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Abstract
Existing methods for surface matching are limited by the trade-off between precision and
computational efficiency. Here we present an improved algorithm for dense vertex-to-vertex
correspondence that uses direct matching of features defined on a surface and improves it by using
spectral correspondence as a regularization. This algorithm has the speed of both feature matching
and spectral matching while exhibiting greatly improved precision (distance errors of 1.4%). The
method, FOCUSR, incorporates implicitly such additional features to calculate the correspondence
and relies on the smoothness of the lowest-frequency harmonics of a graph Laplacian to spatially
regularize the features. In its simplest form, FOCUSR is an improved spectral correspondence
method that nonrigidly deforms spectral embeddings. We provide here a full realization of spectral
correspondence where virtually any feature can be used as additional information using weights on
graph edges, but also on graph nodes and as extra embedded coordinates. As an example, the full
power of FOCUSR is demonstrated in a real case scenario with the challenging task of brain
surface matching across several individuals. Our results show that combining features and
regularizing them in a spectral embedding greatly improves the matching precision (to a sub-
millimeter level) while performing at much greater speed than existing methods.

Index Terms
Registration; Surface fitting; Spectral methods; Graph Theory

1 Introduction
Mesh correspondence is a key step in many applications of computer vision and whose
precision shape variability and on object and motion analysis. In the medical field, precision
is essential and a fast method enables investigations on large studies between organs or
individuals. The challenge of shape matching is to find the dense correspondences mapping
all points on one surface to their equivalent points on a second surface. This task becomes
particularly arduous when the matching involves highly convoluted surfaces or two surfaces
representing different poses of an articulated object. Early solutions [8] to this problem,
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aligning surface models, were limited to rigid transformations [47], or relied on fiducial
markers placed on the surfaces [5], [48]. Methods based on deformable surfaces [53], [30],
[72], [67] could find nonrigid transformations. Such iterative deformation of surfaces, using
minimal distorsion [10], is also an adequate strategy for matching partial data [14], even
with a change in topology [67], [63]. However, to keep these approaches tractable, prior
knowledge on the underlying deformation between surfaces [35], [9], or the use of control or
feature points [1], [61], [34], [52], [43], [64], is often required to restrain the search domain.
Rather than optimizing for a deformation, other approaches would directly solve for the
correspondence map [2], avoiding iterative deformations of the surfaces. Moreover, these
surfaces may be correlated with measurable features other than their explicit mesh geometry.
For example, the method used in FreeSurfer [25], a leading tool for brain surface
reconstruction and matching, uses geometric features such as cortical curvature and sulcal
depth (the depth in the cortical folding pattern) [38] to drive the warping of one brain
surface into another surface. However, despite its precision, FreeSurfer suffers from a
substantial computational burden, taking hours to compute a correspondence map between
typical brain surface models consisting of hundreds of thousands of vertices. Needless to
say, the incorporation of additional features is a convenient aspect for a matching algorithm.

A direct method of matching two surfaces based on features (e.g., the geometry of the
cerebral cortex in brain matching, or texture intensities for articulated object matching) is to
treat the available features as characteristic signatures which can be used to identify each
vertex within the surface mesh. With these signatures, a vertex on one surface could be
mapped to the vertex on a second surface which most closely resembles the same
characteristic features (e.g., by computing a Euclidean distance between the feature vectors).
This feature matching technique would have the merits of being fast (e.g., computable
within Voronoi cells) and flexible enough to allow any set of features to drive the matching.
Unfortunately, this feature matching technique would completely ignore the spatial
organization of the surface vertices and result in a highly non-smooth mapping between the
surfaces. Our approach to the matching problem seeks to preserve the speed and flexibility
of direct feature matching and address the problem of smooth mapping by using an
improved spectral correspondence as a regularization.

Spectral correspondence [19] utilizes a graph (mesh) spectrum, which is the set of Laplacian
eigenvalues and eigenvectors (illustrated on Fig. 1), to produce a vertex correspondence
between two graphs (meshes). The key utility of spectral correspondence in our context is to
provide a spatial regularization on the correspondence map. This regularization is enabled
by the fact that the low-frequency eigenvectors (those corresponding to small eigenvalues)
are spatially smooth, as they represent low-frequency harmonics [28]. Put differently, all
neighboring nodes will have a small change in the values of these harmonics, meaning that a
correspondence driven by these harmonics will map neighboring nodes to neighboring
locations in the range space. The value of the harmonics at each vertex are known as the
spectral coordinates of the vertex. At its core, our technique for spectral regularization is to
supplement the direct feature matching technique described above by extending the vertex
signature to additionally include the spectral coordinates of each vertex. Matching vertices
are revealed with similarities in such extended signatures. Fortunately, including the spectral
coordinates in our matching maintains the speed and flexibility of the simple technique. We
call our method FOCUSR for Feature Oriented Correspondence Using Spectral
Regularization.

Spectral methods have been used in many fields, such as in the segmentation and
registration of shapes in images [45], in the indexing of structures [57], or in the clustering
of data [54], [7], [6]. Their use in shape matching is often limited to hierarchical matching
(e.g., matchings of limbs in body models, or of large surface areas). Few medical
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applications of spectral methods exist and are targeted to brain studies in order to study the
geometrical patterns of the anatomical structures of the brain such as the cortical folds [42],
[46], [55], [56] and with the smoothing of cortical surfaces [3]. Spectral coordinates have
also been used directly for graph partitioning [17]. Umeyama [65] and later Scott and
Longuet-Higgins [50] pioneered the use of spectral methods for the correspondence
problem. Shapiro and Brady [51] compared ordered eigenvectors of a proximity matrix to
find correspondences. Their work served as a basis for future spectral correspondence
methods. Variants include the use of different proximity matrices using different kernels, the
use of the adjacency matrix, shock graphs [44], [58], different normalized Laplacian
matrices, or the use of Multi-Dimensional Scaling [49], [23], [68], [10], [11]. Closely related
are also methods based on the Heat Kernel [62], [43] which use multiscale descriptions of
intrinsic shape properties, or on other conformal maps, for instance, the Ricci flow [71]
(deforming the Riemannian metric underlying the original shape toward another conformal
metric) or the Wave Kernel Signature [4] (using mechanical properties as an intrinsic
metric). The blending of various conformal maps has also been shown to improve matching
accuracy [34]. Learning of local shape descriptors may also be an alternative strategy [16].
Recent surveys covering the use of spectral methods in the past fifteen years are available in
[66], [73]. Mateus et al. [40] proposed an original unsupervised spectral method with an
alternative to eigenvalue ordering based on eigenvector histograms and refining the
eigenvectors alignment with a probabilistic point matching within the framework of the EM
algorithm [15]. Jain and Zhang [33] approach the eigenvector alignment problem with a
nonrigid deformation based on Thin Plate Splines.

Spectral correspondence has presented several difficulties that act as a barrier to its
widespread adoption. Specifically, when computing the eigenvectors for two surfaces, the
signs of the eigenvectors need to be aligned (the eigenvectors are ambiguous to sign), the
eigenvectors sometimes require reordering (due to near algebraic multiplicity of the
eigenvalues causing ordering changes of the spectral coordinates). Additionally, spectral
matching methods typically start with a rigid alignment of the eigenvectors to account for
translation and scaling of the spectral coordinates. Small variations however exist in the
spectral coordinates (due to non perfect shape isometry, e.g., local expansion and
compression within meshes). There is therefore a need for robust nonrigid point
correspondence between spectral coordinates. Furthermore, the use of vertex features has
not been fully realized in previous work on spectral correspondence, which have
incorporated these features only to produce edge weights (measuring changes between
neighboring features) rather than as node weights (using the features themselves). We
address and improve all these aspects of spectral correspondence while additionally using
the spectral coordinates to provide a smooth regularization of the simple feature matching
technique. This work makes several contributions to dense surface matching:

• Extending simple surface feature matching with spectral regularization. The
integration of spectral components in extended signatures alongside feature
characteristics provides a natural means of regularization (i.e., matching extended
signatures reveal matching vertices).

• Nonrigid alignment of the multidimensional embeddings (i.e., of the extended
signatures, rather than only the spectral coordinates).

• The weighting of nodes in the graph Laplacian, which controls the influence of
each node during correspondence.

• A global approach to handle automatically the sign ambiguity and the
rearrangement of the graph Laplacian eigenvectors.
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After detailing FOCUSR in the next section, we show in controlled experiments that it
outperforms both direct feature matching and conventional spectral correspondence. Firstly,
we demonstrate that nonrigid alignment of the spectral coordinates improves the direct
matching method. We also show that FOCUSR can be used as a general method for mesh
matching by benchmarking our method on generic meshes of animals or humans in various
poses, faces having different expressions, and on the widely used TOSCA dataset. The
computed correspondence maps have in fact a negligible error from ground truth. Secondly,
we show the full power of FOCUSR with the use of additional features and assess its
precision with the challenging task of brain surface matching. Indeed, while the sulcal and
gyral folding pattern of the human cerebral cortex are somewhat stable across individuals,
some geometric variability does exist [32], making the direct use of the folding geometry
unsuitable for surface matching. This application to the problem of brain matching provides
a platform for FOCUSR where the use of additional features available in the brain data—
such as cortical Gaussian curvature, sulcal depth, and cortical thickness—can improve the
matching precision. We show that FOCUSR produces results in a fraction of the time
required by FreeSurfer while maintaining the same level of precision. We believe that this
large gain in processing speed would make possible new brain studies that were previously
limited by computational burden, or, more generally, studies on meshes that wish to use
nonstandard features for driving the correspondence.

2 Methods
We begin our exposition of FOCUSR by detailing a simple technique for feature matching
that does not preserve smoothness of the mapping between surfaces (Fig. 2a). We then
describe how spectral coordinates can be used to regularize feature matching. We re-
examine and improve each step in the spectral correspondence process to overcome previous
limitations with spectral correspondence. The algorithm is summarized in Fig. 3. Code
implementation in Matlab is available at http://step.polymtl.ca/~rv101/focusr.

