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Hemangioma is a vascular tumor of infancy that is well-known for its rapid growth during
the first weeks to months of a child’s life followed by a spontaneous but slow involution.
During the proliferative phase, the vessels are disorganized and composed of immature
endothelial cells but are not leaky 1, perhaps due to the abundance of α-smooth muscle actin
(α-SMA)-positive perivascular that circumscribe the vessels (Figure 1). When the tumor
involutes, the vessels mature and enlarge but are reduced in number. Fat, fibroblasts and
connective tissue replace the vascular tissue, with few large feeding and draining vessels
evident.

Both angiogenesis 2 and vasculogenesis 3 have been proposed as mechanisms contributing
to the neovascularization in hemangioma tumors. Angiogenesis is defined as the growth of
new vessels from pre-existing vessels, requiring degradation of the basement membrane,
migration of endothelial cells and tubulogenesis, followed by recruitment of perivascular
cells. Vasculogenesis is the de novo formation of blood vessels from stem or progenitor
cells. In recent years, several of the “building blocks”, the cells comprising the hemangioma,
have been isolated. Among them are hemangioma progenitor/stem cells (HemSC),
endothelial cells (HemEC) and pericytes (HemPericytes). This review will focus on these
cell types, as well as molecular pathways within these cells that have been implicated in
driving the pathogenesis of IH.

Cellular Components of IH
Stem Cells

The concept that IH arises from a dysregulated differentiation of embryonic cells has been
considered for several decades4–6. Further, Smoller and Apfelberg speculated that primitive
cells within interstitial regions of the tumor are capable of differentiating into endothelial
cells and pericytes7. In 2008, our group isolated a primitive mesenchymal cell with these
properties from proliferating phase IH 8 using anti-CD133-coated magnetic beads (CD133 is
a cell surface membrane glycoprotein expressed on many types of human stem and
progenitor cells.) The CD133+ cells are rare, comprising between 0.1–1% of the cells in
proliferating phase IH. We call the CD133-selected cells hemangioma stem cells (HemSC)
based on their ability to self-renew and undergo multi-lineage differentiation, two essential
properties of stem cells. When implanted sub-cutaneously into immune-deficient (nude)
mice, the HemSC form GLUT1+ vessels (a specific marker of IH) within 7–14 days. Using
Green Fluorescent Protein (GFP)-labeled HemSC we showed that the cells differentiate into
endothelium, adipocytes 8 and into pericytes9 in mice and in culture dishes. Two other
groups have isolated HemSC using similar techniques and have reported similar
vasculogenic properties1011. Others have found evidence for primitive mesodermal cells in
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IH 12–14. That HemSC form vessels de novo strongly implicates vasculogenesis as an
important mechanism underlying hemangioma-genesis15.

Endothelial Cells
In the proliferative phase of hemangioma, the vessels are small with lumens that are
sometimes difficult to see by histology. The endothelium is plump and appears
metabolically active, suggesting an immature phenotype 16. North and colleagues showed
that glucose transporter-1 (GLUT1) is consistently expressed on hemangioma endothelium,
and indeed provides a definitive immunohistochemical test for distinguishing IH from other
types of vascular tumors and vascular malformations17 Beginning in 1982 18 Mulliken and
colleagues showed that hemangioma-derived endothelial cells (HemEC) proliferate readily
in the culture dish and form capillary-like tubes – a phenomenon called “in vitro
angiogenesis” 19. Subsequent in vitro studies revealed that HemEC resemble fetal
endothelial cells more than neonatal endothelial cells20. The HemEC and fetal endothelial
cells displayed a spindle-shaped morphology and the endothelial adhesion molecule CD31/
PECAM-1 was detected on intracellular membranes, suggesting it had not reach the cell
surface, where it resides in mature endothelium. Boye and colleagues provided evidence that
HemEC are clonal, suggesting they arise from a common precursor21. The contribution of
HemEC to the total non-hematapoietic (CD45-) cell population in proliferating phase
hemangioma ranges from 24% when VEGFR-2/KDR is used to quantify endothelial cells 22

and up to 30% when a cocktail of antibodies against endothelial markers (CD31, VE-
cadherin, CD34 and VEGFR-2) are used to quantify the endothelial compartment (Lan
Huang, unpublished data). A small percentage (0.1–2%) of these endothelial cells co-
express the human stem cell marker CD133, suggesting that the endothelial cells may be
transitioning from an immature to mature phenotype22.

