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Abstract
Purpose—Optimal triage of patients at risk of critical illness requires accurate risk prediction,
yet little data exists on the performance criteria required of a potential biomarker to be clinically
useful.

Materials and Methods—We studied an adult cohort of non-arrest, non-trauma emergency
medical services encounters transported to a hospital from 2002–2006. We simulated hypothetical
biomarkers increasingly associated with critical illness during hospitalization, and determined the
biomarker strength and sample size necessary to improve risk classification beyond a best clinical
model.

Results—Of 57,647 encounters, 3,121 (5.4%) were hospitalized with critical illness and 54,526
(94.6%) without critical illness. The addition of a moderate strength biomarker (odds ratio=3.0 for
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critical illness) to a clinical model improved discrimination (c-statistic 0.85 vs. 0.8, p<0.01),
reclassification (net reclassification improvement=0.15, 95%CI: 0.13,0.18), and increased the
proportion of cases in the highest risk categoryby+8.6% (95%CI: 7.5,10.8%). Introducing
correlation between the biomarker and physiological variables in the clinical risk score did not
modify the results. Statistically significant changes in net reclassification required a sample size of
at least 1000 subjects.

Conclusions—Clinical models for triage of critical illness could be significantly improved by
incorporating biomarkers, yet, substantial sample sizes and biomarker strength may be required.
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INTRODUCTION
Over 4 million patients receive intensive care each year, and broad variation exists in critical
care delivery. As such, the Institute of Medicine and multiple critical care professional
societies called for a coordinated system of emergency and critical care. Similar to trauma
care, one approach to improve coordination is to identify and systematically triage highest-
risk patients to a higher level of care. This system of tiered regionalization could improve
survival of high-risk patients while reducing costs.

The first challenge to effective regionalization is the accurate identification of patients who
are most likely to benefit from triage to referral centers. Evidence suggests that emergency
medical services (EMS) personnel could play a key role as well as clinicians evaluating new
patients in the emergency department. Yet, critical illness risk prediction tools during
emergency care of non-trauma patients demonstrate imperfect discrimination, as they would
redistribute many patients without critical illness to regional centers while assigning high-
risk patients with critical illness to hospitals without critical care resources. Without better
tools, emergency care providers may inappropriately allocate thousands of low risk patients
to referral centers while still overlooking patients at greatest risk.

The complex diagnoses and overlapping mechanisms of disease leading to critical illness
among the non-injured are unlikely captured by clinical data alone. This fact is well
recognized in the hospital, where clinicians often combine biomarkers with clinical data to
improve assessments of risk and guide treatment. Now, as many biomarkers are measured
using point-of-care platforms, the potential to move biomarker measurement to the forefront
of emergency care - the prehospital phase - is close to reality. And yet, little empiric data
helps guide which biomarkers could be most helpful or how they may improve classification
beyond easily-measured clinical data. Nor has existing work employed state-of-the-art
methods to measure incremental benefit for candidate markers.

In this study, we determined how strongly associated with outcome a biomarker must be in
order to meaningfully improve classification of critical illness risk compared to clinical data
alone. We hypothesized that in-silico biomarkers that are strongly associated with critical
illness would provide incremental benefit over clinical data alone and that large studies
would be needed to definitively document their value.

MATERIALS &METHODS
Conceptual approach

We sought to determine the strength of a biomarker necessary to meaningfully impact
classification of emergency patients as high or low risk for critical illness. Emergency care

Seymour et al. Page 2

J Crit Care. Author manuscript; available in PMC 2014 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



personnel routinely combine physiological measurements (e.g. heart rate and blood
pressure) with diagnostic aids (such as electrocardiograms) to make these critical triage
decisions. In fact, physiologic measurements, diagnostic aids, or traditional blood tests could
all be considered “biomarkers” of critical illness. We based our approach on a conceptual
model where biomarkers could either improve triage accuracy by capturing otherwise
unmeasured differences in inflammation and organ function, or only marginally improve
triage accuracy if they are simply correlated with more easily measured clinical variables.
We chose to study a cohort of EMS records, as the clinical data available during prehospital
care is similar to initial, clinical exams for patients triaged at emergency department (ED)
arrival.

