtractive interaction is at odds with the models

assuming divisive interaction, a close inspection of the single cell

data by Cavanaugh et al. [9] reveals that the interaction is actually

subtractive in a large proportion of V1 cells. Moreover, while the

gain control models describe the effects of context on the response

of a single neuron or on a psychophysical mechanism, the CD

model describes contextual modulation at the neural population

level, with no parameters derived from the stimulus.

In addition to divisive normalization, Max model [60] has been

used to explain neural interactions in particular cortical neurons,

and Average model [61] has reliably predicted the neural

interaction in inferotemporal cortex. Max model estimates the

response to a complex stimulus as the maximum response of the

components, whereas the Average model estimates the response as

the average of the components’ responses. These two models can

be quantitatively compared to the CD model by calculating their

prediction error. The CD model is in correspondence with our

BOLD responses to the combination of center and surround

stimuli (m(C,S)) better than the AVERAGE model (t-test,

p = 0.004, comparison of the norm of the prediction error for

center and near surround and center and far surround interac-

tions, for all the 15 subjects, voxel selections match the four panels

in Fig. 6). In contrast, the CD model did not significantly differ

from the MAX model (t-test, p = 0.4); thus a more thorough

comparison between these two models is required in future studies,

Table 3. Center and surround activation signs and contextual
modulation.

C and S with
the same activation
signs

C and S with
different activation
signs

NSuppression

dM .0
862 109

NFacilitation

dM ,0
188 219

Average number of voxels (VOIAVA) across all subjects showing facilitative
interaction (NFacilitation) and suppressive interaction (NSuppression ), when center
(C) and surround (S) had the same and when they had different sign of BOLD
response.
doi:10.1371/journal.pone.0068046.t003
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for example by varying the response strengths of the component

patterns systematically.

Finally, it is worth noting that fMRI is most sensitive to synaptic

activity [62]; in combination with the nonlinear mapping of

membrane voltage change to action potentials [63], this may

underlie possible discrepancies between the CD model and the

models derived from action potential data.

Correspondence of BOLD Signal and Neural Signals
The present study as well as the CD model is based on certain

assumption on the relationship between hemodynamic and neural

measures. How do we know that the sublinear summation of the

BOLD response is not due to hemodynamic redistribution of

blood (i.e. stealing)? Our group has probed this issue earlier by

varying visual parameters in a center–surround experiment and

showed that suppression had at least partially neural origin [64]. It

has been known for some time that positive BOLD signal is

correlated with both multiunit activity (MUA) as well as local field

potentials (LFP), with somewhat better correlation between BOLD

and LFP than between BOLD and MUA [62]. Recently, the

negative BOLD response (NBR) has been firmly associated with

reduction of neural activity from baseline [43,65] and reduction in

cerebral metabolic rate of oxygen consumption [45,66]. While

broad–band LFP in some cases may have no association with

NBR [67], there is a clear association between neural hyperpo-

larization, i.e. inhibition of neural activity, and NBR [44].

Moreover, Devor et al. [44] showed that the NBR was due to

arteriolar vasoconstriction, instead of blood stealing. Finally,

Fukuda et al. [68] examined the vascular point spread function

and compared cerebral blood volume changes to oxygen

consumption and optical imaging of intrinsic signals. They

conclude that hemodynamic volume changes are associated with

a point spread which must have a smaller width than the

functional columns. Thus we can be relatively confident that the

increases and decreases of BOLD response reflect increases and

decreases of neural activation, when we compare changes within a

voxel in a balanced design. However, with the current data alone

we cannot fully exclude the possibility of hemodynamic effects

contributing to our results.

Local Decorrelation
Our interaction data matched well the theoretically computed

fully decorrelating modulation index dT regardless of the voxel

selection, as long as the voxels represented either the center or the

surround stimulus. We interpret this as an indication that the same

decorrelating mechanism is applied in all visual cortical areas, and

in eccentricities which represent either center or the surrounds.