Pericytes
The perivascular cells surrounding the nascent vessels in the proliferative phase express the
pericyte markers α-SMA23, neural glial antigen-2 (NG2), platelet-derived growth factor
receptor-β (PDGFRβ), calponin, and smooth muscle myosin heavy chain9. NOTCH3,
typically associated with smooth muscle cells, is also detected in the perivascular layer24,
with colocalized expression of the NOTCH target gene HEYL15. Thus - the phenotype of
the perivascular cells in hemangioma is typical of both pericytes and smooth muscle cells.
They have also been shown to have characteristics of mesenchymal stem cells 25. For
simplicity, we will refer to the perivascular cells in infantile hemangioma as pericytes.

The pericytes are abundant in the proliferating phase and appear to undergo a maturation
process concurrently with the endothelial cells (Figure 1). Recently, pericytes were isolated
from proliferating phase (n=4) and involuting phase (n=4) IH specimens from different
patients26. In vitro, the hemangioma-derived pericytes were found to express all of the
markers detected in cells surrounding hemangioma vessels in histological sections(e.g.
NG-2, PDGFRβ, calponin, αSMA, NOTCH3), consistently over several in vitro passages.
When hemangioma pericytes were combined with endothelial cells and implanted in mice,
the cells assembled into vessels that connected with murine vessels within 7 days. When
compared to normal human pericytes isolated from retina or placenta, hemangioma pericytes
proliferated more rapidly, expressed more VEGF-A, but expressed reduced levels of
angiopoietin-1 (ANGPT1). In co-culture, hemangioma pericytes showed a reduced ability to
suppress the proliferation and migration of normal human endothelial cells. Taken together,
the increased VEGF-A, decreased ANGPT1, increased proliferation, increased vessel
formation in vivo, and decreased ability to suppress proliferation and migration of
endothelial cells indicates that hemangioma pericytes are pro-angiogenic 26.

Greenberger and Bischoff Page 2

Br J Dermatol. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2 depicts the key cellular features of HemSC, HemEC, and HemPericytes.

Mast cells
Mast cells are present in IH27,28. Their number predominates in the early to middle
involuting phase, whereas lower numbers are seen in the proliferative and the involuted
phases1. This difference has led to the hypothesis that mast cells play a role in the regression
of IH. However, little is known about these cells. Moreover, it has recently been
demonstrated that mast cells are present in comparable numbers in various skin tumors,
including basal cell carcinoma, squamous cell carcinoma, melanomas and nevi29.
Accordingly, the unique role of mast cells in IH requires further study.

Molecular Basis of IH
Genetics

In contrast to other vascular anomalies, in which a germline or somatic mutations have been
identified as a cause 30, the etiology of hemangioma of infancy still remains obscure. It is
likely that the origin of IH is multi-factorial, with genetic factors being part of the
contributing triggers. In most cases, IH are sporadic. However, autosomal dominant
inheritance pattern and a linkage to 5q have been reported in few families 3111. Recently, in
a study of large population database, a 2-fold increased relative risk for hemangiomas
among siblings of an affected proband has been shown, further supporting the hypothesis of
a genetic cause as a contributing factor32. Somatic mutations leading to uncontrolled
proliferation of hemangioma cells have been also proposed. In support of this theory, a
clonality of ECs from hemangioma lesions have been shown on a small set of IH, using an
X-chromosome inactivation assay21. Evidence for clonality was also found in cells from
hemangioma tissue sections, supporting the somatic mutation hypothesis33. Mutations in the
integrin-like receptor Tumor Endothelial Marker 8 (TEM8) and in VEGFR2 were identified
in a small subset of HemEC and corresponding blood sample from IH patients, using a
targeted candidate gene approach 34, identifying these as germline, potentially “risk-factor”
mutations, that may contribute to IH.