Study Design, Setting, and Patients
We studied a population-based cohort of all adult, non- cardiac arrest, non-trauma EMS
encounters in King County, Washington between 2002 and 2006. EMS records were linked
to hospital discharge data to determine patient outcomes using a hierarchical, deterministic
matching procedure. The details of cohort construction, data linking, quality assessments,
and data abstraction are previously described. We restricted our analysis to patients in the
validation cohort of the parent study (N=57,647) to reduce computational burden.

Primary outcomes and clinical variables
Our primary outcome was whether critical illness occurred anytime during hospitalization,
defined as the presence of severe sepsis, delivery of mechanical ventilation, or death
(heretofore referred to as “cases”). Hospitalizations without critical illness are termed
“controls.” The components of our primary outcome were derived from hospitalization data
including ICD-9-CM diagnosis and procedure codes, revenue codes, and discharge
disposition for all hospitalized EMS encounters. The dataset also contains detailed
demographics, incident characteristics, and initial prehospital vital signs.

Predicting critical illness risk with clinical data
For each EMS encounter, we calculated the predicted risk of critical illness using a
multivariable logistic regression model including eight clinical variables from our
previously published model: age, gender, heart rate, respiratory rate, systolic blood pressure,
Glasgow Coma Scale score, pulse oximetry, and prehospital location (i.e. nursing home
versus other location). We parameterized clinical variables as previously published in
clinically relevant categories. We then grouped the predicted risk of critical illness for each
EMS encounter using a priori categories: low (<0.05), intermediate (0.05–0.20), or high
(>0.20).

Simulation procedure
We imagined a suite of biomarkers, among which the association between biomarker(s) and
critical illness was variable. We began by informing the characteristics of these biomarkers
using whole blood lactate, a well-studied, prognostic marker in critical illness. We identified
the mean and standard deviation of lactate reported for patients with critical illness (4.0 ±
2.6) and without critical illness (2.5 ± 2.0 mmol/L) during emergency care. We used these
parameters to simulate log normal random variables for cases and controls, respectively. We
log-transformed all biomarker data and determined the unadjusted associations between the
biomarker and observed critical illness in logistic regression models. No lactate
measurements were prospectively collected in this dataset, and we used lactate
characteristics to build in silico biomarker distributions.
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We simulated many biomarker distributions (Additional File, Figure E1), each with an
increasing association with critical illness (e.g. odds ratio ranging from 1.5 to 6.0). These
odds ratios (OR) correspond to the increase in odds of critical illness for a one-unit change
in the natural log of the biomarker. We show a crosswalk of biomarker OR with individual
marker area under the receiver operating characteristic curve (AUCs) in the Additional File
(Table E1). Because biomarkers likely correlate with clinical variables in our triage model,
we also simulated biomarker data that correlated with initial prehospital systolic blood
pressure (ρ = −0.2, Additional File Figure E2). Further detail of the derivation and
assumptions of the biomarker distributions are provided in the Additional File:
Supplemental Methods.

Primary data analysis
We added each simulated biomarker to the clinical prediction variables and refit the model.
We assessed model performance in three ways: 1) overall discrimination and calibration, 2)
risk reclassification tables, and 3) changes in proportions of cases and controls classified to
the three risk categories.

First, we determined overall performance of models using the area under the receiver
operating characteristic curve (AUC). We calculated the integrated discrimination
improvement (IDI), an additional measure of the improved prediction performance gained
with the biomarker when added to a clinical model. If the biomarker improves prediction,
the IDI will be positive, while the IDI for a null biomarker is zero. Bootstrapped confidence
intervals for the IDI which do not include zero are considered significant evidence of
improvement in prediction. To assess calibration (model fit)we used a plot of observed vs.
expected risk of critical illness over deciles of model based risk values.