The main evidence supporting this claim is the same goodness–of–

fit to the cortical decorrelation model in all visual areas and

eccentricities. Critically, the decorrelation process, which is

presumably local [33,34], must have access to some distant neural

signals in order to modulate activity for distant visual objects. We

assume that the large spread of BOLD signal modulation,

discussed above, reflects the long–distance access.

Relation between Positive and Negative BOLD Response
and Suppression/facilitation
Our results showed that the modulation sign (suppressive

interaction or facilitative interaction) clearly depend on the relative

BOLD signal sign between the two stimuli. Facilitation emerged

when one of the component signals was positive and the other

negative. In contrast, suppression emerged when both component

signals had the same sign. Together, the decorrelation model and

voxel sign dependency between activation and modulation recasts

the phenomenon of suppressive interaction and facilitative

interaction along a continuum, where simple network mecha-

nisms, including the correlation between the activation patterns,

determine the interaction strength and sign.

Methodological Considerations
Our model fails in two cases: i) When the voxels comprise low

average C+S values, i.e. where neither center nor surround

stimulus is primarily represented. The failure of the model emerges

most likely from noise. When C+S is close to noise level, the

denominator of Equation 2 is close to zero and the dM value

becomes unstable. ii) We also suspect that the model is inefficient

when the VOI size is large and samples neurons with inhomo-

geneous functionality, i.e. significant amount of neurons within the

VOI are sensitive to different types of input. For example when the

VOI includes both facilitative and suppressive interactions,

individual voxels will not be accurately predicted by our model.

So far, the CD model has been evaluated only within a local

population of voxels, where it has been able to account for the

mean measured modulation index (dM). In a larger VOI, it is

possible to include several clusters of voxels with different

modulation strengths. This can be experimentally addressed by

determining the kind of distribution that the the mean dM value

emerges from. More specifically, do the dM values cluster around

the dT, which would mean that the CD model is able to predict the

pattern of activation and not only the mean modulation? It is

possible that within a large VOI area, assigning one dT to the

population of voxels (as is done in the CD model) makes dM values

less probable to cluster around the dT. In the future one could try

to predict a more exact sum of the component patterns (i.e. the

pattern of m(C,S)) if we divide the voxels within a large VOI to

multiple clusters of voxels according to the correlation values and

apply Equation 3 systematically to these clusters.

In addition, the d–coefficient is sensitive to noise covariance.

Noise that is auto-correlated in time within each voxel, adds twice

to the denominator and once to the numerator in Equation 2, and

consequently, biases the d–coefficient towards 0.5 when there is a

strong temporal noise correlation in the data, In our current

experimental design such temporal noise correlations were

carefully accounted for by examining sham data (data points

without stimulation) and constructing a design where the impact of

noise correlation is minimal. We used Latin square balancing of

the blocks for the first half of the runs length and mirrored the

same Latin square for the second half. Paying careful attention to

these issues is important for replicating our results.

Our approach is not dependent on whether a voxel summates

neural activation spatially as a simple low–pass filter, or whether

the filter is more complex, because of local vasculature [69,70]. As

our model is not based on any assumption about this filtering, our

model should hold as long as each voxel represents the same

neural population in different conditions (C, S, m(C,S)),. In theory,

a voxel may sample veins, which pool BOLD signal from relatively

distant neural populations (such as C and SN), compromising our

estimates of correlation between activation patterns. This suggests

that avoiding draining veins would increase the match between the

model and the data.

Our data, as well as earlier results [43,46,48], show that

negative and positive BOLD effects spread over very large

distances along the visual cortex, suggesting that the neural and

vascular responses have good correspondence (see the NBR

discussion above). Even if the earlier estimates of BOLD point

spread at 3T gradient–echo sequence (3.9 mm, [71], see

however Grinvald, et al. [72] for similar neural point spread)
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would come from vascular spread alone, it would be less than

the BOLD spread in our study.