2.1 Direct feature matching to provide vertex correspondence
Assume that we have two graphs,  = { , } and  = { , } (with vertices and edges)
such that a correspondence φ: vi ∈  → vj ∈  is desired. Note that we do not require that |

| = | | or | | = | | (i.e., meshes can have different sizes and structures). Consequently,
there is no guarantee that the mapping is one-to-one and may not be invertible. We will use
the terms node, vertex and point interchangeably to describe a member of  or . Given a
set of K features Xi at every node vi ∈ , and a set of K features Yj at every node vj ∈ ,
our goal is to use these features to produce a correspondence φ.

A direct feature matching approach to producing this correspondence would be to set

(1)

which could be computed quickly by precomputing a Voronoi tessellation of the range
space. Unfortunately, this simple technique has several inadequacies. Specifically, the
technique based on the Voronoi tesselation does not properly account for global changes in
the feature space (e.g., due to a global scaling or translation), nor does it utilize the
neighborhood structure provided by the edge sets in any way (i.e., there is no spatial
regularity to the mapping in the sense that neighbors in the domain are unlikely to remain
neighbors in the range).

Global changes in the feature space can be accounted for by using a more sophisticated point
correspondence than what is described in Eq. (1). Robust Point Matching [18] with a Thin

Lombaert et al. Page 4

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://step.polymtl.ca/~rv101/focusr


Plate Spline-based transformation is often used for 2D or 3D registration. However, with
this approach the final registration depends on the number and choice of the control points.
A more recent approach to the point correspondence problem is the Coherent Point Drift
(CPD) method [41] which is fast and demonstrates excellent performance. To summarize
this method, the registration is treated as a Maximum Likelihood problem where Gaussian
Mixture Model centroids are fit into a point set. There is no assumption on the global
transformation between point sets. Instead, the evolution of the transformation is constrained
with a motion coherence [41]. The CPD algorithm offers the possibility to perform matching
on a subset of the points (for increased speed) while computing the transformation in the
continuous domain (i.e., the continuous transformation, found with only a subsample of 
and , can be applied on all points of  and thus find a dense matching between  and ).
Furthermore, each feature (i.e., each coordinate of Xi or Yj) can be weighted in order to
accentuate or reduce its influence.

Although CPD provides a method to account for global transformation in the feature space
between the two graphs, it is still necessary to incorporate spatial regularity into the mapping
such that neighboring points in  map to neighboring points in . Note that a strict
neighbor-to-neighbor mapping is only possible when the two graphs are isomorphic. Since
we target a more general scenario, we want to account for neighborhood relationships by
promoting a correspondence that maps nearby nodes in  (based on ) to nearby nodes in 
(based on ). Our strategy for promoting spatial regularization is to supplement Xi and Yj
with the spectral coordinates at nodes vi and vj before applying the CPD point
correspondence. The values of the spectral coordinates over a few sample surfaces are
illustrated on Fig. 1. The fundamental difference between the use of X and Y as general
feature vectors (illustrated with 3D coordinates (x, y, z)) and as spectral coordinates is
demonstrated in Fig. 2b. The low-frequency spectral coordinates are dependent on the
geometry of the surface, and these coordinates are effectively more stable across articulated
shapes or highly deformable shapes, i.e., normalizing these shapes in a same referential.
Additionally, they are known to be spatially smooth (see below) in accordance with the low-
frequency harmonics of an elastic surface [28]. In the next section we will review spectral
coordinates, and demonstrate improvements to traditional methods for solving some of the
difficulties associated with comparing spectral coordinates from two graphs.

2.2 Spectral Coordinates
We may define the |  | × |  | adjacency matrix W of a graph in terms of affinity weights
(see [28]), which are derived from a given distance metric dist(i, j) between two neighboring
vertices (vi, vj). The elements of the weighted adjacency matrix are given by

(2)

The matrix W provides a weighting on the graph edges derived from the given distance
metric. The distance may be derived from the geometry via the vertex coordinates x = (x, y,
z)T embedded in space (e.g., dist(i, j) = ||xi−xj||, the distance between nodes vi and vj), from
feature vectors (e.g., dist(i, j) = ||Fi −Fj||, where F = (f(1),…, f(K))T for K features), or both.
The more general edge weighting between vertices vi and vj uses the ℓ2 norm between
extended vectors:

(3)
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where (x, γF) is the concatenation of the 3D coordinate values x = (x, y, z)T with the K
feature values F = (f(1),…, f(K))T. The K × K diagonal matrix γ contains the K weights
controlling the influence of each feature. To compensate for the different scalings of the
feature values, each feature vector f(k) is normalized with respect to the range of the 3D
coordinate values x (i.e., feature values are normalized such that min(f(k)) = min(x) and
max(f(k)) = max(x)).

The general Laplacian operator on a graph was formulated in [28] as a | | × | | matrix with
the form:

(4)

where D, the degree matrix, is a diagonal matrix defined as Dii = Σj Wij, and G is the
diagonal matrix of node weights. Typically in spectral correspondence G is set to identity G
= I, or to G = D. However, we propose here to replace the default assignment G = D with
any meaningful node weighting. In particular, we propose to use a function of feature
magnitudes to establish the (positive-valued) node weighting based on the assumption that
nodes with significant features are of more interest to match precisely (i.e., nodes with large
weight have a greater influence on the spectral correspondence than low-weight nodes). For
example, if half of the nodes in a graph had a large weight and the other half had a small
weight, the Laplacian eigenvectors would closely resemble the eigenvectors of the large-
weight subgraph. The diagonal of matrix G contains the general node weights for each
vertex vi:

(5)

where di is the node degree (i.e., Dii), γ is the previously mentioned feature weights, and ρ(·)
is a function that enforces positive values (e.g., ρ(f) = f2 or ρ(f) = exp(f)). The denominator
in Eq. (5) contains the sum of the influ-ences of each feature on vertex vi. We used ρ(f ) =
exp (f ) to promote correspondence between nodes having the largest feature components
(which we assume indicate greatest significance).

The right eigenvectors of the Laplacian matrix comprise the graph spectrum  = (x(1), x(2),
…, x(n))T, where n = | | is the number of nodes. The values over surfaces for the five
lowest frequency eigenvectors are shown on Fig. 1, and illustrates the stability of these
eigenvectors between articulated or highly deformable shapes. Each eigenvector1 x(u) is a
column matrix with n values, and represents a different (weighted) harmonic on a mesh
surface that corresponds to an inherent property of the mesh geometry. This is in comparison
with extrinsic properties such as the spatial location of points (i.e., point coordinates vary

when the model takes a different pose). The n values ( ) give the spectral
coordinates of node vi (i.e., a coordinate in a spectral domain). The first eigenvector x(1) is
the trivial (uniform) eigenvector, and the eigenvectors associated with the lower non-zero
eigenvalues (e.g., x(2), x(3)) represent coarse (i.e., low-frequency) intrinsic geometric
properties of the shape. The first of them x(2) is called the Fiedler vector [19], while
eigenvectors associated with higher eigenvalues (e.g., x(n−1), x(n)) represent fine (high-
frequency) geometric properties. For example, in Fig. 1, the values of x(2) increase along a
virtual centerline depicting the global shape of the models (a coarse intrinsic property),
while the values of x(5) depict finer details of the models.

1In our notation x represents the 3D coordinate in space (i.e., x, y, z), and the superscripted x(i) represents the ith spectral coordinate
(i.e., the ith eigenvector of the graph Laplacian).
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To illustrate why spectral coordinates corresponding to small eigenvalues transition
smoothly and slowly across neighboring nodes, consider the Rayleigh quotient

(6)

The minimum value of λ is the smallest eigenvalue for L. If the minimization of λ over x is
conducted in the space orthogonal to the eigenvector corresponding to the smallest
eigenvalue, then the minimum λ is the second smallest eigenvalue (the Fiedler value, in our
case). Put differently, all of the eigenvectors corresponding to the smallest eigenvalues have
small values of the Rayleigh quotient in Eq. (6). Examining the numerator of Eq. (6), we see
that neighboring nodes must have a small change in the spectral coordinate (eigenvector) x
in order for the corresponding eigenvalue to be small. However, a small edge weight
indicates that the change in x across that edge may be large while still maintaining a small
numerator (and therefore a small eigenvalue). Consequently, the edge weights act to enforce
a smoother change between similar neighbors, but the spatial regularization is more relaxed
for mapping neighboring points which are dissimilar. Examining the denominator of Eq. (6),
we see that large node weights have the effect of reducing the influence of the node in the
denominator, effectively pushing the node to take a value that minimizes the numerator (i.e.,
the average of its neighbors). By pushing the node to minimize the numerator, the large node
weight effectively promotes maximal smoothness in the spectral coordinates at that node.

Consequently, we use the node features to enforce more spatial regularity between similar
neighboring nodes (large edge weight) and to enforce more spatial regularity at
unremarkable nodes (nodes with small feature magnitude and small node weight).
Ultimately, this use of the node features to promote variable spatial regularization is
designed to enforce a stronger correspondence between key nodes (nodes with large feature
magnitude) and to enforce stronger spatial regularity between key nodes. In this manner, the
key nodes (which are similar in the two meshes) are matched strongly, while the remaining
nodes are matched to promote maximal spatial regularity.