The existence of IH as part of syndromes such as PHACE (posterior fossa abnormalities,
infantile hemangioma, arterial abnormalities, cardiac anomalies, and eye colobomas) 35 or
SACRAL (spinal dysraphism, anogenital, cutaneous, renal and urologic anomalies,
associated with an angioma of lumbosacral localization) 36 also suggests a germline or
somatic mutation. No specific mutation was identified for these syndromes, however
genomic copy number variation (CNV) has been found in PHACE syndrome37.

VEGF and VEGF-receptors
Several signaling pathways have been linked with IH pathogenesis, with the VEGF
(Vascular endothelial growth factor A) pathway being the key one. VEGF-A is a master
regulator of angiogenesis and vasculogenesis38. It is present at higher levels in proliferating
phase compared to the involuting phase of IH 139404142 and its level in the serum of IH
patients is decreased following systemic steroid therapy 43. The high expression of VEGF
might be related to hypoxia, as increased hypoxia inducible factor-1α (HIF-1α) stabilization
was reported in patients with proliferating IH 40. We recently found that the corticosteroids
dramatically down-regulate VEGF-A secretion by hemangioma stem cells (HemSC).
Furthermore, silencing the expression of VEGF-A or VEGF receptor 1 (VEGFR-1) in
HemSC by short hairpin RNA (shRNA) was sufficient to block blood vessel formation in
vivo 4144. In contrast, HemEC express and secrete very little VEGF and these low levels are
not affected by corticosteroid treatment.
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VEGF-A binds to three tyrosine kinase receptors, VEGFR-1, VEGFR-2 and VEGFR-3.
VEGFR-2 appears to mediate almost all of the known angiogenic responses to VEGF-A. In
contrast, the function and signaling of VEGFR-1, which is present on endothelial and non-
endothelial cells, is less understood. VEGFR-1 is considered to be a VEGF-A trap, by virtue
of its high binding affinity for VEGF and its relatively low kinase activity45. HemEC46, as
well as hemangioma specimens47, express relatively low levels of VEGFR-1. This low
expression (i.e., fewer “VEGF traps”) results in increased VEGF-dependent activation of
VEGFR-2 and downstream signaling pathways. In summary, several lines of research point
to a critical role for VEGF and its receptors in the pathological vasculogenesis and
angiogenesis in IH.

Angiopoietins and TIE2
Angiopoietin-1 (ANGPT1) and angiopoietin-2 (ANGPT2) signal through the endothelial
membrane receptor TIE2 to regulate distinct steps in vascular remodeling, vessel maturation
and vascular inflammation 48,49 TIE2 mutations have been identified in inherited form of
venous malformation (VM) 50 and 50% of sporadic VM 51. Similar mutations were not
found in IH. However Tie2 mRNA and protein were shown to up-regulated in IH tissues and
in HemEC. In accordance, increase in cellular responsiveness to Ang1 was observed52. A
related study in a murine endothelioma tumor model has shown that blocking Ang2 function
with soluble Tie2 receptor or down-regulating Ang2 pharmacologically inhibited growth of
a tumor53. Calicchio and colleagues found ANGP2 mRNA significantly increased in
hemangioma endothelium isolated by laser capture micro-dissection 54. This, coupled with
the diminished expression of ANGPT1 by hemangioma pericytes, would be permissive for
angiogenesis and hinder vessel maturation. Still, confirmatory studies in animal models of
IH as well as mechanistic studies are needed to clearly define the role of angiopoietins and
TIE2 in the growth and involution of IH.

The Notch Pathway
The Notch pathway has also been implicated in hemangiogenesis. This evolutionarily
conserved signaling system regulates cell-fate determination during development and in
stem cells. In the vascular system, interaction of Notch receptors (Notch1 to Notch4) with
their ligands (Delta-like 1, Delta-like 3, Delta-like 4, Jagged-1and Jagged-2) regulates the
specification of endothelial cells into arterial and venous phenotypes during development 55.
JAGGED1 has been reported to be highly expressed in IH endothelium 2454 whereas its
receptor Notch3 is expressed by HemSC and becomes prominently expressed in the
perivascular cells in the involuting phase24. Also, we have recently shown that JAGGED1
directs the differentiation of the HemSC into the “endothelium-coating” cells, the
pericytes 56. Based on these observations, it is tempting to speculate that juxtacrine signaling
between hemangioma endothelial cells and pericytes is mediated by the Notch pathway.