We used generic magnification factors in Schwartz formula

[47] with parameters a = 1, k = 17 in order to calculate average

distance across the cortex in millimeters. As we have a large

number of subjects (N= 15), it is unlikely that the generic

magnification factor would be significantly different from the

mean factor of our subjects. However, varying suppressive

interaction at different eccentricities in the multifocal localizer

may cause inaccurate voxel selection in some subjects.

Averaging across subjects, however, should diminish such errors.

Particularly, the spatial order of eccentricities is likely to be

preserved, but there might be shifts in the mean location

because of unequal suppressive interaction in the middle

compared with the innermost and outermost rings, 1u–2.3u
and 8.7u–12u respectively. Because the 1u–2.3u and 8.7u–12u
representations in our multifocal design may have been shifted

away from the 2.3u–4.0u to 6.1u–8.7u and not follow the exact

retinotopic position, we may be underestimating the cortical

distance between the representations of the rings. Thus, the

values reported in Table 2 should be considered as the lower

limits of the BOLD spread.

Attention affects BOLD responses and may create important

confounding factors for interpretation of the results [73]. In our

study attention was carefully controlled with a demanding letter

counting task, thus attentional effects should be a significant

confound in our fMRI results.

Conclusions
The CD model aims to predict contextual modulation

strength by assuming a robust sensory interaction phenomenon

which reflects efficient coding [25]. Efficient coding in the CD

model is achieved by decorrelation of overlapping activation

patterns. This idea is not new. Response equalization by

decorrelation was already reviewed by Barlow and Foldiak [26]

more than 20 years ago. Conceptually, our finding is related to

multivariate fMRI analysis, where information has been

retrieved from the voxel activation patterns ([74–76]). The

CD model suggests that information is not only represented

macroscopically, but also modulated to account for the

redundancy in large-scale activation patterns.

Our results show that strength of interaction between multiple

stimuli can be predicted from the correlation of the activation

patterns for the component stimuli, and thus this work is in line

with earlier suggestions of decorrelation in the visual cortex

[1,21]. In addition, we found that a similar mechanism operates

everywhere in the visual cortex. The interaction is supported by

the brain’s connectivity, where synaptic activation and subse-

quent modulation can appear far from the maximum neural

response. Future studies should combine physiological models

and current data to find out how decorrelation is implemented

at the neural level.

Supporting Information

Figure S1 Fitting a 3rd order polynomial (a–d) and linear (e–h)

functions to correlation between C and S vectors versus average

dM, (See Fig. 6). First data for 14 subjects was included for fitting,

and one subject was left out. Then the procedure was repeated for

all the subjects (dashed gray lines (a–d) and light blue lines (e–h)).

The left and right columns show results for the near and far

surround conditions, respectively. The voxels were selected at

PFWE ,0.01. The black solid lines indicate the prediction (dT) from

the CD model and the green (a–d) and red (e–h) solid lines indicate

the group median of the 15 individual fitted functions (dashed gray

lines (a–d) and light blue lines (e–h)).

(TIF)

Figure S2 The individual error between model and data at

different eccentricities subtracted from error for all visual areas

(VOIAVA). a–e) for ESN (see Fig. 7 legend for details). In each VOI,

the data is restricted to a resampled subset of voxels to make the

errors comparable. f–j) Same for ESF. The error bars show the

standard error of mean across all active voxels.

(TIF)

Figure S3 Same as Fig. S2 but for different functional areas. a–f)

ESN g–l) ESF.

(TIF)

Table S1 Significance of BOLD signals spread and the

suppressive and facilitative interactions for the Subject 3 (data

points in Figure 2).‘‘+’’ sign means significantly positive (sign test,

p,0.05) and ‘‘–’’ sign means significantly negative (p,0.05) value.

The test was conducted across voxels in each VOI.

(DOCX)

Table S2 As in Table S1, but for the group analysis (data points

in Figure 3). The test was conducted across subjects.

(DOCX)
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