Second, we evaluated risk reclassification using 3 × 3 tables of patients grouped by their risk
for critical illness (low (<5%), intermediate (5–20%), high risk (>20%)). Risk
reclassification tables cross-classify patients according to their risks of critical illness
calculated according to the clinical model with and without inclusion of the biomarker. They
illustrate how patients’ risk-group changes when the biomarker is included in the clinical
model. Reclassification can be summarized using the net reclassification index (NRI),
calculated as the sum of the net proportion of cases reclassified to a higher risk category and
the net proportion of controls reclassified to a lower risk category. A marker that improves
classification will have a positive NRI, while the NRI for a null marker is zero. We calculate
the overall NRI, and for cases and controls separately. Reclassification can also be evaluated
on the continuous scale, which avoids defining a priori risk groups. We illustrate
individuals’ risk before and after addition of the biomarker(s) to the clinical model using
scatter plots, and summarize changes with the continuous NRI.

We repeated these steps using biomarker data that included moderate correlation between
the biomarker and systolic blood pressure. We also report results when using smaller cohorts
(N=500, 1,000, 2,000, and 10,000 subjects) in order to determine sample sizes necessary to
obtain statistical significance. We also tested how our results were sensitive to changes in
risk categories (alternative parameterization: <10%, 10–50%, >50%). Further detail of
performance and risk reclassification measures are provided in the online data supplement.
We report 95% confidence intervals using bootstrap with 1000 replications. Tests of
significance used a two-sided p-value with the comparison alpha error set at 0.05. The
Institutional Review Boards for the Washington State Department of Health, King County
Emergency Medical Services, and the University of Washington approved our study. A
waiver of informed consent and HIPAA authorization was granted for this study of existing
data. All analyses used STATA v11.0 (College Station, TX).
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RESULTS
Of 57,647 encounters, 3,121 (5.4%) were hospitalized with critical illness (cases) and
54,526 (94.6%) without critical illness (controls). The clinical risk model alone had
moderate discrimination between cases and controls (Table 1). When even weakest
biomarkers (OR=1.5) were added to the clinical model, we observed statistically significant
increases in area under the receiver operating characteristic curve (Figure 1) and integrated
discrimination improvement (Table 1). The model discrimination steadily increased when
we added stronger biomarkers, while model calibration was unchanged (Additional File,
Figure E3).

To determine how strong a biomarker would be to meaningfully reclassify patients, we
evaluated risk reclassification tables for cases and controls (example shown in Additional
File, Table E2). In general, stronger biomarkers (e.g. greater OR for critical illness)
increased the proportion of cases classified as higher risk, while controls were more likely to
be classified as lower risk (Figure 2). For example, a biomarker with OR=3.0 increased the
proportion of cases classified as high risk by 8.6% (95%CI: 7.5, 10.8%). The same
biomarker decreased the proportion of cases classified as low risk by 5.4% (95%CI: 4.1,
7.2%) and intermediate risk by 3.2% (95%CI: 1.1, 5.7%). Among controls, a biomarker of
OR=3.0 increased low risk classification by 1.0% (95%CI: 0.1, 2.3%) and reduced
intermediate risk classification by 1.5% (95%: 0.6, 2.5%). In the extreme case, the strongest
biomarker (OR=6.0) increased the proportion of cases deemed high risk by 20.7% (95%CI:
19, 22.9%), and increased the proportion of controls as classified as low risk by 4.4%
(95%CI: 3.4, 5.7%).

Taken together, we observed statistically significant NRI and NRI for cases when adding
markers with OR ≥1.5. Only markers with OR >3.5 had statistically significant NRI among
controls (Table 2). Reclassification on the continuous scale was significant even with weak
markers (OR=1.5, NRI=0.23, 95%CI: 0.19, 0.26), and improved with marker strength
(Figure 3).