2.3 Spectrum Ordering
Each node is represented with M ≪ | | spectral coordinates associated with the M smallest
(non-trivial) eigenvalues, i.e., the embedded representations for meshes X and Y are  =
(x(2),…, x(M+1))T and  = (y(2),…, y(M+1))T. Unfortunately, the spectral coordinates of the
two meshes may not be directly comparable as a result of two phenomena. First, there exists
a sign ambiguity when computing eigenvectors, i.e., if Ax = λx (the spectral decomposition
of A) then A(−x) = λ (−x), which requires checking that each corresponding eigenvector in
the two meshes has the same sign. Additionally, as a result of greater algebraic multiplicity
of an eigenvalue, it may be possible that the ordering of the lowest eigenvectors will change,
e.g., if two eigenvectors correspond to the same eigenvalue in both meshes, then the solver
may compute these eigenvectors in one order for the first mesh and in the opposite order for
the second mesh. A graph with an eigenvalue having algebraic multiplicity greater than one
indicates symmetry in the mesh. For large meshes, symmetries (and near symmetries) is a
common problem and the eigenvectors must be reordered.

Our approach to the eigenvector reordering is to favor pairs of eigenvectors that are most
likely to match based on the similarity of their eigenvalues, histograms, and spatial
distributions of their spectral coordinate values. The costs of pairing the uth eigenvectors,
x(u), of mesh X with the vth eigenvectors, y(v), of mesh Y are gathered in a M × M
dissimilarity matrix C. It consists of three terms:
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The first term penalizes pairs of eigenvectors whose eigen-values are far distant, cλ (u, v) =
exp (−(λ(u) − λ (v))2/2σ2 with a kernel width σ that depends on the average eigen-gap

. The second term chist(u, v) favors pairing of eigenvectors that have
similar histograms of spectral coordinate values. To ease comparison, spectral coordinates
are normalized to the range [0, 1]. Pairing based on histograms is also used in [40], however,
we found that using a logarithmic scale produces the best results (it minimizes the effect of
over represented spectral coordinates values, such as those close to zero), such as in chist(u,
v) = | log (hist(u)) − log (hist(v)) |. The third term verifies the spatial coherence of the
spectral coordinate values between two meshes. To speed up the reordering, all eigenvectors
are subsampled by randomly selecting a subset of N < | | nodes (we used 500 nodes or
about 0.4% of the vertices in our experiments). The pairs of closest points within these
subsampled points determine the correspondence map μ (i.e., vertex vi ∈ , on the first
mesh, is closest to point vj=μ(i) ∈ , on the second mesh). Then, we simply compute for all
corresponding points (vi ∈  → vj=μ(i) ∈ ) the squared difference between the coordinate

values  and  and .

The Hungarian algorithm may be used to find an optimal permutation of eigenvectors y(v)

that minimizes dissimilarity. In the same step we can remove the sign ambiguity by
calculating the minimal dissimilarity between all x(u) and y(v), as well as between all x(u) and
−y(v). The cost matrix used in the Hungarian algorithm is thus Q(u, v) = min{C(u, v), C(u,
−v)}. After permutation π, any eigenvector x(u) corresponds with y(π (u)), and its permutation
cost Q(u) is stored for use in the spectral alignment.

To keep the notation simple, in the next sections we assume that the spectral coordinates
have been appropriately reordered and signed (i.e.,  and  will simply be denoted as 
and  such that x(u), on the first mesh, corresponds with y(u), on the second mesh).

2.4 Nonrigid Spectral Alignment
Once the reordering and sign adjustment of the eigenvectors have taken place, finding the
closest points in the spectral domain between embeddings  and  generates a smooth
correspondence map (Fig. 2). However, these embedded representations contain slight
differences, mostly due to perturbations of the shape isometries such as small changes in
distances where the surface undergoes local expansion or compression between meshes. As
illustrated on Fig. 4, nonrigid differences in the spectral embeddings become even more
severe in highly convoluted surfaces such as brain cortices. Spectral representations need to
be nonrigidly aligned.

Closest points in these nonrigidly aligned embedded representations would reveal
corresponding points in both shapes (i.e., in the M-dimensional space (the spectral domain),

if the point vi ∈  with coordinates , is the closest point to vj ∈  with coordinates

, then vi corresponds to vj). It is at this point where Eq. (1) is extended by combining the

spectral coordinates,  and , with the feature vectors,  for nodes in

model X, and  for nodes in model Y, to enable spatial regularization in
the correspondence map. The extended vectors of Eq. (1) becomes:
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(7)

(8)

where cx and cy are M ×M diagonal matrices that contain weights influencing each spectral
coordinate, and β is a K × K diagonal matrix containing the weights for each feature (to
emphasize or reflect confidence). Each feature is initially scaled, as in Eq. (3), to fit the
values of the Fiedler vector, x(2) (i.e., min(f(k)) = min(x(2)) and max(f(k)) = max(x(2))). The
weights c of the spectral coordinates takes into account the smoothness of an eigenvector
(measured by its eigenvalue λ(u)) and the confidence in the reordering (measured by the
permutation cost Q(u)). Specifically, the weight, c(u), of the uth spectral coordinate is:

(9)

where σ is a normalization factor set to

(10)

The alignment of these embeddings can be viewed as a nonrigid registration, X = φ(Y). Fig.
4 shows the alignment challenge where the first three spectral components (x(2), x(3), x(4))
are used as 3D (x, y, z) coordinates for visualization purposes. The Robust Point Matching
[18] with a Thin Plate Spline-based transformation is often used for 2D or 3D registration.
However, with this approach, the final registration depends on the number and choice of the
control points. We apply the recent Coherent Point Drift method [41] which is scalable to N
dimensions, fast, and demonstrates excellent performance in this application.

To increase speed in FOCUSR, we take advantage of the property of the Coherent Point
Drift method that a continuous transformation derived from a subset of the points can be
applied to all nodes of the dense embeddings. In our case, we subsample X and Y by taking
randomly a few points (in our experiments we chose 1% of the total number of vertices,
roughly 1000 points).

2.5 Final Diffusion
After alignment, both embedded representations can be directly compared (X = φ (Y)), i.e.
two points which are closest in the embedded representations could be treated as
corresponding points in both meshes. However, the mapping is not guaranteed to be smooth,
even after the CPD alignment. The spectral regularization promotes smoothness of the
correspondence map, but it is possible to have irregularities in the smoothness when the
features differ significantly between the two meshes. The resulting embeddings warped with
the CPD, in the K + M multidimensional space, can contain local spatial incoherence in the
correspondence map (as illustrated on Fig. 5a). Consequently, we include a postprocessing
step to enforce additional smoothness of the correspondence map.

The correspondences obtained after CPD are used to map the second mesh vertices (target
point y in Fig. 5a) to the first mesh vertices (fixed points x in Fig. 5a). The 3D coordinates
of these mapped points on the second mesh are now treated as independent scalars and
diffused on the surface of the first mesh (i.e., this moves the points of the second mesh to
positions obeying the (smooth) neighborhood system of the first mesh as illustrated with
points H(y) in Fig. 5b). We used the smoothing method in [20] which is similar to the
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Laplacian smoothing, while other methods could also be used for this step. At this stage, the
points x on the first mesh can be associated with either the smoothed coordinates H(y) on
the second mesh (i.e., vertices of the first mesh could be matched to coordinates in between
the vertices of the second mesh), or with actual points on the second mesh. In our
applications, we matched nodes to nodes, so the latter strategy is chosen. The
correspondence map linking the first mesh to the second mesh is therefore updated by
linking each point in the first mesh with the point in the second mesh which has the
minimum Euclidean distance to the diffused geometric coordinates (shown with the new
map in Fig. 5c). In our experiments, 40 iterations were sufficient to diffuse the point
coordinates. The fourth step in Fig. 3 shows a few corresponding points between two brain
surfaces.

3 Results
To demonstrate the effectiveness of FOCUSR, we first match a variety of generic meshes in
a controlled experiment (3 sequences of 50 and 10 frames of models in various poses,
totaling the computation of 160 matchings, all with a known ground truth) and show that the
use of a nonrigid alignment of spectral coordinates improves precision over a simple direct
spectral matching method. In a second experiment, we evaluate FOCUSR on an established
benchmark dataset and show that our method tracks the accuracy of the state-of-the-art with
a simpler approach. We chose the high resolution TOSCA shapes [13] (totaling 80 objects
with up to 50,000 vertices) since it has been tested on a variety of mesh matching methods
[12], [34]. In a last experiment, we show the benefits of using FOCUSR in a real medical
application, namely to brain surface matching where precision is crucial and where
additional features are known to be meaningful to surface alignment. We do so by
processing and analyzing the correspondence of 264 pairs of brain surfaces (each with up to
178,000 vertices) using 15 different combinations of features (totaling the computation of
3,960 correspondence maps). This neuroimaging application reveals the full power of
FOCUSR where the introduction of additional features significantly improves shape
matching.

3.1 Benefits of Spectral Alignment
We first begin our validation by showing that FOCUSR can find efficiently and precisely a
dense correspondence between generic meshes. We use the data from [61] (available
publicly2) where animal models have been deformed in various poses. These meshes were
created in [61] by transferring the deformation of a sequence of source meshes to target
reference meshes. We use in the dataset the sequence of a galloping animal for a horse
(8,431 vertices, 50 frames), an elephant (21,887 vertices, 50 frames), and a camel (42,321
vertices, 50 frames), all illustrated on Fig. 6. We want to recover the deformations and
assess the precision of the correspondences between all models in a sequence and the
reference model. For each gallop animation, the same mesh is deformed, and all vertices
across the sequence maintain a direct one-toone correspondence with the reference mesh
(i.e., node i of any mesh in the animation corresponds with node i (the same index value i) in
the reference mesh). This gives a ground truth for the correspondence maps in all animations
(i.e., φ (i) = i) on which we can compare our method.