The mTOR Pathway
Mammalian target of rapamycin complex (mTOR) is a major intersection that translates
signals from the extracellular milieu, such as glucose, amino acids and growth factors to
corresponding changes in basic intracellular processes including proliferation, protein
synthesis and autophagy 57. Rapamycin, an mTOR inhibitor, is known to have an anti-
angiogenic effect on ECs in pathological settings 5859 and has shown efficacy in the
treatment of complicated vascular malformations60. We found that rapamycin inhibits the
proliferation and the self-renewal activity of the HemSC. This inhibition, in turn, prevented
HemSCs, either alone or combined with endothelial cells, from forming blood vessels in
vivo 61. Beside its anti-vasculogenic effect on HemSC, rapamycin has anti-angiogenic effect
on the HemEC, suppressing their proliferation and leading to regression of pre-existing IH
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vessels. Rapamycin also decreases expression of HIF-1α, reducing already low levels of
VEGF-A in HemEC even further 62.

Other pathways
Various other factors have been found to be differentially expressed in the proliferating
phases of IH but their role is less defined. These include MCP-1 6342, IL-6 and uPAR 42 and
Insulin-like growth factor 2 (IGF-2) 64,65. The SKI oncogene, a transcriptional repressor that
inhibits expression of TGFβ family members, was found to be highly expressed in the
endothelium of proliferating phase IH, but was not detected in several vascular
malformation specimens 66, an intriguing suggestion that TGFβ signaling may be
suppressed in IH. The cell adhesion molecule E-selectin, normally only expressed in
inflamed endothelium, is strongly expressed on vessels in proliferating phase IH 67. E-
selectin is also constitutively expressed by proliferating phase HemEC and appears to
mediate interactions with HemSC 68.

The Renin-Angiotensin system has recently been suggested to play a role in IH pathogenesis
as well as in the response to propranolol 69. Specifically, it was suggested that angiotensin II
could drive proliferation of endothelial progenitor cells into mitotically active cells that
characterize IH. The hypothesis was based on the clinical observation of a higher incidence
of IH in premature babies, female infants and infants of mixed European descent that have
been shown to have higher circulating renin activity compared to their age and sex-matched
controls 70. Indeed, angiotensin-converting enzyme and angiotensin II receptor-2 were
shown to be expressed in IH 69. However, support to this theory from in-vivo studies is
lacking. Also against this theory is the low renin activity found in IH patients 71 and the poor
effect of the ACE inhibitor captopril on IH 72.

Drug treatment of IH
Corticosteroids have been the first-line treatment for complicated IH for many years 7374. In
recent years, β-adrenergic receptor blockers have emerged as an effective and safe
pharmacological treatment of proliferating IH. We have recently published a detailed review
of these drugs’ mechanism of action 75. Here, we will focus on new findings regarding the
effect of these drugs on the constituent cells and the molecular pathways involved in IH.

Beta blockers
Propranolol, the most commonly used beta-blocker against IH, is an orthosteric antagonist
of both β1- and β2-adrenergic receptors. Despite its widespread use, since 2008,
propranolol’s mechanism of action remains uncertain. Expression of all three β-adrenergic
receptors have been shown in IH tumors 767778. By immunohistochemical analysis, the
expression of β2 receptor was located mainly to the endothelial cells 78. However, in-vitro
studies show expression of β1 adrenergic receptors in HemEC and β2 adrenergic receptors in
HemEC, Hem Pericytes and at low levels in HemSC (Lee, Greenberger and Bischoff,
unpublished data). As a rapid change in both the color and the consistency of the tumor is
sometimes noticed following the initiation of propranolol, it is reasonable that propranolol
exerts its effect via vasoconstriction of the high-flow blood vessels feeding the IH tumor. In
the skin, adrenaline-induced vasoconstriction has been shown to be increased by oral
propranolol 79. The target cells for this effect might be the tumor’s pericyte.