When we evaluated our models in smaller cohorts, we found that the statistical significance
of the NRI was sensitive to sample size. For example, the overall NRI and NRI for cases
was only significant for weak biomarkers when sample size was large (N>10,000), while a
moderate biomarker (OR=3.0) required a sample size of at least 1000 subjects (Table 3). For
biomarker distributions correlated with systolic blood pressure, we observed no changes to
overall performance (Additional File, Table E3), reclassification (Additional File, Table E4),
and changes by risk category (Additional File, Figure E4). Finally, we observed that our
results were sensitive, in part, to the choice of risk thresholds. At higher risk cutoffs (<10%,
10–50%, >50%), we observed no change in overall reclassification or reclassification of
cases, but reclassification of controls was not significantly improved by biomarkers of any
strength (Additional file, Table E5).

DISCUSSION
We demonstrate that the addition of biomarkers could significantly improve clinical risk
stratification for critical illness during emergency care. Even weak biomarkers reclassified
cases at higher risk for critical illness, while only strong biomarkers could reclassify controls
as lower risk. We found that our results required large cohort sizes to attain significance, but
were robust to correlation between biomarkers and clinical predictors. These estimates
inform future design of risk prediction studies during emergency and critical care, and
highlight the need for combinations of biomarkers to significantly improve reclassification
beyond clinical data.
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Our simulations for critical illness risk prediction are broadly consistent with prior
investigations in cardiovascular disease, cancer,, and acute lung injury. In these studies,
biomarkers that are strongly associated with outcome often improve risk prediction. Though
not universally reported, we observed almost linear improvement in reclassification as
biomarker strength increased. However, our data uncovered differences in the incremental
benefit for patients with and without critical illness. For example, biomarkers with strong
associations with outcome (OR > 3.5) were required to move patients without critical illness
into lower risk categories, while patients with critical illness were successfully reclassified
as higher risk even with weakest markers (OR ≥ 1.5). This finding suggests that future
studies testing empirical measurement of biomarkers in the emergency setting may need to
study biomarker performance across different strata of baseline risk.

We created theoretical biomarkers that are generalizable to many existing markers in the
literature. Although some biomarkers like procalcitonin, C-reactive protein, cardiac
troponin, and multiple inflammatory cyto/chemokines have associations with patient
outcomes that approach our simulated data, many are not as strongly associated with
outcome. This may derive from negative bias resulting from absent or improper adjustment
for matching covariates in nested case control studies. More importantly, though, we submit
that odds ratio thresholds we study may be best reached using biomarker panels. Many such
panels are under preliminary study in emergency care settings. Meanwhile, the growth of
molecular phenotyping in critical illness has found multi-marker gene expression profiles
with discrimination more similar to our simulated data (Table E1). Because significant cost
and feasibility constraints limit biomarker selection when planning prospective studies, our
simulations provide a framework for biomarker selection when improvements in either
sensitivity or specificity are the desired goals.

Key to future studies of critical illness biomarkers will be adequate sample size. Our
estimates were derived using existing data in a cohort much larger than traditional
prospective studies. When we randomly sampled from this cohort, we observed that the
precision of reclassification estimates were highly sensitive to cohort size. We found that
cohorts exceeding 1000 subjects would be required even for studies of moderately strong
biomarkers (OR ≥3.0) to attain significant reclassification beyond clinical data. This recipe
assumes an outcome prevalence (~ 5%) and clinical model discrimination (AUC~ 0.8)
similar to our dataset. Such sample size constraints are achievable, especially in multicenter
and consortium studies of critical illness biomarkers.