We quantify precision by measuring the average distance between the locations of
corresponding points found with FOCUSR and with the ground truth. That is, for all points
vi ∈  in the first mesh matching the points vφ (i) ∈  in the second mesh, the mean

2Meshes available at http://people.csail.mit.edu/sumner/research/deftransfer
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distance error is the average of the distances, , between the real locations
of the corresponding points, xi, and their recovered locations on the second mesh, xφ (i). For
each gallop animation, we computed the correspondence maps of the meshes of all frames
with the reference mesh. Fig. 7 shows the average relative distance error for all sequences
when finding the closest points in space, in the spectral domain, and when using FOCUSR
in its simplest setting (i.e, K = 0 in Eq. (8)). Mismatches due to nonrigid deformations (e.g.,
articulated limbs of the galloping animals) are the most severe when matching in the spatial
domain, while these errors are attenuated when matching occurs in the spectral domain
(about a 60% increase in precision). FOCUSR improves precision over the simple spectral
matching by about 50%.

The relative average distance error in FOCUSR with its standard deviation (expressed in
percentage of the size of a mesh) is for the whole horse gallop animation: 1.41%(±0.57%)
with an average computation time of 44 seconds, for the camel gallop: 1.42% (± 0.65%) in
79 seconds, and for the elephant gallop: 0.95% (± 0.54%) in 98 seconds (timing were
performed on a 2.8 GHz Intel Pentium 4 using unoptimized Matlab code). We additionally
ran the same experiment on an animation of changing facial expressions (15,941 vertices, 10
expressions) and found a relative average error of 0.47% (± 0.26%) with on average 40
seconds of computation. All these errors remain relatively small with corresponding points
found at more or less 1% of the size of the mesh from their true locations (e.g., for a mesh of
100 mm, an error of 1% is a mismatch of 1 mm). Additionally, five points of interest were
tracked along each animation (between the ears, the tail tip, right rear and front paw, and on
the sternum of the animals; and the right ear, left upper eyelid, nose tip, lower lip, and chin
of the head).

By applying a nonrigid alignment of spectral coordinates, FOCUSR exhibits an improved
level of precision (of about 1.4% error) even in the absence of using additional features.
Higher errors often occurs in areas of high non-rigid deformation, such as skin stretching
(e.g., the side of the horse undergoing expansion and compression while galloping). One
might also argue that displaced areas are not necessarily errors (e.g., the skin could move
freely over a body by a few centimeters when galloping).

3.2 Benchmarking on Nonrigid Meshes
We now pursue our evaluation on a benchmark dataset that presents a broader variety of non
rigid deformations. The high resolution TOSCA dataset [13] consists of 3 humanoids in
various poses (Michael in 20 poses, each with 52,565 vertices; David, 7 poses with 52,565
vertices; Victoria, 12 poses, 45,659 vertices), a centaur (6 poses, 15,768 vertices), a cat (11
poses, 27,894 vertices), a dog (9 poses, 25,290 vertices), a horse (8 poses, 19,248 vertices)
and a wolf (3 poses, 4,344 vertices). Meshes within the same class have again the same
triangulation with vertices numbered in a compatible way, thus establishing a ground truth
for correspondence maps (i.e., φ (i) = i). We quantify precision in a similar fashion to the
previous experiment, that is by measuring the displacement of correspondences from their
ground truth positions.

We first ran our experiment by matching all models against their respective reference using
the direct spectral matching approach used earlier (i.e., finding pairs of closest points in the
spectral domain). The relative distance error from ground truth (expressed in percentage of
the mesh size, with standard deviation) is on average 3.27%(±2.59%), or within each
dataset, for Michael: 4.06%(±2.87%), for the centaur: 3.91%(±3.07%), for David: 3.57%
(±2.70%), for the cat: 2.53%(±2.26%), for the dog: 3.74%(±3.00%), for the horse: 2.71%
(±2.39%), for Victoria: 2.26%(±2.05%), and for the wolf: 2.21%(±2.21%).
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We then matched all models using FOCUSR in its simplest setting (i.e., K = 0 in Eq. (8)) in
order to benchmark its general performance (without exploiting additional information) with
respect to the direct matching of spectral embeddings as well as with the state-of-the-art.
One example of matching is illustrated on Fig. 8 and the results for all pairs of matching are
reported in Fig. 9 where the average correspondence error within each class is shown on
each respective reference model (larger models on the left). The relative distance error from
ground truth (expressed in percentage of the mesh size, with standard deviation) is on
average 1.46%(±1.43%), or within each dataset, for Michael: 1.51%(±1.58%), for the
centaur: 1.96%(±1.78%), for David: 1.27%(±1.28%), for the cat: 1.42%(±1.09%), for the
dog: 1.17%(±1.54%), for the horse: 1.57%(±1.56%), for Victoria: 1.22%(±1.16%), and for
the wolf: 2.27%(±1.86%). Most errors look to appear on thighs, where again, ambiguity
remains when there is a slight change in isometry (e.g., how to handle the relative motion of
the skin over the body). The increase in accuracy between the performances of the direct
spectral matching and FOCUSR (a 55% improvement) illustrates the benefits of using a
nonrigid alignment of spectral embeddings in spectral matching approaches.

For comparison purposes, we computed the geodesic distances from all corresponding
points to their ground truth using the code provided by [34] and compared the results of
FOCUSR with those reported in [34] for several methods, namely the Möbius Voting [36],
the Generalized Multidimensional Scaling (GMDS) [10], and the Heat Kernel Maps method
(HKM) [43]. FOCUSR produces an average geodesic distance error of 0.0470 which is
significantly lower than the error produced by the Möbius Voting (0.0985), GMDS (0.3085)
and HKM (0.2287). Details for each dataset are summarized in Table 1 and the cumulative
distributions of the geodesic distance error are shown in Fig. 10. It is interesting to note that
the Blended Intrinsic Maps method [34] produces the best results, however, it relies on
multiple conformal maps that are blended together in order to establish correspondences. In
this experiment, we evaluate the accuracy attained by FOCUSR with simple spectral
coordinates, however, its accuracy may possibly increase with the use of various blended
conformal maps.

Furthermore, from the results reported in [12], FOCUSR appears to perform at higher
accuracy than other conventional spectral methods such as [21], [22] (whose geodesic
distance error is reported at 8.77 in the isometry test). It is, however, hard to assess the
differences with other spectral methods, in particular with [40], yet our first controlled
experiment showed that the nonrigid alignment of spectral components does improve the
matching accuracy, whereas current state-of-the-art spectral methods, such as [40], currently
rely on a simplistic rigid alignment. FOCUSR may therefore demonstrate further accuracy
than conventional spectral methods due to its nonrigid spectral alignment.

3.3 Brain Surface Matching
We now show an application where FOCUSR demonstrates a significant improvement over
typically used methods. Brain surface matching is an important topic for neuroimaging
studies that requires the alignment of anatomical landmarks or functional activation across a
population. Specifically, cognitive function can only be studied across individuals when
correspondence is made from one individual to another between activation areas of the
brains. The brain morphology offers the particularity that every individual has a unique
folding pattern in time, many large-scale similarities exist and allow correspondence
between brain surfaces. Moreover, matching brain surfaces allows us to test the ability of
FOCUSR to use extra features, such as the sulcal depth, the cortical Gaussian curvature, and
the cortical thickness, that can potentially improve the precision of the correspondence
beyond conventional spectral correspondence. We utilize the two features used by the
FreeSurfer algorithm to drive alignment, which are the sulcal depth [25] at each point {s1,
s2,…, sn} (as calculated by FreeSurfer), and the surface curvature at each point, {κ1, κ2,…,
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κn}. FreeSurfer outputs the mean curvature of a mesh, but in practice our method generated
slightly better results when using the Gaussian curvature estimated with the method
described in [60]. We thus chose to test the Gaussian curvature in our feature combinations
in order to avoid exploding the number of feature combinations in our experiments. In
addition, FreeSurfer also supplies gray matter cortical thickness (calculated from anatomical
MRI image data [24]) at each point, {t1, t2, …, tn}, which we can additionally test as a
feature to drive the alignment with FOCUSR.

To demonstrate the flexibility of FOCUSR to handle different features, different
combinations of these three additional features were used in our experiment. Additionally,
we independently examine the effects of using the features to define only edge weights (in
Eq. (3)), only node weights (in Eq. (5)), or only as coordinates for matching (in Eq. (8)).

3.3.1 Synthetic deformations—We begin with a synthetic experiment which is
designed to demonstrate that FOCUSR profits from meaningful features to produce a precise
alignment. In this experiment, we synthetically deform a brain surface such that two of the
features are preserved and one feature is distorted. FOCUSR is shown to perform better
when the meaningful (preserved) features are included and worse when the noise feature is
included. For our experiment, we match one brain hemisphere with a deformed version of
itself. The vertex indexing remains the same in the deformed version. Similarly as the last
experiment, the true matching is thus known (i.e., φ (i) = i). We severely deform one cortical
surface model, where for each point (x, y, z), we apply the transformation z′ = (1 + α)z, i.e.,
a compression in the z-axis controlled by parameter α (we used α = 0.3), and the
transformation x′ = x + βr2/ max(r2) with r2 = x2 + y2, i.e., a radial distortion controlled by
parameter β (we used β = 15). This simulates a deformation due to a drastic change in the
head shape. The deformation however preserves the same mesh topology as it does not
introduce any discontinuities or intersecting faces. Fig. 11 illustrates the position of the
original hemisphere with the blue dots and the deformed hemisphere with the colored mesh.
The sulcal depth and the cortical thickness are the same in both cortical meshes. The
Gaussian curvature has been recomputed in the deformed mesh with the method described in
[60]. Therefore two of the features (sulcal depth and cortical thickness) are meaningful
under this distortion and one feature (Gaussian curvature) is a distracting noise feature. The
goal of this experiment is to verify if the use of additional meaningful features helps the
matching precision and to measure its improvement.

If we use the simple feature-only correspondence, the error is on average across all
hemispheres 53.02 mm due to the fact that the correspondence map has virtually no
mechanism to promote smoothness. When FOCUSR is used with only spectral components
with no features (e.g., K = 0 and M = 5), we find for all hemispheres an average error
distance of 0.38 mm as shown in the first error map of Fig. 11. Most errors appear to be
located on the sulci extrema. By using FOCUSR to drive feature correspondence with
spectral regularization, the error drops to 0.07 mm.