Additional mechanisms might be responsible for the slower, long-term effect of propranolol.
Among them is VEGF suppression. Noradrenaline has been shown to enhance VEGF-A
production by several cell types, both normal and cancerous 808182. These effects of the
catecholamines are mediated by the β1 and β2 adrenergic receptors and are blocked by
propranolol808183 82. In IH, Ji and his colleagues have recently shown that the Noradrenaline
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agonist isoprenaline increased HemECs proliferation via regulation of thee cell-cycle
proteins cyclin D1 and its associated kinases, CDK-4 and CDK-6. These effects were
reversed by β2-adrenergic receptor antagonists. Furthermore, isoprenaline increased the
expression of VEGF-A and the phosphorylation of VEGFR-2 in HemECs in a β-adrenergic
receptor- and extracellular-signal-regulated kinase (ERK) -dependent manner.

Additional pro-angiogenic effects of noradrenaline blocked by propranolol are up-regulation
of HIF-1α protein 82, matrix metalloproteinases (MMPs) 2 and 7 and 9 81,84,85 and IL-6 86.
However, these effects have not been studied in IH-derived cells or in IH animal models.
Several groups have demonstrated a direct pro-apoptotic or anti-migratory activity of
propranolol on HemEC. However, these effects were achieved in high concentrations of
propranolol that are not likely to be present in the tumor’s microenvironment87.

Corticosteroids
Corticosteroids affect the growth of IH by modifying the “pro-angiogenic” environment of
the tumor, mostly likely by suppressing the high levels of VEGF-A secreted by the HemSC.
By using IH animal model, we found that steroids lead to dose-dependent reduction in the
tumor’s vascularity. Corticosteroids, including dexamethasone, prednisone, prednisolone
and methylprednisolone dramatically down-regulate VEGF-A secretion by HemSC and this
suppression was sufficient to block blood vessel formation in vivo41. Several other pro-
angiogenic genes were modified as well by steroids. These include Monocyte chemotactic
protein-1 (MCP-1), Interleukin-6, matrix metalloproteinase-1 (MMP-1) and urokinase-type
plasminogen activator receptor (uPAR)41. These target genes have high expression level in
proliferating versus involuting IH tissue. The down-regulation of these pro-angiogenic
cytokines, including VEGF-A might be mediated by corticosteroids interference with
Nuclear factor κ-light-chain enhancer of activated B cells (NF-κB) activity 42.

Concluding Remarks
Substantial progress has been made on understanding the cells and molecular pathways that
are prominent in IH. There remain, however, several unsolved mysteries. What is the nature
and origin of the HemSC – is this normal post-natal vasculogenic stem cell perturbed by an
external stress or has it acquired a mutation that expands its proliferative and differentiative
capacity? Do HemSC arise in situ or do they come from a distant location such as the
placenta or bone marrow? Do the hemangioma stem cells, ECs or pericytes exert dominant
effects on surrounding vessels, subverting and/or increasing their angiogenic and
vasculogenic capability? And finally, what triggers involution? The answers to these
questions may help to devise therapies that can stop hemangioma growth in its tracks,
providing enormous relief and reassurance to patients and families. Such therapies might
consist of combinations of drugs given concurrently or perhaps sequentially to target cells
that are most active in the proliferating phase. Another goal would be to identify biomarkers
that would predict early in the proliferative phase which tumors should be treated and which
could be left untreated to follow the natural cycle of growth and involution.
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Figure 1.
α-Smooth muscle actin (α-SMA) highlights vessel maturation and regression during the life
cycle of IH. Paraffin-embedded sections from proliferating, involuting and involuted phase
IH were immunostained with anti-α-SMA, images taken at 40X.
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Figure 2.
Cellular Components of IH. Left panel shows a proliferative phase IH tumor section stained
for the human stem/progenitor cell marker CD133 (CD133+ cells, green; nuclei, stained
blue). Staining and image provided by Dr. Arnaud Picard. CD133+ cells are sparse and not
associated with well-formed luminal structures. Right panel shows IH tumor section double-
stained for the endothelial marker CD31 (red) and the smooth muscle marker calponin
(green). Nuclei are stained blue with DAPI. Lumens are lined with plump endothelial cells
surrounded by perivascular cells. Staining and image provided by Dr. Elisa Boscolo. The
schematic below depicts 1) the mesenchymal morphology of HemSC and 2) the interaction
between HemEC and HemPericytes and 3) cellular and molecular features of each cell type.
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