Our study does not address practical limitations to using biomarkers in emergency critical
care, including feasibility of measurement, the challenge of implementing decision support
tools in austere clinical environments, or the broader limitations of coordinated critical
illness triage. Our study was designed to address the scientific role of hypothetical
biomarkers; future work should address their practical role. Second, we used a definition of
critical illness which captures high risk patients most likely to require intensive care, yet
may exclude some less acute patients admitted to the intensive care unit. Future validation
studies of critical illness triage with and without biomarkers will be strengthened using non-
administrative, generalizable definitions of critical illness. Third, we observed little impact
of correlation between the biomarker and one clinical variable, but our simulation did not
specify correlation coefficients between many variables (e.g. biomarker, heart rate, and
pulse oximetry). Finally, we acknowledge that alternative risk thresholds would modify our
reclassification analysis. We informed our thresholds using prior literature, and observed
significant reclassification when analyzing NRI on the continuous scale. Some results in
control reclassification were sensitive to our choice of risk threshold, and such category
thresholds require validation and consensus across future studies.
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CONCLUSIONS
In summary, clinical models for triage of critical illness could be significantly improved,
especially by incorporating biomarker measurements. When designing such empirical cohort
studies, substantial sample sizes may be required to uncover incremental benefit from
candidate biomarkers or biomarker panels.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Receiver operating characteristic curve for clinical model compared to models that include
biomarkers of increasing strength. Clinical model with a weak biomarker (OR 1.5) as shown
as dashed grey line (OR=1.5), a moderate biomarker (OR=3.0) shown as grey line, and a
strong biomarker (OR=6.0) shown as dashed black line.
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Figure 2.
Proportional change in each risk category (low, intermediate, high) for critical illness when
adding biomarkers of increasing strength to the clinical triage model. Cases (panel A) and
controls (panel B) shown separately.
Interpretive example: When a moderate strength biomarker (OR=3.0) is added to a clinical
risk model, the proportion of all cases classified as high risk increases by 9% (panel A), the
proportion classified as intermediate risk decreases by 3%, and low risk decreases by 5%. In
contrast, the proportion of controls classified as low risk increases by 1% (panel B) with no
change in the proportion classified as high risk.
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Figure 3.
Reclassification plot of the risk of critical illness using a clinical model (X axis) compared to
clinical model plus biomarkers of increasing strength (Y axis). Panel A corresponds to a
weak biomarker (OR=1.5), Panel B a moderate strength marker (OR=3.0), and Panel C a
strong marker (OR=6.0). Cases shown as dark circles and controls grey hashes. As
biomarker strength increases, a greater proportion of cases are classified as higher risk
(above the line) while more controls are reclassified as lower risk (below the line). All
values plotted on the log scale from a random sample of 1000 cases and controls,
respectively. Continuous net reclassification index (NRI) with 95% confidence intervals
displayed on panel.
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Table 1

Overall performance measures for the clinical model and models that include a biomarker of increasing
strength.^

Odds ratio (OR)of biomarker Area under the ROC curve# Integrated discrimination improvement (95%CI)

Clinical model 0.800 (0.795, 0.811) .

1.5 0.812 (0.804, 0.820) 0.007 (0.005, 0.009)

2.0 0.823 (0.817, 0.831) 0.019 (0.016, 0.022)

2.5 0.834 (0.827, 0.842) 0.029 (0.025, 0.033)

3.0 0.850 (0.840, 0.860) 0.047 (0.043, 0.053)

3.5 0.857 (0.850, 0.864) 0.056 (0.051, 0.062)

4.0 0.873 (0.868, 0.879) 0.074 (0.068, 0.080)

4.5 0.878 (0.873, 0.883) 0.081 (0.075, 0.088)

5.0 0.887 (0.881, 0.892) 0.095 (0.087, 0.010)

5.5 0.890 (0.886, 0.896) 0.104 (0.097, 0.111)

6.0 0.898 (0.892, 0.903) 0.111 (0.105, 0.119)

^
 95% confidence intervals for the AUC and IDI derive from the bootstrap (1000 replications)

#
 All tests of the area under the curve (AUC) compare models enhanced with biomarkers vs. clinical model, and were statistically significant

(p<0.05), where H0: (AUCenhanced − AUCclinical) = 0
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Table 2

Net reclassification results when comparing the clinical model to models with biomarkers of increasing
strength (OR ranging from 1.5 to 6.0).