In FOCUSR, the surface features affect the correspondence by using the features as
coordinates in the point matching, and/or, by using the features to set edge weights, and/or
by using the features to set node weights. Now we demonstrate that the greatest precision for
FO-CUSR is obtained by using the features in these three ways instead of just one or two of
these ways. Specifically, we iterate through all of the 512 possible combinations (23×3).
Table 2 summarizes a few combinations. We tested FOCUSR using both sulcal depth and
Gaussian curvature as additional features. The average error distance across all hemispheres
is in this case 0.14 mm. Adding the sulcal depth as the only additional feature yields an error
of 0.13 mm; adding only the cortex Gaussian curvature yields an error of 0.50 mm; and the
cortical thickness yields an error of 0.29 mm. The best combination of features for FOCUSR
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was obtained when using sulcal depth and cortical thickness as additional coordinates and on
graph nodes, and using cortical thickness on graph edges, yielding an error of 0.07 mm. It is
expected that FOCUSR should perform best with these features, since they were not
changed by the synthetic deformation, but the Gaussian curvature was. The error map on a
single hemisphere is shown on Fig. 11. The best-performing combination of features
demonstrates an almost perfect matching for FOCUSR.

This experiment shows that by incorporating meaningful features FOCUSR can indeed
improve the matching precision. The weighting functions used here also differs slightly from
the one used in [39] which used the exponentials of the additional features. This experiment
confirms that using stable features between two cortices (i.e., the same sulcal depth and
cortical thickness) improves the cortex matching precision.

3.3.2 Performance Evaluation on Real Data—Cortical surface matching is a
challenging problem due to the wide variability in gyral morphology and topology between
individuals. There is no ground truth available for perfect brain surface matching across
individuals. However, FreeSurfer [25] has been demonstrated to provide highly precise
cortical matchings that closely align cortical areas across subjects [32] and therefore
provides a reliable surrogate for our comparison. The delineations of 81 sulcal regions are
available for 24 hemispheres (12 subjects). These sulcal regions were obtained using an
automatic parcellation of the cortex [26] and are considered as our gold standard. Although
parcellations of the cortex into named sulci and gyri are not excepted to align between
subjects in all cases (except for the primary folds), they do provide means to compare the
two methods. We use correspondence maps generated by FreeSurfer and FO-CUSR to
project the parcellation areas onto different brain hemispheres and measure their overlap
(illustrated on Fig. 12). To process a mesh of 135,000 vertices, FreeSurfer has a varying
processing time which is currently on the order of several hours, while the time required by
FOCUSR is on the order of 3–4 minutes. To process all our 264 possible pairs of left and
right brain hemispheres, FOCUSR required on average 208 seconds (on a 2.8 GHz Intel
Pentium 4 using unoptimized Matlab code). With reduced meshes of 20,000 vertices,
FOCUSR performed in 19 seconds. The primary computational burden of the algorithm is
the final diffusion of the correspondence map. This final step requires the smoothing of the
matched mesh, which currently takes 84 seconds on average in Matlab. The total time to
perform all our 264 correspondences using FOCUSR was 14 hours on a single computer, a
substantial advantage compared to the several weeks required by FreeSurfer. Each overlap
ratio is defined by the ratio of set intersection to set union. Fig. 13 shows the overlap ratios
for the twelve largest sulcal parcellations1 using FOCUSR and FreeSurfer. The results of
FOCUSR are correlated to FreeSurfer’s overlaps with a correlation coefficient of ρ = 0.897.

From Fig. 13, we can see that FOCUSR closely matches the performance of FreeSurfer
when using a similar feature set (sulcal depth and cortical curvature) to drive the
correspondence (71.16% overlap for FOCUSR versus 70.95% overlap for FreeSurfer). In
contrast, the pure feature matching or the use of FOCUSR with only spectral components
produces results with a much lower precision (effectively null at 0.48% overlap). We now
demonstrate that using features purely for edge or node weights (or purely as feature
coordinates) also produces suboptimal results.

3.3.3 Testing with multiple configurations—We first analyze the matching
performance using different configurations of the same features used by FreeSurfer, namely

1Sulcal regions: 9 (G frontal middle), 10 (G frontal middle), 18 (G occipit temp med Lingual part), 23 (G parietal inferior
Supramarginal part), 24 (G parietal superior), 26 (G precentral), 41 (Medial wall), 42 (Pole occipital), 45 (S central), 47 (S cingulate
Main part and Intracingulate), 59 (S intraparietal and Parietal transverse), 80 (S temporal superior).
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sulcal depth and cortical curvature. In a second step, to demonstrate the flexibility of
FOCUSR, we introduce a different feature not used by FreeSurfer and tested several
combinations of features to see whether any of these combinations performs better than
FreeSurfer. Additional features were incorporated in FOCUSR using Eq. (8), Eq. (3), and
Eq. (5), with γ = 1.2 and β = 0.2 (the description of the behavior of these parameters are
described in [39]). Overall, fifteen different combinations of additional features were used.
For each combination, we ran FOCUSR on the 132 pairs (n(n − 1) with n = 12 brains) of left
brain hemispheres and on the 132 pairs of right brain hemisphere (totaling 3,960 matchings,
264×15). The results are summarized in Table 3. In comparison, FreeSurfer performs with
an average overlap ratio for the largest parcels of 72.03%(±8.52%) in the left hemispheres
(the variation is the standard deviation of all overlap ratios), and 70.95%(±7.27%) in the
right hemispheres. Fig. 13 shows three relevant combinations.

• The first combination shown on Fig. 13 demonstrates the poor performance of the
direct feature matching method where FOCUSR uses no spectral coordinates as
described in Section 2.1 (i.e., M = 0, matching is a simple feature comparison using
sulcal depth and cortical Gaussian curvature (K = 2) as used in Eq. (1)). The
average overlap ratio on the largest parcels is effectively null at 0.38%(±0.19%) in
the left hemispheres (0.48%(±0.28%) in the right hemispheres).

• The second combination shows FOCUSR using no features and only spectral
components (K = 0 and M = 5). The average overlap ratio on the largest parcels is
only 55.11%(±10.73%) in the left hemispheres (55.18%(±9.09%) in the right
hemispheres).

• The third combination shows the full power of FO-CUSR where it uses spectral
components alongside sulcal depth and cortical curvature features, which are the
same features driving the correspondence in FreeSurfer. The overlap ratio is as high
as 71.18%(±7.63%) in the left hemispheres (71.11%(±5.98%) in the right
hemispheres). This is almost a perfect match with the overlap ratios in FreeSurfer
(72.03% in the left side, and 70.95% in the right side).

FOCUSR is, in the left and right cortices, equivalent with FreeSurfer’s overlap ratios
(71.18% vs. 72.03% in the left side, and 71.16% vs. 70.95% in the right side). It is important
to note that there is no perfect combination of features to drive the correspondence. Our
experiment shows that certain combinations perform better on particular parcels than on
others. The best combination of extra features thus depends on which sulcal region of the
brain should be matched. This finding concurs with a similar conclusion in [69].

3.3.4 Dependence on the number of spectral coordinates—In the previous section
we demonstrated that it is optimal to use features to derive edge weights, node weights and
as explicit feature coordinates. We now examine the dependence of the performance on the
number of eigenvectors used as spectral coordinates by running the previous experiment
with a varying number of eigenvectors. When no spectral regularization is used (i.e., direct
feature matching with M = 0 eigenvectors), the algorithm relies solely on feature
coordinates. As expected, the performance is weak. The plot in Fig. 14 shows, for the twelve
largest parcels, indeed a low overlap ratio of 0.38% in the left hemispheres (0.48% in the
right side) when using pure feature matching, sulcal depth and cortical Gaussian curvature,
with no spectral coordinates (i.e., M = 0). The performance improves quickly when
eigenvectors are used (i.e., M > 0) to spatially regularize the feature matching. These
spectral coordinates provide additional means of discrimination during the optimization of
the correspondence map. FOCUSR gains no further significant improvement in quality after
M > 3. Essentially, this result demonstrates that the primary purpose of the spectral
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coordinates is to provide a spatial regularization, which is achieved by using only the
lowest-frequency eigenvectors.

4 Discussion and Conclusions
This paper presents a novel method, based on spectral correspondence, for the challenging
task of precise surface matching. Current methods, most of which are iterative and control
local deformations of surfaces, are dependent on the extrinsic mesh geometry. They find
their limitations when matching articulated or highly deformable shapes. Isometric
deformations may be handled by using intrinsic metrics, however, this strategy often
requires more complex methods, such as GMDS [10], which finds the embedding with the
least distortion from one surface onto another (computationally expensive on meshes with >
4, 000 vertices), approaches based on Heat Kernels [62], [43], which use multiscale
geometric descriptors, or even other conformal maps [71]. We show in this paper that
FOCUSR greatly generalizes and improves spectral correspondence, making it suitable for
efficient and precise surface matching.

Additional information (e.g., texture, anatomical information, or landmark positions) can
help in establishing a better correspondence. For example, this is the strategy that FreeSurfer
[25] relies on to match brain surfaces. Spatial regularization becomes crucial in these
methods. It is clear from our experiments that direct feature matching, with no spatial
regularization (i.e., M = 0) exhibits very poor performance. We decided to improve this
strategy by using a spectral regularization of the feature matching method and to improve
spectral matching by using a nonrigid alignment. The space of regularization (i.e., the
spectral domain) is dependent on inherent properties of the mesh geometry. This modified
strategy would free our method from the limitations of matching articulated or highly
deformable shapes. Spectral methods provide a natural means of regularizing solutions at
speeds of several orders of magnitude faster than current methods and are independent of the
mesh extrinsic geometry. Our method can implicitly incorporate additional features to drive
precise correspondence and it exploits the smoothness of the lowest-frequency harmonics of
a graph Laplacian to regularize the correspondence map. Present day spectral
correspondence methods are not fully realized and provide matchings that are not yet
reaching a clinical level of precision. Currently, only intrinsic geometry can be embedded on
graph edges and no additional information can be used. We provide a full realization of
spectral correspondence where virtually any feature can be used as additional information as
weights in graph edges, but also on graph nodes and as extra embedded coordinates with
little or no computational expense. Furthermore, rigid transformations, or older point
matching methods based on Thin Plate Splines are used [33] and are difficult to extend
beyond 3D [59] to multidimensional feature space. Our approach is also not limited to genus
zero surfaces [29] and can be applied to surfaces with arbitrary topology.

In its simplest form, FOCUSR is an improved spectral correspondence method that utilizes
nonrigid point registration. We showed in our first experiment that a nonrigid alignment of
the spectral coordinates improves significantly (by about 50%) the matching precision over
a direct spectral matching. Its has been demonstrated with a variety of generic models
(animal and human models in various poses, varying facial expressions) that the error from a
known ground truth is minimal (with 1.4% relative distance error for our matched models).
FOCUSR also showed a greater accuracy on the TOSCA benchmark dataset than various
state-of-the-art surface matching methods (Möbius Voting [36], the GMDS [10], and the
Heat Kernel Maps method (HKM) [43]). The full power of FOCUSR is presented in a real-
world application with the challenging task of brain surface matching across several
individuals. We use FOCUSR with different combinations of additional features, such as
sucal depth, cortical Gaussian curvature, and cortical thickness, to improve the matching
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precision. The fast speed of our method allowed us to compute and analyze 3,960
correspondence maps (which is prohibitively expensive for FreeSurfer). When no
regularization is used (e.g., K = 2 features and M = 0 spectral components), the
correspondence generates a poor overlap ratio of 0.48% in the largest sulcal regions. When
FOCUSR is used in its simplest form with no additional feature (e.g., K = 0 features and M
= 5 spectral components), the overlap ratio is 55%. The performance of FOCUSR is
improved by using additional information (e.g., K = 2 features and M = 5 spectral
components), and the overlap ratio increases to a level above 71% (versus 55% when using
only spectral components). Our method is effectively equivalent to FreeSurfer’s level of
precision (which is also around 71%) when aligning sulcal regions. However, the vast
increase in speed (with a total processing time of 208 seconds on average for meshes of
135,000 vertices) and the added flexibility when using additional information gives new
perspectives to previously computationally prohibitive experiments. New features (e.g.,
anatomical or functional features extracted from various data sources) can be quickly tested
and evaluated to see if they improve cortex matching. Quick parameter sweeps can be
performed to isolate the best parameter value sets, or alternatively, statistical learning can be
used [16]. These computationally intensive experiments can help us to understand what
features are consistently correlated with brain areas across individuals and what their role
are during the development of the cortical folding pattern. FOCUSR may further improve
accuracy by using other conformal maps as suggested by [34]. Additionally, the
computational time could be significantly improved with a reimplementation in C++ and
with parallel programming for critical sections such as the eigendecomposition (e.g.,
LAPACK implementations on CUDA-enabled GPUs). Approximation methods for matrix
eigendecomposition such as the Nyström approximation [27], the Gaussian projection [31],
or the differentiable QR decomposition [6] could be used for additional speed up in
processing time.

Spectral regularization promotes the smoothness of the correspondence map, but does not
guarantee it. Better relaxation schemes, such as the Relaxation Labeling used in [74], might
improve the matching precision. It is also important to consider which weighting function to
use, for instance the cotangent weight has been shown to uniquely determine the discrete
Riemannian metric [70], and to see how generalizable the parameter values are with a larger
sample set. The use of different surface metrics [37] can be a promising area to investigate.

The algorithm, as with other spectral methods, is also not symmetric (i.e., ).
The CPD alignment does not guarantee symmetry of the resulting transformation (i.e., the
computed correspondence map matching nodes from mesh X to mesh Y might not be the
same as the inverse correspondence map matching nodes from mesh Y to mesh X). Our
method is also not tailored for matching partial data. However, FOCUSR may be used in
any iterative method that drives a surface deformation with or without occlusion. Further
improvement of the method will be toward achieving a better regularization and guarantee
symmetry of the correspondence map. Nevertheless, FOCUSR already presents several clear
advantages over present day methods for mesh correspondence and, in particular,
conventional spectral matching. It provides a fast and precise solution for general mesh
correspondence that can handle articulated or highly deformable surfaces, and creates a
method that can implicitly use any set of additional features to drive improved precision.

Acknowledgments
The authors would like to specially thank Bruce Fischl and Martin Reuter for their helpful comments, the
anonymous reviewers for their valuable comments and suggestions, Gareth Funka-Lea for supporting this project,
as well as the financial support from the Alexander Graham Bell Canada Graduate Scholarships of the Natural
Sciences and Engineering Research Council of Canada (NSERC).

Lombaert et al. Page 17

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



References
1. Allen B, Curless B, Popović Z. The space of human body shapes: reconstruction and

parameterization from range scans. SIGGRAPH. 2003:587–594.

2. Anguelov D, Srinivasan P, Pang H-C, Koller D. The correlated correspondence algorithm for
unsupervised registration of nonrigid surfaces. Advances in Neural Information Processing Systems
(NIPS). 2004:33–40.

3. Anqi Q, Bitouk D, Miller MI. Smooth functional and structural maps on the neocortex via
orthonormal bases of the Laplace-Beltrami operator. IEEE Transactions on Medical Imaging. 2006;
25(10):1296–1306. [PubMed: 17024833]

4. Aubry M, Schlickewei U, Cremers D. The wave kernel signature: A quantum mechanical approach
to shape analysis. IEEE International Conference on Computer Vision Workshops. 2011:1626–
1633.

5. Audette MA, Ferrie FP, Peters TM. An algorithmic overview of surface registration techniques for
medical imaging. Medical Image Analysis. 2000; 4(3):201–217. [PubMed: 11145309]

6. Bach F, Jordan MI. Learning spectral clustering. Advances in Neural Information Processing
Systems. 2004

7. Bengio Y, Paiement J-F, Vincent P, Delalleau O, Le Roux N, Ouimet M. Out-of-sample extensions
for LLE, isomap, MDS, eigen-maps, and spectral clustering. Advances in Neural Information
Processing Systems. 2004

8. Besl PJ. Geometric modeling and computer vision. Proceedings of the IEEE. 1988; 76(8):936–958.

9. Blanz V, Vetter T. A morphable model for the synthesis of 3D faces. SIGGRAPH. 1999:187–194.

10. Bronstein AM, Bronstein MI, Kimmel R. Generalized multidimensional scaling: a framework for
isometry-invariant partial surface matching. Proceedings of the National Academy of Sciences of
the United States of America. 2006; 103(5):1168–1172. [PubMed: 16432211]

11. Bronstein AM, Bronstein Ml, Kimmel R. Calculus of nonrigid surfaces for geometry and texture
manipulation. IEEE Transactions on Visualization and Computer Graphics. 2007; 13:902–913.
[PubMed: 17622675]

12. Bronstein AM, Bronstein MM, Castellani U, Dubrovina A, Guibas L, Horaud R, Kimmel R,
Knossow D, von Lavante E, Mateus D, Ovsjanikov M, Sharma A. SHREC: Robust
correspondence benchmark. Eurographics Workshop 3DOR. 2010

13. Bronstein, AM.; Bronstein, MM.; Kimmel, R. Numerical Geometry of Non-Rigid Shapes
(Monographs in Computer Science). 1. Springer; 2008.

14. Cagniart, C.; Boyer, E.; Ilic, S. Probabilistic deformable surface tracking from multiple videos.
European Conference on Computer vision; 2010. p. 326-339.

15. Carcassoni M, Hancock E. Spectral correspondence for point pattern matching. Pattern
Recognition. 2003; 36(1):193–204.

16. Castellani U, Cristani M, Murino V. Statistical 3D shape analysis by local generative descriptors.
IEEE Transactions on Pattern Analysis and Machine Intelligence. 2011; 33(12):2555–2560.

17. Chan, T.; Gilbert, J.; Teng, S-H. Technical Report PARC CSL-94-15. Xerox; 1995. Geometric
spectral partitioning.

18. Chui H. A new point matching algorithm for non-rigid registration. Computer Vision and Image
Understanding. 2003; 89:114–141.

19. Chung, F. Spectral Graph Theory. AMS; 1997.

20. Desbrun M, Meyer M, Schröder P, Barr AH. Implicit fairing of irregular meshes using diffusion
and curvature flow. SIGGRAPH. 1999:317–324.

21. Dubrovina A, Kimmel R. Matching shapes by eigendecomposition of the Laplace-Beltrami
operator. 3DPVT. 2010

22. Dubrovina A, Kimmel R. Approximately isometric shape correspondence by matching pointwise
spectral features and global geodesic structures. Advances in Adaptive Data Analysis. 2011:203–
228.

23. Elad A, Kimmel R. On bending invariant signatures for surfaces. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 2003; 25(10):1285–1295.