Odds ratio (OR) of biomarker Overall NRI (95%CI) NRI for cases (95% CI) NRI for controls (95% CI)

1.5 0.014 (0.006, 0.036) 0.014 (0.005, 0.039) −0.001 (−0.010, 0.010)

2.0 0.054 (0.042, 0.079) 0.056 (0.041, 0.082) −0.002 (−0.011, 0.010)

2.5 0.095 (0.083, 0.123) 0.095 (0.081, 0.124) 0.000 (−0.009, 0.011)

3.0 0.145 (0.132, 0.175) 0.139 (0.123, 0.168) 0.006 (−0.003, 0.018)

3.5 0.182 (0.165, 0.207) 0.173 (0.154, 0.196) 0.010 (0.000, 0.021)

4.0 0.227 (0.212, 0.259) 0.210 (0.193, 0.239) 0.018 (0.008, 0.030)

4.5 0.258 (0.239, 0.285) 0.237 (0.218, 0.261) 0.021 (0.011, 0.033)

5.0 0.300 (0.279, 0.329) 0.273 (0.254, 0.299) 0.027 (0.016, 0.039)

5.5 0.317 (0.295, 0.343) 0.285 (0.265, 0.310) 0.031 (0.021, 0.043)

6.0 0.341 (0.320, 0.370) 0.310 (0.290, 0.330) 0.040 (0.026, 0.048)

^
 The 95% confidence intervals for all NRI data derive from the bootstrap (1000 replications).

Interpretive example: Significant reclassification of critical illness risk was observed when including even a weak biomarker in a clinical risk
model (OR 1.5, NRI=0.014 (95%CI: 0.006, 0.036)). However, reclassification of controls was significant only when adding a marker with strong
association with outcome (OR ≥ 3.5).
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Table 3

Net reclassification results when comparing the clinical model to models with biomarkers of increasing
strength (OR ranging from 1.5 to 6.0) in random samples of differing size.*

Sample size Odds ratio (OR) of biomarker NRI overall NRI among cases (95% CI) NRI among controls (95%CI)

500 1.5 −0.04 (−0.08, 0.15) −0.05 (−0.08, 0.15) 0.006 (−0.03, 0.031)

3.0 0.04 (−0.04, 0.25) 0.05 (−0.05, 0.27) −0.004 (−0.04, 0.03)

6.0 0.20 (−0.01, 0.42) 0.19 (0.00, 0.36) 0.006 (−0.02, 0.10)

1,000 1.5 0.07 (−0.07, 0.22) 0.07 (−0.08, 0.25) 0.004 (−0.04, 0.04)

3.0 0.18 (0.05, 0.36) 0.21 (0.05, 0.38) −0.02 (−0.05, 0.05)

6.0 0.26 (0.07, 0.43) 0.27 (0.07, 0.43) −0.02 (−0.04, 0.07)

2,000 1.5 0.09 (−0.02, 0.20) 0.11 (0.0, 0.20) −0.02 (−0.04, 0.03)

3.0 0.11 (0.05, 0.26) 0.13 (0.04, 0.27) −0.02 (−0.02, 0.05)

6.0 0.31 (0.20, 0.50) 0.28 (0.18, 0.44) 0.03 (−0.004, 0.09)

10,000 1.5 0.02 (−0.02, 0.05) 0.01 (−0.03, 0.06) 0.004 (−0.02, 0.02)

3.0 0.16 (0.10, 0.22) 0.14 (0.09, 0.21) 0.01 (0.0, 0.03)

6.0 0.36 (0.29, 0.41) 0.31 (0.25, 0.37) 0.04 (0.02, 0.06)

*
Gray boxes indicate statistical significance, defined as 95 % bootstrap confidence interval that does not include 0.0

Interpretive example: In modest samples sizes (N=1,000), we observed significant reclassification of critical illness risk with moderate and
strongest biomarkers. Large samples sizes (N>10,000) are required for weak biomarkers (OR=1.5) to significantly improve reclassification.
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