Lombaert et al. Page 18

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



24. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic
resonance images. Proceedings of the National Academy of Sciences of the United States of
America. 2000; 97(20):11050–5. [PubMed: 10984517]

25. Fischl B, Sereno MI, Tootell RB, Dale AM. High-resolution intersubject averaging and a
coordinate system for the cortical surface. Human Brain Mapping. 1999; 8(4):272–284. [PubMed:
10619420]

26. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, Busa E, Seidman LJ,
Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM. Automatically parcellating
the human cerebral cortex. Cerebral Cortex. 2004; 14(1):11–22. [PubMed: 14654453]

27. Fowlkes C, Belongie S, Chung F, Malik J. Spectral grouping using the nystrom method. IEEE
Transactions on Pattern Analysis and Machine Intelligence. 2004; 26(2):214–225. [PubMed:
15376896]

28. Grady, L.; Polimeni, JR. Discrete Calculus: Applied Analysis on Graphs for Computational
Science. Springer; 2010.

29. Gu X, Wang Y, Chan TF, Thompson PM, Yau ST. Genus zero surface conformal mapping and its
application to brain surface mapping. IEEE Transactions on Medical Imaging. 2004; 23(8):949–
958. [PubMed: 15338729]

30. Hahnel, D.; Thrun, S.; Burgard, W. An extension of the ICP algorithm for modeling nonrigid
objects with mobile robots. Proceedings of the International Joint Conference on Artificial
Intelligence; 2003. p. 915-920.

31. Halko N, Martinsson PG, Tropp JA. Finding structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions. SIAM. 2011; 53(2):217–288.

32. Hinds O, Rajendran N, Polimeni JR, Augustinack JC, Wiggins G, Wald LL, Rosas DH, Potthast A,
Schwartz EL, Fischl B. Accurate prediction of V1 location from cortical folds in a surface
coordinate system. Neuroimage. 2008; 39(4):1585–99. [PubMed: 18055222]

33. Jain, V.; Zhang, H. Robust 3D shape correspondence in the spectral domain. IEEE International
Conference on Shape Modeling and Applications; 2006. p. 19

34. Kim VG, Lipman Y, Funkhouser T. Blended intrinsic maps. SIGGRAPH. 2011

35. Lin, MH. Tracking articulated objects in real-time range image sequences. IEEE International
Conference on Computer Vision (ICCV); 1999. p. 648-653.

36. Lipman Y, Funkhouser T. Möbius voting for surface correspondence. SIGGRAPH. 2009

37. Liu RF, Zhang H, Shamir A, Cohen-Or D. A part-aware surface metric for shape analysis.
Eurographics. 2009; 28(2)

38. Lohmann G, von Cramon DY, Colchester AC. Deep sulcal landmarks provide an organizing
framework for human cortical folding. Cerebral Cortex. 2008; 18(6):1415–20. [PubMed:
17921455]

39. Lombaert H, Grady L, Polimeni JR, Cheriet F. Spectral correspodnence for brain matching.
Information Processing in Medical Imaging (IPMI). 2011; 22:660–673.

40. Mateus, D.; Horaud, R.; Knossow, D.; Cuzzolin, F.; Boyer, E. Articulated shape matching using
Laplacian eigenfunctions and unsupervised point registration. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR); 2008. p. 1-8.

41. Myronenko A, Song X. Point-set registration: Coherent point drift. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 2009; 32(12):2262–2275. [PubMed: 20975122]

42. Niethammer, M.; Reuter, M.; Wolter, FE.; Bouix, S.; Peinecke, N.; Koo, MS.; Shenton, M. Global
medical shape analysis using the Laplace-Beltrami spectrum. Proceedings of the International
Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI); 2007.
p. 850-857.

43. Ovsjanikov M, Mérigot Q, Mémoli F, Guibas L. One point isometric matching with the heat
kernel. Computer Graphics Forum. 2010; 29(5):1555–1564.

44. Pelillo M, Siddiqi K, Zucker SW. Matching hierarchical structures using association graphs. IEEE
Transactions on Pattern Analysis and Machine Intelligence. 1999; 21(11):1105–1120.

45. Reuter M. Hierarchical shape segmentation and registration via topological features of Laplace-
Beltrami eigenfunctions. International Journal of Computer Vision. 2009; 89(2):287–308.

Lombaert et al. Page 19

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



46. Reuter M, Wolter FE, Shenton M, Niethammer M. Laplace-Beltrami eigenvalues and topological
features of eigenfunctions for statistical shape analysis. Computer Aided Design. 2009; 41(10):
739–755. [PubMed: 20161035]

47. Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. Proceedings on International
Conference on 3-D Digital Imaging and Modeling; 2001. p. 145-152.

48. Schreiner J, Asirvatham A, Praun E, Hoppe H. Inter-surface mapping. SIGGRAPH. 2004:870–877.

49. Schwartz EL, Shaw A, Wolfson E. A numerical solution to the generalized mapmaker’s problem:
flattening nonconvex polyhedral surfaces. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 1989; 11(9):1005–1008.

50. Scott GL, Longuet-Higgins HC. An algorithm for associating the features of two images.
Proceedings of the Royal Society Biological Sciences. 1991; 244(1309):21–26. [PubMed:
1677192]

51. Shapiro LS, Brady JM. Feature-based correspondence: an eigenvector approach. Image and Vision
Computing. 1992; 10(5):283–288.

52. Sharma, A.; Horaud, R.; Cech, J.; Boyer, E. Topologically-robust 3D shape matching based on
diffusion geometry and seed growing. IEEE Conference on Computer Vision and Pattern
Recognition; 2011. p. 2481-2488.

53. Shelton CR. Morphable surface models. IEEE International Journal of Computer Vision. 2000;
38:75–91.

54. Shi J, Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence. 2000; 22(8):888–905.

55. Shi, Y.; Dinov, I.; Toga, AW. Cortical shape analysis in the Laplace-Beltrami feature space.
Proceedings of the International Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI); 2009. p. 208-215.

56. Shi, Y.; Sun, B.; Lai, R.; Dinov, I.; Toga, AW. Automated sulci identification via intrinsic
modeling of cortical anatomy. Proceedings of the International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI); 2010. p. 49-56.

57. Shokoufandeh A, Macrini D, Dickinson S, Siddiqi K, Zucker SW. Indexing hierarchical structures
using graph spectra. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2005;
27(7):1125–1140. [PubMed: 16013759]

58. Siddiqi K, Shokoufandeh A, Dickinson SJ, Zucker SW. Shock graphs and shape matching.
International Journal of Computer Vision. 1999; 35(1):13–32.

59. Sprengel R, Rohr K, Stiehl HS. Thin-plate spline approximation for image registration.
Engineering in Medicine and Biology Society. 1996; 3:1190–1191.

60. Steiner, DC.; Morvan, JM. Restricted Delaunay triangulations and normal cycle. Proceedings of
the Symposium on Computational Geometry; 2003. p. 312-321.

61. Sumner RW, Popović J. Deformation transfer for triangle meshes. SIGGRAPH. 2004:399–405.

62. Sun, J.; Ovsjanikov, M.; Guibas, L. A concise and provably informative multi-scale signature
based on heat diffusion. Symposium on Geometry Processing; 2009. p. 1383-1392.

63. Tevs, A.; Bokeloh, M.; Wand, M.; Schilling, A.; Seidel, HP. Isometric registration of ambiguous
and partial data. IEEE Conference on Computer Vision and Pattern Recognition; 2009. p.
1185-1192.

64. Tung, T.; Matsuyama, T. Dynamic surface matching by geodesic mapping for 3D animation
transfer. IEEE Conference on Computer Vision and Pattern Recognition; 2010. p. 1402-1409.

65. Umeyama S. An eigendecomposition approach to weighted graph matching problems. IEEE
Transactions on Pattern Analysis and Machine Intelligence. 1988; 10(5):695–703.

66. van Kaick O, Zhang H, Hamarneh G, Cohen-Or D. A survey on shape correspondence.
Eurographics. 2011; 30(6):1681–1707.

67. Varanasi, K.; Zaharescu, A.; Boyer, E.; Horaud, R. Temporal surface tracking using mesh
evolution. European Conference on Computer Vision; 2008. p. 30-43.

68. Wuhrer, S.; Shu, Chang; Bose, P. Posture invariant correspondence of triangular meshes in shape
space. IEEE International Conference on Computer Vision Workshops (ICCV Workshops); 2009.
p. 1574-1581.

Lombaert et al. Page 20

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



69. Yeo BTT, Sabuncu MR, Vercauteren T, Holt DJ, Amunts K, Zilles K, Golland P, Fischl B.
Learning task-optimal registration cost functions for localizing cytoarchitecture and function in the
cerebral cortex. IEEE Transactions on Medical Imaging. 2010; 29(7):1424–41. [PubMed:
20529736]

70. Zeng W, Guo R, Luo F, Gu X. Discrete heat kernel determines discrete riemannian metric.
Graphical Models. 2012; 74(4):121–129.

71. Zeng W, Samaras D, Gu D. Ricci flow for 3D shape analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 2010; 32(4):662–677. [PubMed: 20224122]

72. Zhang, H.; Sheffer, A.; Cohen Or, D.; Zhou, Q.; van Kaick, O.; Tagliasacchi, A. Deformation-
driven shape correspondence. Proceedings of the Symposium on Geometry Processing; 2008. p.
1431-1439.

73. Zhang H, Van Kaick O, Dyer R. Spectral mesh processing. Eurographics. 2010; 29(6):1865–1894.

74. Zheng Y, Doermann D. Robust point matching for nonrigid shapes by preserving local
neighborhood structures. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2006;
28(4):643–649. [PubMed: 16566512]

Biographies

Herve Lombaert earned the PhD degree in Computer Engineering from the École
Polytechnique de Montréal in 2012, in collaboration with Siemens Corporate Research
(Princeton) and IN-RIA Sophia Antipolis - Méditerranée (France), and the engineering
degree from the École Polytechnique de Montréal in 2003. He was a Research Associate at
Siemens Corporate Research between 2004 and 2005, and is currently a Postdoctoral Fellow
in the Centre for Intelligent Machine at McGill University. He is interested in finding
structures in images, understanding correspondences between images, and extracting 3D and
4D (3D+t) information from images, with applications in brain and cardiac imaging. He is a
member of the IEEE.

Leo Grady earned a BSc in Electrical Engineering at the University of Vermont in 1999 and
a PhD in the Cognitive and Neural Systems department at Boston University in 2003. From
2003–2012 he served as a Principal Research Scientist at Siemens Corporate Research and
since 2012 he has been the VP of R&D at HeartFlow, Inc. His research has included work
on image segmentation, graph theory, discrete calculus, optimization and PDEs, including
two books on applications of graph theory to computer vision. This research has been
applied primarily to problems in medical imaging, with a recent focus on cardiovascular
applications. He holds 28 granted patents, including winning the Thomas Edison Patent

Lombaert et al. Page 21

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Award for his contribution to image segmentation. He is a member of the IEEE and the
IEEE Computer Society.

Jonathan R. Polimeni is an Instructor in Radiology at Harvard Medical School and an
Assistant in Biomedical Engineering in the in the Department of Radiology of the
Massachusetts General Hospital. Dr. Polimeni received his B.S. in Electrical and Computer
Engineering from the Johns Hopkins University where he worked in the Sensory
Communication and Microsystems Laboratory under Prof. Andreas Andreou. He later
received his Ph.D. in Electrical and Computer Engineering from Boston University where he
worked in the Computational Neuroscience and Computer Vision Laboratory under Prof.
Eric Schwartz. His Ph.D. work was in the measurement and modeling of visuotopic maps in
macaque and human visual cortex. Dr. Polimeni’s postdoctoral training was under the
supervision of Prof. Lawrence L. Wald at the Athinoula A. Martinos Center for Biomedical
Imaging at the Massachusetts General Hospital and focused on technological development
for increasing the spatial resolution and accuracy of the functional measurements. He joined
the faculty of the Martinos Center in 2010. His research is currently focused on investigating
the functional architecture of the human cerebral cortex using high-resolution functional
MRI using 7 Tesla field strength scanners, and on characterizing and understanding the
biological limits on spatial specificity of the fMRI signals. He is a member of the IEEE.

Farida Cheriet received the B.Sc. degree in computer science from the University of
Science and Technology Houari Boumediene, Algiers, Algeria, in 1984, the D.E.A. degree
in the field of languages, algorithms, and programming from the University of Paris VI,
Paris, France, in 1986, and the Ph.D. degree in computer science from the University of
Montreal, Montreal, QC, Canada, in 1996. Since 1999, she has been with the Department of
Computer Engineering, École Polytechnique de Montreal, Montreal, where she is currently a
Full Professor. She is also with Sainte-Justine Hospital Research Center, Montreal. Her
research interests include 3-D reconstruction of bone structures from X-rays, calibration of
X-ray imaging systems, non-invasive 3-D modeling of scoliosis deformities, 3-D navigation
systems for minimally invasive surgery, 3-D reconstruction of vascular structures from
angiographic images, and 3-D motion estimation from spatiotemporal sequences. She is a
member of the IEEE.

Lombaert et al. Page 22

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Example of eigenmodes for pairs of animals and human brain surfaces. Each row shows the
first five spectral components of a model (eigenmodes of the associated graph Laplacian,
reordered and sign adjusted, so paired sets match). The color scale indicates the value of the
spectral coordinate over the surface.
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Fig. 2. Direct matching
(coloring indicates correspondence, and links and circles indicate matching of leg
extremities, crosses indicate ground truth) : (a) Finding closest points in space: this naive
correspondence map is computed by finding for each point of model X its closest point in
space of model Y (match X with Y ). As illustrated, this strategy is dependent on rigid and
nonrigid deformations and generates an inconsistent correspondence map. (b) Finding
closest points in the spectral domain: the correspondence map is computed by finding for
each point of model X its closest spectral equivalent in model Y (match  with  instead of
X with Y ). As illustrated, even though the meshes are not aligned in space (they are
translated), their spectral embeddings (red is , blue is , both use three eigenmodes for 3D
visualization) are almost perfectly superimposed. Spectral embeddings are much less
dependent on rigid and nonrigid deformations, and finding closest points in the spectral
domain generates a much better correspondence map (2.02% average error). FOCUSR in its
simplest setting : (c) Our method performs matching in the spectral domain (with lower
error over the surface) and improves the alignment of the spectral embeddings. Note that no
additional features are used here in FOCUSR.
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Fig. 3.
FOCUSR overview for matching a pair of surfaces. First, we build a graph out of each
surface mesh and set the graph edge weights and graph node weights to construct the
Laplacian matrix. The eigendecomposition of each graph’s Laplacian matrix reveals its
spectral components. Second, we reorder the spectral components by finding the optimal
permutation of components between the pair of meshes. Third, regularization is performed
by matching the spectral embeddings. Finally, corresponding points are found with closest
points in both spectral embeddings, and the final correspondence map is diffused.
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Fig. 4.
Nonrigid alignment of the two spectra corresponding to two brain surfaces. For visualization
purposes, the first three eigenvectors (x(2), x(3), and x(4)) are used as 3D coordinates (x, y, z).
Red and blue are the control points used to align both spectra. Initial spectra (a) before and
(b) after final alignment.
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Fig. 5.
Diffusion of the correspondence map: a) The closest corresponding points on the spectral
embedding might not necessarily be coherent spatially, consequently, b) their spatial
coordinates are smoothed using a mean filter within the neighborhood structure, this moves
the corresponding points to regularized positions (H(yφ(i))), and, c) the final correspondence
map is reset by finding the closest nodes to these regularized positions.
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Fig. 6.
Correspondences across animated sequences for 50 horses (average error of 1.41%
(±0.57%)), 50 camels (1.42%(±0.65%)), 50 elephants (0.95%(±0.54%)), and 10 facial
expression changes (0.47%(±0.26%)), for clarity, only a subset of each sequence is shown.
Corresponding points have a unique color ((r,g,b) components given by the first three
eigenmodes) and colored lines show five points tracked along the sequence for visualization
(blue circles show corresponding points found with FOCUSR, blue crosses show ground
truth).
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Fig. 7.
Average relative error distance from the ground truth in each animated sequence (in
percentage between 0% and 5%, e.g., if a mesh is 100 mm, 5% means an average error of 5
mm, the lower percentage the better). Three settings are used: a) Direct matching of closest
points on surfaces, b) direct matching of closest points on rigidly aligned spectral
embeddings, and c) matching using nonrigidly aligned spectral embeddings in FOCUSR.
While matching points in the spectral domain clearly improves correspondence, FOCUSR
gets additional precision by aligning the spectral embeddings. Note that no additional
features are used here in FOCUSR.
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Fig. 8.
Matching using FOCUSR on two models of the Michael dataset. Corresponding points have
a unique color ((r,g,b) components given by the first three eigenmodes). Red lines indicates
50 random correspondences.
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Fig. 9.
Correspondence error when using FOCUSR on the TOSCA benchmark dataset (distance
error color coded in percentage of the mesh size). The average error map within each class is
shown on the reference mesh (larger models on the left) while errors in matching each
individual model to the reference are shown on each right. FOCUSR demonstrates an
average correspondence error of 1.46% on the TOSCA dataset.
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Fig. 10.
Performance of various methods on TOSCA shapes. The x-axis depicts the geodesic
distance from the computed corresponding points to the ground truth, and the y-axis
indicates the percentage of correspondences having accuracy below the prescribed geodesic
distance. FOCUSR (our method) performs better on TOSCA shapes than the Möbius
Voting, GMDS, and Heat Kernel Maps. It is possible that the Blended Intrinsic Maps
method, which uses a collection of conformal maps, may benefit from using maps generated
with FOCUSR.
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Fig. 11.
Comparison with a synthetic ground truth using one brain hemisphere. (a): The deformed
mesh (colored with its Fielder vector) overlaid with the original vertex positions illustrated
by the blue dots. (b): When using simple feature matching (K = 2, M = 0), the mean distance
error with the ground truth is as expected very high, 53.11 mm. (c): When using FOCUSR
with only spectral components and no additional feature (K = 0, M = 5), the mean distance
error is 0.35 mm. (d): When using FOCUSR with both spectral components and additional
meaningful features (K = 2, M = 5), the mean distance error using this brain hemisphere is
0.06 mm. When iterating this experiment on all hemispheres, the mean distance error using
FOCUSR is 0.07 mm (Note that surfaces are smoothed in (b,c,d) after correspondence to
visualize the errors within the cortical foldings).

Lombaert et al. Page 33

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 12.
In green, good overlap of projected sulcal regions, in red, wrong projection outside the
sulcal regions, and in light blue, missed sulcal regions. (First brain) Correspondences
computed in 208 seconds on average using FOCUSR, while (second brain) FreeSurfer
required several hours (Note that in this visualization surfaces are smoothed to visualize the
correspondence within the cortical foldings).
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Fig. 13.
Average overlap ratios of the twelve largest sulcal regions on the right hemisphere over 264
matchings. (Dark blue) FOCUSR with features only, sulcal depth and cortical Gaussian
curvature (i.e., K = 2, M = 0): 0.48% ± 0.28% overlap. (Cyan) FOCUSR with spectral
components only (i.e., K = 0, M = 5): 55.18%±9.09% overlap. (Yellow) FOCUSR with
features (sulcal depth and cortical Gaussian curvature) and spectral components (i.e., K = 2,
M = 5): 71.11% ± 5.98% overlap. (Red) FreeSurfer’s overlap ratios (requiring weeks of
computations): 70.95% ± 7.27% overlap. FOCUSR only required 14 hours to perform all
264 matchings and is strongly correlated with FreeSurfer (correlation coefficient of ρ =
0.897). The error bars show the standard deviation of each overlap ratio.
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Fig. 14.
Robustness of FOCUSR to the number of eigenvectors used as spectral coordinates. When
no eigenvector is used (M = 0, i.e., direct feature matching), the correspondence is weak,
whereas the performance becomes stable after just three eigenvectors are included. The
performance is measured with the overlap ratios of sulcal regions as used previously.
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